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Simplified Vibration Model and analysis
of a single-conductor transmission
line with dampers
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Abstract

A novel model is developed for a vibrating single-conductor transmission line carrying Stockbridge dampers.

Experiments are performed to determine the equivalent viscous damping of the damper. This damper is then reduced

to an equivalent discrete mass-spring-mass and viscous damping system. The equations of motion of the model are

derived using Hamilton’s principle and explicit expressions are determined for the frequency equation, and mode shapes.

The proposed model is verified using experimental and finite element results from the literature. This proposed model

excellently captures free vibration characteristics of the system and the vibration level of the conductor, but performs

poorly in regard to the vibration of the counterweights.

Keywords

Aeolian vibration, Strouhal frequency, messenger, Stockbridge damper, equivalent viscous damping, mass-spring-damper

Date received: 4 August 2015; accepted: 14 March 2016

Introduction

Aeolian vibration of transmission lines has been a
subject of study for many years. It occurs at what is
commonly referred to as Strouhal frequency which is
proportional to the wind speed and inversely propor-
tional to the diameter of the conductor. The Strouhal
frequency varies between 3 Hz and 150Hz and causes
a peak-to-peak amplitude of up to one conductor
diameter.1 Stockbridge dampers are often employed
to dampen Aeolian vibration. Their effectiveness
is dependent on their position on the conductor,
their overall characteristics, and the characteristics
of the conductor.

The model of a conductor can be idealized as an
axially loaded Euler-Bernoulli beam subjected to an
exciting force by the damper. Claren and Diana2 were
among the earliest investigators to examine Aeolian
vibration of transmission lines. They analytically and
experimentally determined the natural frequencies
of the conductor without damping. The effect of the
conductor flexural rigidity on natural frequencies was
investigated by Dhotard et al.3 The differences in the
values of natural frequencies observed in the simply
supported end cable (with and without flexural rigid-
ity) were less than 3%. They hypothesized that the
location of the dampers had negligible effect on the
strain for low frequency excitation (i.e. low wind
speed). Barbieri et al.4 performed free vibration

analysis of a single conductor without damping
using Galerkin method and experimentally validated
their results. Barry et al.5,6 used the finite element
(FE) method to study the vibration of a transmission
line with an attached Stockbridge damper. They
observed that asymmetric Stockbridge dampers were
more effective at higher modes.

Many authors studied the forced vibration of trans-
mission lines using methods based on impedance models.
Tompkins et al.7 examined the interaction of a conductor
with a damper using the electrical–mechanical imped-
ance method. That model was reformulated in solely
mechanical-impedance terms by Rawlins8 and then
used to analyse conductor vibrations. Further extension
of the model was proposed by Nigol and Houston9 who
included the boundary conditions at both ends and con-
sidered the arbitrary location of the excitation source.
Their model was experimentally verified and it was
used to demonstrate optimum damping concepts.
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Energy balance method (EBM) is another method
used to examine the forced-vibration analysis of trans-
mission lines. The vibration level is evaluated by deter-
mining the balance between the energy imparted to the
conductor by the wind and the energy dissipated by the
conductor (via conductor self-damping) and the added
dampers. Oliveira and Preire10 developed a dynamical
model of Aeolian vibration to predict the amplitude of
steady-state motion of the conductor based on EBM.
They included a method for solving the time-dependent
Navier–Stokes equation. Kraus and Hagedorn11 also
employed the EBM to examine vibration magnitudes.
Their results were compared to those obtained from a
wind tunnel experiment. The optimal position of
Stockbridge dampers along the span of the conductor
was investigated by Verma and Hagedorn.12 To avoid
locating dampers on nodes for system natural frequen-
cies of less than 50 Hz, they analytically showed that it
was sufficient to maintain approximately 1m max-
imum distance between adjacent dampers.

A major drawback of the impedance and EBM
approaches is the limitation to only one-way coupling
between the conductor and damper. Specifically, the
dynamics of the damper influenced that of the con-
ductor but not the converse. An attempt at modelling
a two-way coupling scenario was reported in Barry
et al.5,6,13,14 The messenger cable and counterweights
were modelled as two cantilevered Euler-Bernoulli
beams with rigid tip masses. The system was con-
nected to the conductor via a rigid link. While the
efficacy of the model was demonstrated, it was very
complicated compared with that based on EBM or
the impedance method. It was also computationally
intensive because of the numerous degrees of freedom
employed. The present exposition addresses these
shortcomings by replacing the continuum damper
model with an equivalent discrete system.

The Stockbridge damper was reduced to an equiva-
lent mass-spring-mass and viscous damping system.
Hence, the transmission line system was modelled as
an axially loaded Euler-Bernoulli beam with in-span
mass-spring-mass and viscous damping system.
Numerous researchers (see Lin and Tsai,15 Ercoli
and Laura,16 Liu and Huang,17 Wu and Lin,18

Gurgoze19 and Cha20 and the references mentioned
therein) have investigated the vibration of beams
with an attached in-span mass and/or spring-mass
system. In spite of these interests, there was no inves-
tigation where the beam was subjected to an axial

load while supporting an in-span mass-spring-mass
and viscous damping system.

In developing the equivalent model, experiments
were performed to determine the equivalent viscous
damping using the forced response method. The
equivalent mass and stiffness of the messenger were
determined on the premise that the damper consisted
of the two cantilevered beams with a tip mass. The
equations of motion were derived using Hamilton
principle. Explicit expressions were presented for the
characteristic equation, and mode shapes. The model
was validated using both the numerical and experi-
mental results in the literature. Parametric studies
were conducted to investigate the effect of the magni-
tude and location of the damper on the natural fre-
quency. The role of the Strouhal frequency on the
vibration response was also examined.

Description of the system

A schematic of a single conductor with a Stockbridge
damper is depicted in Figure 1. The Stockbridge damper
comprised of a clamp, a messenger (or damper cable)
and a mass (or counterweight) at each end of the mes-
senger. The clamp, messenger and damper counter-
weights were modelled as cantilevered Euler-Bernoulli
beams with tip masses, as shown in Figure 2. The
damper was reduced to an equivalent spring-mass and
viscous damping system. The conductor and the
Stockbridge damper were finally reduced to an equiva-
lent tensile beam with an in-span mass-spring-mass and
viscous damping system (see Figure 3). The additional
in-span mass represented the mass of the clampMc. The
equivalent viscous damping was determined experimen-
tally (as outlined in the following section). Since the
Stockbridge damper can be modelled as two independ-
ent cantilever beams each with a tip mass, the equivalent
stiffness, k, is then the parallel combination of the stiff-
nesses of the two cantilevered beams. The equivalent

Figure 1. Schematic of a single conductor with a Stockbridge damper.

Figure 2. Schematic of Stockbridge damper messenger with

counterweight.
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mass, Md is the sum of equivalent mass of a cantilever
beam and the mass of the counterweight on each side.

Assuming that all the wires bend together, the the-
oretical maximum bending stiffness of the conductor
and messenger are calculated to be EcIc ¼ 1602Nm2

and EmIm¼ 31.8Nm2, respectively.

k ¼ 2
3EmIm
L3
m

� �
ð1Þ

Md ¼
33mmLm

140
þmdr þmdl ð2Þ

where EmIm and mm are the messenger flexural rigidity
and mass per unit length, respectively. The masses
of the right-hand side and left-hand side ends of the
messenger are denoted by mdr and mdl, respectively.
Lm denotes the total length of the messenger.

Experiments

The Stockbridge damper is often postulated as non-
linear because it is dependent upon the forcing fre-
quency and the conductor vibration amplitude at
the location of the damper clamp.9,21–23 The nonli-
nearity of the damper can be modelled as an equiva-
lent viscous damping.24 This equivalent damping
coefficient cd is estimated from empirical data as:

cd ¼
Ed!

�V 2
c

ð3Þ

where

Ed ¼
Pd

f
and Pd ¼

1

2
FVc cos�FV ð4Þ

! is the circular frequency in rad/s. Ed and Pd are the
energy and power dissipated by the damper over a
complete cycle, respectively; f is the excited frequency
in Hz, F is the force transmitted to the shaker by the
damper, Vc is the measured velocity at the clamp, and
�FV is the phase angle between the force and the
velocity.

The experimental investigation was conducted by
means of the forced response method to measure the
force transmitted to the shaker by the damper, the
velocity of the clamp, and the phase angle between
the velocity and the force. The experimental proced-
ure and set-up were performed according to IEEE
std.664.25 The schematic of the experimental set-up
is depicted in Figure 4. The Stockbridge damper was
mounted on an electrodynamic shaker (Bruel & Kjaer
4802). A load cell (Dytran 1061V1) was installed
between the shaker and the fixture to measure the
delivered force and an accelerometer (B&K 4382)
was placed at the clamp to measure the velocity of
the damper.

The characteristics of the Stockbridge damper are as
follows: the flexural rigidity is EmIm¼ 31.8 Nm2 and
mass per unit length is mm¼ 0.25kg/m. The mass of
the right and left counterweights are mdr¼ 3.4 kg and
mdl¼ 1.46kg. The length of the messenger on the right
and left are LL¼ 0.22m and LR¼ 0.3m.

The Stockbridge damper was excited in the range
of wind-induced vibration (sweep) at a constant vel-
ocity 100mm/s. The frequency range was confined to
frequencies greater than 10 Hz, given that the shaker
was not applicable to frequencies lower than 10 Hz.
Both load cell and accelerometer were connected to a
dynamic signal analyzer (PCI-6034E) through charge
amplifiers (Dytran 4115 and B&K 2635). For each
tested frequency, values were recorded for the input
force from the shaker, velocity at the clamp, and
phase angle between the force and the velocity. The
recorded frequency, force and velocity at the clamp
are employed in equation (3) to obtain the equivalent
damping coefficient of the Stockbridge damper.
A plot of cd against the recorded frequencies is
shown in Figure 5. It indicates that the equivalent
viscous damping increases up to certain peaks and
then decreases. It should be noted that the frequencies
corresponding to these peaks are the resonant fre-
quencies of the Stockbridge damper.

Equations of motion

Two reference frames were attached at the ends of the
conductor as shown in Figure 3. The damper was

Figure 3. Schematic of a simply supported beam with an in-span mass-spring-mass system.
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located at a distance L1 from the left-hand side refer-
ence frame, and the conductor was deemed as being
divided into two segments. The transverse displace-
ment of each segment was measured relative to the
appropriate reference frame, and it is denoted by
wiðxi, tÞ for i ¼ 1, 2. The vertical displacements of
the mass attached to the conductor Mc and the sus-
pended mass Md are denoted by z0ðtÞ and z(t),

respectively. The system kinetic T and potential V
energy may then be expressed as

T ¼
1

2
mc

X2
i¼1

Z Li

0

_w2
i ðx, tÞdxþ

1

2
Md _z2 þ

1

2
Mc _z0

2

ð5Þ

Figure 5. Equivalent viscous damping coefficient of the Stockbridge damper.

Figure 4. Schematic of the experimental set-up.
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V ¼
1

2
EcIc

X2
i¼1

Z Li

0

w00i 2ðx, tÞdxþ
1

2
cdð _z� _z0Þ

2

þ
1

2
kðz� z0Þ

2
þ
1

2
T
X2
i¼1

Z Li

0

w02i ðx, tÞdx

ð6Þ

where z0ðtÞ ¼ w1ðL1, tÞ, EcIc is the conductor flexural
rigidity, mc is mass per unit length of the conductor
and T denotes the conductor pretension. The overdots
and primes denote temporal and spatial derivatives,
respectively.

These energies were introduced into the Hamilton’s
principle. The continuity equations and the resulting
coupled system governing equations and boundary
conditions may be written as

EcIcw
0000
i þmc €wi � Tw00i ¼ 0 ð7Þ

Md €zþ cdð _z� _z0Þ þ kðz� z0Þ ¼ 0 ð8Þ

Mc €z0 � EcIcw
000
1 ðL1, tÞ þ Tw01ðL1, tÞ þ cdð _z0 � _zÞ

þ kðz0 � zÞ � EcIcw
000
2 ðL2, tÞ þ Tw02ðL2, tÞ ¼ 0

ð9Þ

w1ðL1, tÞ ¼ w2ðL2, tÞ ð10Þ

w01ðL1, tÞ ¼ �w
0
2ðL2, tÞ ð11Þ

w001ðL1, tÞ ¼ w002ðL2, tÞ ð12Þ

w1ð0, tÞ ¼ w001ð0, tÞ ¼ w2ð0, tÞ ¼ w002ð0, tÞ ¼ 0 ð13Þ

Free vibration

Assuming the system exhibits harmonic vibration
such that the deformations wiðxi, tÞ and displacements
z(t) were expressed as

wiðx, tÞ ¼ LWið�iÞe
j!t for i ¼ 1, 2 ð14Þ

zðtÞ ¼ LZe j!t ð15Þ

where j ¼
ffiffiffiffiffiffiffi
�1
p

, Wið�iÞ and Z are the respective non-
dimensional amplitudes of wiðxi, tÞ and z(t), and ! is
the circular natural frequency of the system. Substituting
the above equations into equations (7)–(13), and ignor-
ing viscous damping component, yielded the following
non-dimensional system equations:

W0000i ð�iÞ � s2W00i ð�iÞ ��4Wi�iÞ ¼ 0 ð16Þ

Z� KW1ð�1Þ ¼ 0 ð17Þ

W0001 ð�1Þ � s2W01ð�1Þ � �W1ð�1Þ þ �Z ¼ �W
000
2 ð�2Þ

þ s2W02ð�2Þ

ð18Þ

W1ð�1Þ ¼W2ð�2Þ ð19Þ

W01ð�1Þ ¼ �W
0
2ð�2Þ ð20Þ

W001ð�1Þ ¼W002ð�2Þ ð21Þ

W1ð0Þ ¼W001ð0Þ ¼W2ð0Þ ¼W002ð0Þ ¼ 0 ð22Þ

where

�1 ¼
L1

L
, �2 ¼

L� L1

L
, K ¼

k

k�Md!2
, s2 ¼

TL2

EcIc

ð23Þ

�4 ¼
mc!

2

EcIc
L4, � ¼

k� !2Mc

EcIc
L3,

� ¼
kL3

EcIc
and �i ¼

xi
L

ð24Þ

The general solution of equation (16) for each beam
or conductor segment was expressed as

Wi ¼ ci1 sin��i þ ci2 cos��i þ ci3 sinh 	�i þ ci4 cosh 	�i

ð25Þ

where

� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
s2

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s4

4
þ�4

rs
and 	 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s4

4
þ�4

rs

ð26Þ

For brevity, the following symbols si, ci, shi and chi
were introduced to denote sin ��i, cos��i, sinh ��i
and cosh��i, respectively. Hence the characteristic
(or frequency) equation may be written as

ðk� !2MdÞð�	��
2c�
sh	 þ ��	

2s�ch	

� ��	2s�ch	
 � �	
2�Ks�ch	 þ �	

2�Ks�ch	


þ 	��2c�sh	 � 	�K�
2c�sh	 � �

3�Ks�ch	

þ �3�Ks�ch	
 � 	
3�Kc�sh	 þ 	

3�c�sh	

� 2�	5s�sh	 � 2�5	s�sh	 � 	
3�c�
sh	

� 4�3	3s�sh	 þ �
3�s�ch	 � �

3�s�ch	


þ 	�K�2c�
sh	 þ 	
3�Kc�
sh	Þ ¼ 0

ð27Þ

where

� ¼ c1�
3 þ s1ð�� �KÞ ð28Þ

� ¼ �ch1	
3 þ sh1ð�� �KÞ ð29Þ

� ¼ c2�
3 ð30Þ

 ¼ �ch2	
3 ð31Þ
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c� ¼ cos�, c�
 ¼ cosð�f�1 � �2gÞ, s� ¼ sin�, ch	 ¼
cosh	, sh	 ¼ sinh 	, and ch	� ¼ coshð	f�1 � �2gÞ. The
characteristic equation is multiplicatively decomposed
into a component that yielded the natural frequency
of the suspended simple discrete spring-mass sys-
tem and another that provided the frequency of the
more complex system. The shape functions are now
written as

W1ð�1Þ ¼ c11 sin��1 ð32Þ

W2ð�2Þ ¼ c11
s1
s2
sin ��2 ð33Þ

Forced vibration

Given that the validation of the forced response was
based on the experiment reported in Nigol and
Houston,9 the excitation force was from the mid-
span located at the electrodynamic shaker. This
force can be expressed as Fðx, tÞ ¼ f ðtÞ�ð� � 0:5Þ, and
the forced-vibration equations may be written as

mc €wþ EcIcw
IV � Tw

00

þ �ðx� L1Þ
�
Mc €w:

þkðw� zÞ þ cdð _w� _zÞ
�
¼ Fðx, tÞ� x�

L

2

� �
ð34Þ

Md €zþ k
�
z� wðL1Þ

�
þ cd

�
_z� _wðL1Þ

�
¼ 0 ð35Þ

The solutions of equations (34) and (35) were
obtained using mode superposition principle. The
deflection of the beam was assumed as

wðx, tÞ ¼ L
X1
i¼1

Wið�ÞqiðtÞ ð36Þ

zðtÞ ¼ LZiqiðtÞ ð37Þ

where qiðtÞs are the generalized displacements and
Wið�Þ are the mode shapes

Substituting equations (36) and (37) into equations
(34) and (35), then projecting onto the jth eigenfunc-
tion and using the classical orthonormality condi-
tions, the following equation was obtained

€qj þ cj _qj þ !
2
j qj ¼ Qj for j ¼ 1, 2 . . . ð38Þ

where !j is the system natural frequency and cj and Qj

are given as

cj ¼
cd

�jmcL
W1jð�1Þ � Zj

� �2
ð39Þ

Qj ¼
1

�jmcL
Fðx, tÞW2j �2 ¼ 0:5ð Þ ð40Þ

and

�j ¼

Z �1

0

W2
1jd�1 þ

Z �2

0

W2
2jd�2

þ
1

mL

�
W2

1jð�1ÞMc þ Z2
jMd

� ð41Þ

Equation (38) was solved using Runge-Kutta numer-
ical integration method, and the vibration response of
the conductor and the damper were determined using
equations (36) and (37), respectively.

Numerical simulation

The free vibration analyses were based on a
795-KCMIL-DRAKE-ACSR conductor with the
following parameters: conductor diameter dc¼
28.1mm, flexural rigidity EcIc ¼ 1602 Nm2, mass
per unit length mc¼ 1.6286 kg/m, and the tension
T¼ 27,840N. The Stockbridge damper data were pro-
vided in ‘Experiments’ section. The parameters of the
equivalent reduced model were: suspended mass
Md¼ 4.83 kg, clamp mass Mc¼ 0.2 kg and equivalent
spring stiffness k¼ 1356.96N/m.

The first 10 natural frequencies are tabulated in
Table 1 for a given conductor length of 27.25m. The
results in the second column were obtained using equa-
tion (27), the frequency equation. The third column
represents the results obtained via a FE implementa-
tion of the conductor and mass-spring-mass model.
A good agreement was observed between the values
of the exact solution and the FE method. This obser-
vation is true for the results in Barry et al.,5 which
are presented in the fourth column. The second nat-
ural frequency was not captured in Barry et al.5

This frequency, 16.5798 rad/s, was in close proximity

Table 1. The first 10 natural frequencies obtained using

various methods for conductor in-span mass Mc¼ 0.2 kg,

L¼ 27.25 m and damper location �1¼ 0.05.

Natural frequency (Hz)

Mode Present

Finite

element

Barry

et al.5
Bare

beam

1 2.3845 2.3845 2.3981 2.4011

2 2.6384 2.6387 – 4.8077

3 4.8164 4.8164 4.7820 7.2252

4 7.2337 7.2337 7.1263 9.6593

5 9.6663 9.6663 9.3843 12.1150

6 12.1182 12.1182 11.5202 14.5980

7 14.5942 14.5943 13.6375 17.1132

8 17.0992 17.0994 15.9025 19.6657

9 19.6385 19.6389 18.3324 22.2607

10 22.2172 22.2181 20.8802 24.9027
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to that of the suspended spring-mass system (i.e. ! ¼ffiffiffiffiffi
k
Md

q
� 2:6674 Hz), and its absence may be explained

by their formulation method. The damper employed in
Barry et al.5 was as a system comprising two independ-
ent beams that were cantilevered to a rigid link which
was connected to the conductor. Each cantilevered
beam modelled a segment of the messenger and carried
a tip mass which represented the counterweight. The
bare beam frequencies were obtained by using equation
(27) and setting the Md, Mc and k to be zero.

A plot of the mode shapes corresponding to the
lowest five mode shapes of the system is depicted in
Figure 6. Except for the second mode shape, these
mode shapes can be related to the mode shapes of
the bare beam. As observed earlier, the second mode
frequency was in the proximity of the natural fre-
quency of the suspended spring-mass system. It is
conjectured that the inertia/mass of the damper effect-
ively divided the conductor into two segments.

For a given conductor length of 200m, the influ-
ences of the relative magnitudes of the in-span mass
Mc and the suspended mass Md on the system natural
frequencies were examined by maintaining their total
sum constant – in the reported simulation Mc þMd¼

5 kg. The results are tabulated in Table 2. Using
the scenario where the two masses are equal as a ref-
erence, it was observed that increasing the in-span
mass Mc (and simultaneously decreasing the sus-
pended mass Md in order to maintain the constant
total mass condition) increased the system natural
frequencies of all five modes. This is plausible because

increasing the in-span mass effectively increased the
system stiffness (via the segmentation).

Figure 7 shows the effect of the damper location on
the system natural frequencies. The frequency at each
damper location was normalized with respect to the
frequency corresponding to the damper location
�1¼ 0.004. The normalizing frequencies were 2.0548,
4.1096, 6.1645, 8.2195 and 10.2746 rad/s, correspond-
ing to modes 1 through 5, respectively. One half of
the conductor length is plotted because of symmetry.
The first mode decreased monotonically with decreas-
ing distance of the damper from the conductor mid-
point. This is because the effective stiffness of the
system decreases as the damper location approaches

Figure 6. The mode shapes corresponding to the lowest five natural frequency of the conductor with mass-spring-mass system.

Table 2. The lowest five natural frequencies when the span

length L¼ 200 m, in-span mass-spring-mass system is located at

�1¼ 0.0333, and the magnitudes of the in-span mass Mc and

suspended mass Md are selected such that their sum

Mc þMd¼ 5 kg.

Mass (kg)
Natural frequency (Hz)

Mc, Md f1 f2 f3 f4 f5

0, 5 0.3270 0.6536 0.9794 1.3035 1.6236

1, 4 0.3270 0.6536 0.9795 1.3040 1.6258

2, 3 0.3270 0.6536 0.9796 1.3043 1.6272

2:5, 2:5 0.3270 0.6536 0.9796 1.3044 1.6276

3, 2 0.3270 0.6536 0.9796 1.3045 1.6280

4, 1 0.3270 0.6536 0.9796 1.3047 1.6284

5, 0 0.3270 0.6536 0.9796 1.3047 1.6286
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the centre of the conductor. The other four modes
were remarkably affected in that they all decreased
and increased depending on whether they were
approaching a node or an anti-node. The rate of
change was more pronounced in the fifth frequency.

With regard to forced vibration analysis, the valid-
ation of the present model was examined in threefold:
the first and second employed the indoor experimental
data reported in Nigol and Houston9 and Barry
et al.,14 respectively. The third relied on the FE
model of Barry et al.6 In the case of the first indoor
experiment, a 585 Kcmil (26/7) ASCR conductor was
strung between two rigid terminals that were 23.5m
apart. Two identical dampers were attached at a dis-
tance of 1.73m from each end and a shaker was
mounted at mid-span. The shaker force and the
mid-span velocity of the conductor were measured
for various resonant frequencies. The tested con-
ductor had the following characteristics: diameter
dc¼ 24.1m, mass per unit length mc¼ 1.19 kg/m,
rated tensile strength (RTS) of 105 kN. The tested
damper was a single degree-of-freedom damper and
it comprised a mass Md¼ 3.19 kg, spring stiffness
k¼ 3800N/m, and an equivalent viscous damping
cd¼ 177 Ns/m. A conductor tension of 25% RTS
was considered. The experimental results were based
on the optimum curve depicted in Figure 11 of Nigol
and Houston.9 The proposed model was also
extended to accommodate the attachment of two
dampers. Further, the mass of the clamp was ignored
in order to properly represent the tested damper. The

comparison of the experimental data and the com-
puted results from the proposed model are presented
in Figure 8. They show very good agreement. It
should be noted that the ratio of velocity over excita-
tion force was measured and computed at the point of
excitation.

The second part of the validation consisted of the
indoor experiment reported in Barry et al.14 The con-
ductor 795 Kcmil ASCR was strung between two rigid
terminals 27.25m apart and one Stockbridge damper
with the same parameters described in ‘Experiments’
section. The results are depicted in Figure 9. Albeit
the present model tends to overestimate the vibration
amplitude for frequency higher than 20 Hz, it shows
similar trends to the model employed in Barry et al.14

That is both models capture the vibration level of the
conductor very well.

The third part of the validation and the rest of the
numerical analyses were also based on the 795 Kcmil
ASCR conductor and the Stockbridge damper data
provided in the experimental section. The system
was subjected to a concentrated harmonic force
f ðtÞ ¼ F0 sinð�ftÞ N. The equivalent viscous damping
was obtained from Figure 5 for each excitation
frequency. Figure 10 depicts plots of the conductor
non-dimensional maximum vibration amplitude for
various Strouhal frequencies which were obtained
using both the proposed model and that in Barry
et al.6 In reference to the conductor vibrational
response, the results obtained using the present
model were in good agreement with those obtained

Figure 7. The effect of the damper location on natural frequencies for span length L¼ 200 m. The frequencies are non-dimensionalized

as
!i

!�¼0:004

.
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using Barry et al.6 The normalized mid-span vibration
amplitude of the conductor (relative to the con-
ductor diameter, d decreased with increasing forcing
frequency. The results for the damper showed
poor agreement with those obtained using the FE

method. This poor agreement between the pro-
posed simple model and the complete, but compli-
cated model of Barry et al.,6 indicates that the
former cannot be used to predict the response of the
counterweights.

Figure 8. Validation of the proposed model via experiment with one degree freedom damper (L¼ 23.5 m, L1¼ 1.73 m, L2¼ 21.77 m,

cd¼ 177 Ns/m).

Figure 9. Validation of the proposed model via experiment with Stockbridge damper (L¼ 27.25 m and L1¼ 0.94 m).
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The effect of attaching one or two dampers on the
conductor is demonstrated in Figure 11. Three plots
of the non-dimensionalized mid-span vibration amp-
litude are depicted. The first plot is that of the bare

conductor, second is for one damper at L1¼ 3.33m,
and third for two dampers at 3.33m from each end.
The results indicated that using one damper reduced
the vibration of the conductor, and the reduction was

Figure 11. The effect of attaching dampers (L¼ 200 m, L1¼ 3.33 m, F0¼ 100 N).

Figure 10. Validation of the proposed model via finite element (L¼ 200 m, L1¼ 3.33 m, F0¼ 100 N).
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most pronounced between 10 and 25Hz. With two
dampers, the vibration of the conductor was drastic-
ally reduced throughout the whole range of forcing
frequency. To further illustrate the role of attaching
two dampers, Figure 12 depicts plots of vibration

response of the bare and loaded conductor for a
given forcing frequency of 20 Hz. The response of
the bare conductor displays a resonance phenom-
enon as expected because the forcing frequency was
closer to one of the system natural frequencies.

Figure 12. The bare and loaded conductor non-dimensional vibration amplitude (L¼ 200 m, L1¼ 3.33 m, L2¼ 193.67 m, F0¼ 100 N,

f¼ 20 Hz).

Figure 13. Effect of Mc and Md on the vibration response of the conductor (L¼ 30 m, cd¼ 300 Ns/m, f¼ 15 Hz, F0¼ 10 N).
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This resonance was completely eliminated in the
system with two dampers.

In Figure 13, the effect of the relative magnitudes
of the in-span mass Mc and the suspended mass Md

on the system response were examined. This was done
by increasing Mc from 0 to 5 and simultaneously
decreasing Md from 5 to 0 kg while maintaining
their total sum constant. The results show an increase
in the conductor displacement. This implies that the
suspended mass has more effect for dampening the
conductor than the in-span mass.

Conclusion

The free and forced vibration responses of a single con-
ductor equippedwith Stockbridge dampers were exam-
ined. The damper was reduced to an equivalent discrete
mass-spring-mass and viscous damping system. The
viscous damping of the Stockbridge damper was deter-
mined experimentally. The system equations of motion
were derived using Hamilton’s principle. Explicit
expressions were presented for the frequency (or char-
acteristic) equation, and mode shapes. The validity of
the formulation was demonstrated via comparisons
with experimental results and FE numerical method
results. The proposed simple model was effective for
predicting the conductor response and natural frequen-
cies of the system (i.e. combined conductor and
damper), but a poor predictor of the response of the
counterweights. The numerical simulations showed
significant dependency of the natural frequencies on
damper location and total mass. This was more pro-
nounced when the damper was in the proximity of anti-
nodes. With regard to the forced vibration, increasing
the forcing frequency significantly reduced the vibra-
tion amplitude of the conductor. The use of two dam-
pers was significantly superior to using one damper.
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Appendix

Notation

cd equivalent damping coefficient
dc diameter of conductor
EcIc flexural rigidity of conductor
Ed energy dissipated by damper
EdId flexural rigidity of damper
f excitation frequency
F applied force
k equivalent damper stiffness
L length of conductor

L1 damper location on the conductor
Lm length of messenger
LL length of left messenger
LR length of right messenger
mc mass per unit length of conductor
Mc mass of clamp
Md equivalent mass of damper
mdl mass of right damper
mdr mass of left damper
mm mass per unit length of messenger
Pd power dissipated by damper
q(t) generalized displacement
T tension of conductor
T kinetic energy
Vc measured velocity of damper clamp
V potential energy
w(x,t) transverse displacement of conductor
Wð�Þ mode shape
z(t) vibration displacement of conductor

�FV phase angle between force and velocity
! circular frequency
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