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Aeolian vibration of a single conductor
with a Stockbridge damper

Oumar Barry, Donatus CD Oguamanam and Der Chyan Lin

Abstract

The planar vibrational response of a single conductor with an attached Stockbridge damper is investigated. The

mathematical model accounts for the two-way coupling between the conductor and the damper, the flexural rigidity

of both the damper and the conductor, and the mass of the two counterweights of the damper. Hence, the dynamic

behaviors of the damper and conductor are simultaneously assessed. Both free and forced vibration analyses are

implemented via the use of a finite element code developed in MATLAB. The results of the force vibration analyses

show that the effectiveness of Stockbridge dampers depends on their location, mass, and excitation frequency.
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Introduction

Aeolian vibration of transmission line conductor
arises from alternating wind forces that are caused
by vortex shedding. The frequency of vibration, also
called Strouhal frequency, is observed in a specific
range, usually between 3 and 50Hz with a wind
speed of 1–7m/s.1 Aeolian vibration imperils the life
of transmission lines and, if uncontrolled, could cause
serious accidents and/or considerable economic loss.
A method to eradicate the vibration is the use of
damping devices, such as the Stockbridge damper.

This subject has attracted several investigations,
one of the earliest being by Claren and Diana2 who
showed that the physical model of the conductor is
similar to an Euler–Bernoulli beam under the action
of an axial load (i.e. design tension). This model was
used by Barbieri et al.3 and the equation of motion
was solved using the Galerkin-weighted-residual
method. The results of the free vibration analysis
were experimentally validated.

Dhotard et al.4 also employed the mathematical
model of Claren and Diana2 to examine the dynamics
of a single-conductor vibration with dampers. They
concluded that damper locations had more effect on
strains at higher frequencies than at lower ones. The
amplitudes of vibration were observed to depend solely
on the location of the damper. The investigation by
Nigol and Houston5 on single conductor advised
against positioning dampers at points of symmetry
along the span of the conductor (such as 1/4, 1/3,
1/2, etc.). For single-damper conductors under

normal design tensions, a damper location between
1.2 and 1.8m was suggested for frequencies of 40–
50Hz; for longer span and/or higher tension, two dam-
pers were suggested with one located at a distance
between 2.4 and 3.6m from one terminal, and the
other located at between 1.0 and 2.2m from the
second terminal.

Krispin6 outlined the advantages of a Stockbridge-
type vibration damper with a low-mass clamp over a
conventional Stockbridge vibration damper with
a bolted clamp. It was shown, analytically and experi-
mentally, that the large-mass clamp of the conven-
tional Stockbridge was a disadvantage in regard to
damping high-frequency vibrations of small diameter
optical ground wires. The energy dissipated by a
Stockbridge damper was dependent upon vibration
frequency and the displacement amplitudes of the
damper clamp.7 These factors were influenced by the
location of the damper.

The wind force acting on a conductor was the con-
cern of Diana et al.8 The transmission line vibration
was observed to be identical to that of a rigid cylinder
since the wind force was proportional to the diam-
eter and the length of the conductor and the
square of the wind velocity. These conclusions were
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corroborated by Bishop and Hassan9 and Bearman
and Currie.10 The lift force led the displacement by
a phase angle ranging from 0� to 180� during reson-
ance. Griffin and Koopmann11 experimentally
demonstrated that the lift coefficient depended on
the ratio of the maximum amplitude of vibration to
the diameter of a rigid cylinder. A maximum lift coef-
ficient of 0.55 corresponded to a maximum peak-to-
peak vibration amplitude of 0.55 diameter.

The ratio of the vibration amplitude at the damper
clamp to that of the free span is of interest in the
energy balance method. Claren and Diana2 deter-
mined the ratio using the summation of assumed
modes technique, while the techniques of wave propa-
gation and matrix transfer are employed in
Hagedorn12 and Hardy and Noiseux,13 respectively.
Other modeling concepts that have been explored
include the use of statistical methods by Noiseux
et al.14 and the approach of multiphysics as presented
by Tsui15 in which non-linear mechanics, fluid dynam-
ics, and aeroelasticity are simultaneously employed.

A different approach to model the planar vibration
of a single-damper conductor is adopted in this study.
The proposed model directly incorporates the two-
way coupling between the conductor and the
Stockbridge damper. It includes the flexural rigidities
of the conductor and the messenger, and it permits the
use of either symmetric or asymmetric Stockbridge
dampers so that the influence of unbalance in the
counterweights can be readily investigated.

Mathematical model

Description of the system

The length of the conductor is denoted by Lc. The
distance of the damper from the nearest terminal is

denoted by Ld. Figure 1 is a close-up view of the
counterweights of the damper. The equations of
motion of the system are determined using the
energy method. The position vectors employed in
the derivation of the kinetic and potential energies
are identified in Figure 1 for the right-hand side coun-
terweight only for brevity. The corresponding vectors
for the left-hand side counterweight merely have the
subscript r replaced by l to denote the left side. The
clamp is assumed to be rigid and fixed to the con-
ductor, which implies that the height h (length of
the clamp plate) is always perpendicular to the con-
ductor at its point of attachment. Figure 2 depicts a
schematic of a finite element of the conductor with a
damper.

Equations of motion

A reference frame F0 is attached to one end of the
conductor. Using Figure 1, a frame F1 is attached to
the clamp of the damper, while frames F2 and F3 are,
respectively, attached to the right-hand side and left-
hand side counterweights. Frame F 01 is the translation
of frame F1 attached at the point of contact of the
clamp and messenger. The set of planar unit vectors

Figure 1. A close-up view of the damper.

Figure 2. Schematic of finite element of the conductor with

damper.
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of frame F 01 is fi
0
1, j
0
1g and that of frame Fa for a¼ 1, 2,

3 is {ia, ja}.
The position vector of a deformed differential

element of the conductor is written as

rcðx, tÞ ¼ xi0 þ wcðx, tÞj0 ð1Þ

where wc(x, t) denotes the conductor transverse dis-
placement. If the point of attachment of the damper is
Ld, then the position vector of the damper location is
given as

r�c ¼ Ldi0 þ wcðLd, tÞj0 ð2Þ

The position vector of the right-end counterweight
with respect to the reference frame F0 is given as

rmrð0Þ ¼ rmrð1Þ þ r�c ð3Þ

where

rmrð1Þ ¼ rgr þ rgmr

rgr ¼ rh þ rlr

rlr ¼ Lgri1 þ w�drj1

rll ¼ �Lgli1 þ w�dlj1

where

w�dr ¼ wdrðLdr, tÞ

w�dl ¼ wdlðLdl, tÞ

where wdr(Ldr, t) and wdr(Ldl, t) denote the messenger
transverse displacement at the right and left ends of
the damper, respectively, and rh the vector from frame
F1 to frame F1

0. Here, rmr(1) represents the position of
the right-end counterweight with respect to frame F1,
rlr the vector from frame F1

0 to frame F2, and rll the
vector from frame F1

0 to frame F3. Lgr and Lgl denote
the length of the damper cable on the right and left
sides, respectively. The position vector rmr(0) can now
be expressed

rmrð0Þ ¼ rgr þ rgmr þ r�c ð4Þ

Similarly, the position vector of the counterweight on
the left side can be written as

rml ð0Þ ¼ rgl þ rgml þ r�c ð5Þ

The position vectors of the messenger on the right and
left sides are

rmmr ¼ r�c þ rh þ xmmi1 þ wdrðxmm, tÞj1 ð6Þ

rmml ¼ r�c þ rh þ xmmi1 þ wdlðxmm, tÞj1 ð7Þ

where

w�c ¼ wcðLd, tÞ

The corresponding velocities are

_rc ¼ _wcðx, tÞj0 ð8Þ

_r�c ¼ _w�c ðx, tÞj0 ð9Þ

and

_rmrð1Þ ¼ _�1hi1 þ Lgr
_�1j1 þ _w�drj1 þ w�dr

_�1 þ !r � rgmr

ð10Þ

_rml ð1Þ ¼ _�1hi1 � Lgl
_�1j1 þ _w�dlj1 þ w�dl

_�1 þ !l � rgml

ð11Þ

where

!r ¼ ð _�1 þ _�2Þk and !l ¼ ð _�1 þ _�3Þk

where _�1 is the angular speed of frame F1 with respect
to F0 and _�2 and _�3 the angular speeds of frames F2

and F3 with respect to F0, respectively. The length of
the damper clamp is denoted by h.

Assuming small rotation and neglecting higher-
order terms, the system kinetic energy may be written
as

KE ¼ Tc þ Tmr þ Tml þ Tmmr þ Tmml

where

Tc ¼
ð�AÞc
2

Z Lc

0

_rc � _rcdx ð12Þ

Tmr ¼
1

2
mdr

(
_w�2c þ 2 _w�c ð

_�1Lgr þ _w�drÞ

þ _�21ðh
2 þ L2

grÞ þ 2Lgr _w�dr
_�1 þ _w�2dr

)

þ
1

2
Idrð _�1 þ _�2Þ

2
ð13Þ

Tml ¼
1

2
mdl

(
_w�2c þ 2 _w�c ð�

_�1Lgl þ _w�dlÞ

þ _�21ðh
2 þ L2

glÞ � 2Lgl _w�dl
_�1 þ _w�2dl

)

þ
1

2
Idlð _�1 þ _�3Þ

2
ð14Þ

Tmmr¼
1

2
mmrð _w

�2
c þð

_�1hÞ
2
Þ

þ
1

2
ð�AÞmr

Z Lgr

0

(
2 _w�c _wdrþ2xmr

_�1 _wdrþ _w2
dr

)
dx

þ
1

2
ð�AÞmrð _w

�
c

_�1L
2
grþ

2

3
_�21L

3
grÞ ð15Þ
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Tmml¼
1

2
mmlð _w

�2
c þð

_�1hÞ
2
Þ

þ
1

2
ð�AÞml

Z Lgl

0

(
2 _w�c _wdl�2xml

_�1 _wdlþ _w2
dl

)
dx

�
1

2
ð�AÞmlð _w

�
c

_�1L
2
glþ

2

3
_�21L

3
glÞ ð16Þ

The moments of inertia of the right- and left-side
dampers are denoted by Idr and Idl, respectively,
while mdr and mdl, respectively, denote the mass of
the right- and left-side dampers. Furthermore, � and
A, respectively, represent the density and the cross-
sectional area.

The system total potential energy is given as

PE ¼
1

2
ðEIÞc

Z Lc

0

@2w2
c

@x2
dx�

1

2
T

Z Lc

0

@w2
c

@x
dx

þ
1

2
ðEIÞmr

Z Lgr

0

@w2
mr

@x
dx

þ
1

2
ðEIÞml

Z Lgl

0

@w2
ml

@x
dx ð17Þ

where E is the Young’s modulus of elasticity and Ic
the area moment of inertia of the conductor.

The kinetic and potential energies are employed in
the Hamilton’s principle to derive the equations
of motion of the element of the conductor with
a damper (see Barry16 for more details). The set of
finite-dimensional system equations of motion is
obtained using the finite element model. The finite-
element of the conductor with the damper is depicted
in Figure 2. It is composed of fives nodes, two for the
conductor and three for the messenger.

The transverse deformations are interpolated using
cubic Hermite polynomials. The shape functions of
the transverse deformation N1, N2, N3, and N4 are
given as

N1 ¼ 1� 3
�2

L2
e

þ 2
�3

L3
e

N2 ¼ � � 2
�2

Le
þ
�3

L2
e

N3 ¼ 3
�2

L2
e

� 2
�3

L3
e

N4 ¼ �
�2

Le
þ
�3

L2
e

ð18Þ

where Le denotes the length of the element. The dis-
placement of the conductor, the right-side damper,
and the left-side damper are written as follows

wc ¼ NT
c qc

wdr ¼ NT
drqdr

wdl ¼ NT
dlqdl ð19Þ

where the qs represents element displacement vectors.
The subscripts c, dr, and dl denote the conductor, the
damper on the right, and the damper on the left,
respectively.

The nodal displacement vectors of the conductor
element, right-side damper element, and left-side
damper element can be written as

qTc ¼ qc1 qc2 qc3 qc4
� �

qTdr ¼ qdr1 qdr2 qdr3 qdr4
� �

qTdl ¼ qdl1 qdl2 qdl3 qdl4
� �

and the element finite-dimensional equations of
motion may be expressed as

Mcc Mcr Mcl

Mrc Mrr 0

Mlc 0 Mll

2
64

3
75

€qc

€qdr

€qdl

8><
>:

9>=
>;

þ

Kcc 0 0

0 Krr 0

0 0 Kll

2
64

3
75

qc

qdr

qdl

8><
>:

9>=
>; ¼

Z Lc

0

FðtÞNc dx ð20Þ

where F(t)¼Fl � sinð� � t) and � denotes the forcing
frequency. The components of the inertia and stiffness
matrices are listed in the Appendix.

Numerical simulation

A free vibration analysis was performed on a single-
damper conductor using pinned–pinned boundary
condition. The following parameters were employed:
EIc¼ 3.19N/m2; EIdr¼ 0.5N/m2; EIdl¼ 0.5N/m2;
mdr¼ 4 kg and mdl¼ 2.75 kg; �Amr¼ �Aml¼ 0.2 kg/
m; Ldr¼Ldl¼ 0.2m; clamp height, h¼ 0.05m. The
damper was located at a distance of 4.1m from the
left-end of the conductor whose span length is
13.375m. To verify the model, a zero conductor ten-
sion is assumed in order to examine the effect of
damper properties on the system natural frequency
independent of tension. The first 10 natural frequen-
cies obtained from a MATLAB code are given in
Table 1 which also shows the corresponding results
obtained using ANSYS. The conductor and messen-
ger were modeled in ANSYS using 20 and 10 BEAM3
elements, respectively. The two counterweights at the
ends of the messengers were modeled as MASS21
elements (which are two-dimensional masses with
rotational inertia). The clamp was modeled as
BEAM3 and its mass is negligible when compared
to that of the conductor and the messenger. The max-
imum percentage error is 4.38%. The fifth mode is the
first mode at which significant deformation of the
damper was observed. A close-up view is illustrated
in Figure 3.

The simulation results reported hereinafter were
based on 240/40mm2 ACSR(26/7) conductors and
the parameters were obtained from EPRI.1 The span
length L¼ 372m, tension was fixed at 20% RTS
(rated tensile strength), the amplitude of the applied
wind force Fl¼ 0.18522N/m, and the forcing fre-
quency �¼ 9.53Hz.
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Effect of damper mass

The damper was positioned at a distance Ld¼ 1.1m
and the response along the conductor was determined
by varying the mass of each counterweight from 0.86
to 4 kg. Figure 4 shows that the peak-to-peak vibra-
tion amplitudes of both counterweights, Yr and Yl,
increase with increasing damper mass, with the smal-
ler counterweight mass exhibiting the largest non-
dimensionalized peak-to-peak amplitude. The non-
dimensionalization is with respect to the conductor
diameter.

The maximum peak-to-peak response of the con-
ductor at each location of the damper within the opti-
mal range is illustrated in Figure 5 for various
combinations of counterweight masses. The light-
mass damper yields smaller peak-to-peak displace-
ment when compared to the corresponding heavy-
mass damper. Further, it appears that it is best, for
a given total mass combination, to locate the smaller
counterweight mass to the right side, closer to the
mid-span, because this arrangement dissipates the
most energy.

Effect of the forcing frequency

To examine the effect of excitation frequency, a
damper was placed at a distance Ld¼ 0.898m. The
mass of the counterweight on the right-hand side
0.86 kg while that on the left-hand side 1.5 kg. The
other properties of the damper were identical to
those used in the validation exercise. The results are
depicted in Figure 6. The maximum non-dimensiona-
lized amplitude of vibration, Ymax, and the non-
dimensional vibration amplitude of the mid-span,
Ymid, are observed to decrease with increasing excita-
tion frequency. The non-dimensional vibration amp-
litude of the second and penultimate nodes, i.e. those
nodes that are adjacent to the edge nodes, Y2 and Yf,
remain slightly constant as the frequency varies. The
lack of exact match between the plots is due to the
asymmetry in the problem. Further, this asymmetry
might explain the absence of an exact match in the
displacement amplitudes of the second and penulti-
mate nodes.

Figure 3. A close-up view of the fifth mode, the first time significant deformation is observed in the damper.

Table 1. Comparison of ANSYS and MATLAB natural

frequencies of the conductor with damper for L¼ 13.375 m,

Ld¼ 4.1 m, and T¼ 0 N.

Mode

Natural frequency (Hz)

ANSYS MATLAB

1 0.0531 0.0537

2 0.1538 0.1502

3 0.3736 0.3642

4 0.6123 0.6296

5 0.8439 0.8462

6 1.2477 1.2301

7 1.5733 1.6421

8 2.0734 2.0814

9 2.3401 2.5789

10 2.8464 2.9036

Barry et al. 939



Figure 4. Effect of the total damper mass on the damper response for f¼ 9.53 Hz and Ld¼ 1.1 m.

Figure 5. The effect of counterweight mass combinations on the normalized maximum peak-to-peak displacement of the conductor

for f¼ 9.53 Hz.
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Figure 6. Variation of conductor peak-to-peak displacement with respect to excitation vibration frequency for Ld¼ 0.898 m.

Figure 7. Variation of damper peak-to-peak displacement with respect to excitation vibration frequency for Ld¼ 0.898 m.

Barry et al. 941



Figure 8. The conductor peak-to-peak displacement as a function of damper location for f¼ 41.45 Hz.

Figure 9. The damper peak-to-peak displacement as a function of damper location for f¼ 41.45 Hz.
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Figure 10. Variation of the conductor peak-to-peak displacement with respect to the damper location along the span length for

f¼ 10.10 Hz.

Figure 11. Variation of the damper peak-to-peak displacement with respect to the damper location along the span length for

f¼ 10.10 Hz.

Barry et al. 943



The variation of the peak-to-peak displacement of
the damper counterweights, Ydr and Ydl, with the for-
cing frequency is shown in Figure 7 for Ld¼ 0.898.
The damper vibration amplitude increases with the
forcing frequency. This can be explained by noting
that Stockbridge dampers dissipate the most energy
at higher vibration frequencies. Generally, with
respect to transmission lines, it can be concluded
that vibration amplitude of the conductor decreases
with increasing excitation frequency.

Effect of the damper location

The vibration response was investigated for various
damper locations Ld while employing the previously
listed damper properties. For an excitation frequency,
f, of 41.45Hz, the results in Figure 8 indicate that the
optimum damper location range is from 2.2 to 4.1m.
This is slightly wider than the 2.4–3.6m range
reported by Nigol and Houston5 for frequencies of
40–50Hz and for longer spans and higher tension.
The mid-span amplitude remains relatively constant
compared to the maximum amplitude.

Figure 9 shows that the relative amplitude of both
counterweights is maximum in the vicinity of the
aforementioned damper location range. This is intui-
tive because the dissipation energy of the damper
increases with the displacement of the damper.

To further improve the understanding of the effect
of the damper location on the conductor motion,
Figures 10 and 11, respectively, depict the conductor
and damper counterweight displacements when the
location of the damper is varied over the span of the
conductor. The dampers are observed to be efficient
only when they are located in the immediate vicinity
of the span ends, closer to the tower.

Conclusion

A mathematical model has been proposed for the aeo-
lian vibration analysis of a conductor with a
Stockbridge damper. The model directly accounted
for the two-way coupling between the conductor
and damper. Hence, it permits the simultaneous
assessment of the dynamic behaviors of the damper
and the conductor. The following conclusions are
inferred from the analyses.

1. The effectiveness of damper significantly depends
on excitation frequency, the damper mass, and the
location.

2. A damper is most efficient at higher vibration
frequencies.

3. Asymmetric dampers are more efficient than sym-
metric dampers.

4. When using asymmetric dampers, it is preferable
to position the counterweight with the larger mass
nearer to the tower.

5. There is a damper location range that yields
reducing maximum vibration amplitude of the
conductor.
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Appendix

Components of the submatrices in equation (20)

Mcc¼ ð�AÞc

Z Lec

0

NcN
T
c d�

þmdr

h
N�cN

�T
c þLegrðN

�
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�0T
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where Lec, Legr, and Legl denote the element length of
the conductor, the right-side messenger, and the left-
side messenger.

The prime on the shape functions represents the
partial derivative with respect to � and

N�c ¼ NcðLc, tÞ

N�dr ¼ NdrðLdr, tÞ

N�dl ¼ NdlðLdl, tÞ
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