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Vibration Analysis of a Nonlinear
Absorber Coupled to a
Hand-Held Impact Machine
Exposure of human hands to harmful levels of vibration can lead to severe injuries. To
attenuate these hand transmitted vibrations, a nonlinear vibration absorber inerter
(NVAI) is proposed in this work. The proposed NVAI is attached to a coupled nonlinear
system of a hand-held impact machine and a hand-arm system. The combined coupled
nonlinear system is modeled as a lumped parameter model with a combination of cubic
and linear stiffness components, linear viscous dampers, and lumped masses. The govern-
ing equations of motion are solved analytically using the method of harmonic balance
and validated using numerical simulations. A numerical bifurcation diagram of the sys-
tem reveals the existence of complex solutions such as quasi-periodic and chaotic attrac-
tors. The appearances of quasi-periodic and chaotic attractors are later confirmed by
Lyapunov exponents. Further, we explore the ability of the proposed NVAI to decrease
the area corresponding to unstable quasi-periodic and chaotic motion in the excitation
amplitude–frequency space. This observation further implies the delay in the onset of
quasi-periodic and chaotic motion for a range of forcing amplitude using Lyapunov expo-
nents. Finally, parametric analyses are carried out to identify the critical design parame-
ters of the NVAI. These analyses reveal that an increase in the damping, mass, and
inertance of the absorber ameliorates the performance of the NVAI. Furthermore, the
critical value of the external excitation, corresponding to a sudden change in the
response of the system, can be controlled using an appropriate selection of absorber
parameters. [DOI: 10.1115/1.4056803]

Keywords: method of harmonic balance, stability analysis, Floquet theory, Lyapunov
exponents, bifurcation diagrams, phase portraits, Poincare maps

1 Introduction

Hand transmitted vibrations (HTVs) can be classified as the
vibrations transmitted to the human hand-arm system through the
handle of vibrating equipment. Severe exposure of the human
hand to HTVs from hand-held impact machines (HIMs) puts
humans at risk of developing hand-arm vibration syndrome
(HAVS). HAVS is used to describe vascular, musculoskeletal,
and neurological disorders [1–4]. Some of the symptoms of the
neurological disorder include numbness and decreased tactile per-
ception of the fingers. At the same time, the vascular disorders of
HAVS may appear as frequent occurrences of finger blanching.
These occurrences, also known as vibration white fingers [5],
cause numbness, and pain in the hand. In extreme cases, vibration
white finger can lead to permanent disability in humans. There-
fore, it is required to understand the dynamics of the combined
system of the human hand and HIMs for the better attenuation of
HTVs. This is the focus of this work.

One of the popular methods to control undesired vibrations in
different engineering structures is using a tuned vibration absorber
(TVA) [6–8]. A traditional TVA consists of a mass-spring system
tuned to the resonant frequency of a primary system [9]. Due to
its simpler design, cost-effectiveness, and ease of installation, the
use of TVAs is well-established in different applications such as
grass trimmers, prismatic structures, overhead power lines, and
regenerative chatter [10–16].

However, even though a TVA offers significant vibration
reduction in a primary structure, it also suffers from a lack of
robustness in the design as a slight variation in the tuned

frequency will lead to the amplification of vibration instead of
attenuation. This shortcoming in the TVA design can be overcome
by including a nonlinear stiffness element in the design and mak-
ing it a nonlinear TVA (NLTVA). Using a nonlinear stiffness ele-
ment in the design of a TVA increases the effective bandwidth of
the device’s operating frequency, thus making it more applicable
than a linear TVA [17–21]. In the next step toward the optimal
design of the NLTVA, Habib et al. developed a tuning method for
a nonlinear vibration absorber [22]. Furthermore, they observed
that vibration absorbers are more effective when they exhibit the
same restoring force characteristic as the primary systems. This
observation further implies that it is essential to understand the
underlying nonlinearities inherent in an engineering structure for
the optimum design of the corresponding vibration absorber.

Another strategy to enhance the performance of a vibration
absorber is by increasing the mass of the absorber. As reported in
the literature, a larger mass can enhance the absorber’s perform-
ance by widening its vibration suppression bandwidth and reduc-
ing the peak vibration response [23–26]. However, an increase in
the absorber’s mass also causes an increase in the overall mass of
the combined system of the primary system and vibration absorber
and is not feasible for many engineering applications due to
design limitations. In order to avoid this tradeoff, mass amplifica-
tion devices called inerters have been coupled to vibration absorb-
ers. Inerters are two-terminal devices that produce a force
proportional to the relative acceleration of their terminals [27].
The mass-boosting effects of inerters are highlighted by realizing a
300 kg effective mass from a 2 kg inerter [28]. It has been shown
that the addition of an inerter in the design of an NLTVA provides
better vibration control over a linear TVA and NLTVA without an
inerter [25]. This observation further implies that it is beneficial to
add a more inerter in the design of an NLTVA for better perform-
ance, making it a nonlinear-tuned-vibration-absorber-inerter (NVAI).
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We emphasize that although the use of an NLTVA with an
inerter is well-established in the literature for vibration attenuation
in various engineering applications, it has not been implemented
for vibration mitigation in an HIM. To the author’s best knowl-
edge, Golysheva et al. [29] were the first ones to analyze the
dynamics of an HIM with a linear TVA in combination with a
vibration isolator. They observed that this vibration attenuation
design is beneficial for vibration reduction in the HIM without
adding any significant cost to the design. It should be noted that in
the study mentioned above, a linear model of the HIM was consid-
ered for the analysis. However, in more realistic situations, the
HIM exhibits nonlinearity due to the tool-structure interaction,
friction between the contact surfaces, and loss of contact between
the tool and material [30]. These nonlinearities can be included in
the model using individual or a combination of time-delay, quad-
ratic, and cubic terms [30–32]. In this work, for simplicity in the
analysis, we consider a model of the HIM with cubic nonlinearity.
Also, as mentioned earlier, a linear TVA lacks robustness in the
design. Therefore, in this work, for the first time, we consider an
NLTVA with an inerter for the vibration control in a nonlinear
model of the HIM and hand-arm system. Preliminary nonlinear
analysis of the system reveals that the NVAI is effective for better
vibration suppression in the HIM [25]. However, in this work, a
nonlinear analysis of the system using Lyapunov exponents and
Poincare map reveals the existence of more complex solutions
such as quasi-periodic and chaotic motions. A parametric analysis
is also conducted in this work to identify the key design parame-
ters of the NVAI. The rest of the paper is organized as follows. In
Sec. 2, a brief description of the mathematical model of the NVAI
coupled with the HIM and hand-arm system is presented along
with the nondimensionalization of the model. In Sec. 3, an analyti-
cal nonlinear analysis of the system is presented using the method
of harmonic balance, and the linear stability analysis of the system
is also presented. A discussion of linear and nonlinear analysis,
numerical bifurcation analysis, Lyapunov exponents, and phase
methodology are presented in Sec. 4. A parametric analysis
assessing the impact of the various absorber parameters on the
system is presented in Sec. 5. Finally, some conclusions are drawn
in Sec. 6.

2 The Mathematical Model of a Hand-Held Impact

Machines-Hand-Arm System-Nonlinear Vibration

Absorber Inerter System

In this section, we formulate a lumped parameter model to ana-
lyze the dynamics of a hand-arm system (HAS) coupled with an
HIM and a NVAI. The schematic of the combined system is
shown in Fig. 1. In the current analysis, we employ the HAS pro-
posed by Dong et al. [33]. Also, nonlinearity is introduced in the
lumped parameter model of the system by including nonlinearity
in the HIM and NVAI, as shown in Fig. 1. For the sake of simplic-
ity in the analysis, we consider the nonlinearity in the HIM as
cubic. Due to nonlinearities exhibited in an impact tools opera-
tion, via friction between contact surfaces or loss of contact
between tool and material, the nonlinearities in the HIM are mod-
eled as cubic. Therefore, the nonlinearity of the NVAI should also
be cubic for better vibration suppression [22]. In Fig. 1,
mH;ms;ma, and mn represent the masses of the HIM, human-hand
skin in contact with the handle of HIM, hand-arm system, and the
absorber, respectively. kH and kHL represent the nonlinear and lin-
ear ground connection stiffness, respectively, whereas, kN and kNL

represent the nonlinear and linear stiffness of the NVAI, respec-
tively. cH and cN represent the linear viscous damping coefficient
of the HIM and NVAI, respectively. Further, ks and cs are the lin-
ear spring and viscous elements connecting the masses ma and ms,
respectively, while ka and ca are the linear spring and viscous ele-
ments connecting the mass ma to the body/trunk (modeled as a
fixed surface), respectively. The inertance, which is grounded on

one side and coupled to the mass of the absorber on the other side,
is represented by b.

If xH; xa, and xN represent the motion of HIM, HAS, and NVAI,
respectively, then the governing equations of motion are given by

½M�f€xg þ ½C�f _xg þ ½K�fxg þ fnlf g ¼ Feqf g (1)

where ½M�; ½C�, and ½K� are ð4� 4Þ inertia, damping, and stiffness
matrices, respectively, fnlf g represents the nonlinear force terms
for the system, Feqf g is a ð3� 1Þ force vector and fxg ¼
xH; xa; xN½ �0 is a ð3� 1Þ displacement coordinate vector. These

matrices are defined in the Appendix.
In the above governing equations of motion, Fw represents the

excitation force acting on the HIM due to the reciprocating motion
of the piston inside the HIM. The analytical form of Fw is adapted
from the experiments reported in Ref. [34] and is given by

Fw ¼ Fref

x
xref

� �2

sin xtð Þ (2)

To reduce the effective number of parameters, we nondimension-
alize the governing equations of motion, and accordingly, intro-
duce the following scales and nondimensional parameters:

m1 ¼ mH þms; m2 ¼ mN þ b; m3 ¼ ma; x1 ¼
kHL

m1

;

s¼ tx1; x0 ¼
g

w2
1

; y¼ x

x0

; X¼ x
x1

;

f1 ¼
cH

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m1kHL

p ; f2 ¼
cs

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m1kHL

p ; f3 ¼
cN

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m1kHL

p ; kr1 ¼
ks

kHL
;

kr2 ¼
kNL

kHL
; krnl1 ¼

kHx2
0

kHL
; krnl2 ¼

kNx2
0

kHL

F¼ Fref

m1x0x2
ref

; a¼ m1

m2

; kr3 ¼
ka

kHL
; a2 ¼

m1

m3

;

f4 ¼
ca

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m1kHL

p

Using above mentioned scales and nondimensional parameters,
Eq. (1) can be nondimensionalized as

½M1� y00
� �

þ ½C1� y0
� �

þ ½K1�fyg þ f1nlf g ¼ F1eqf g (3)

Fig. 1 Schematic of the combined system of HIM-HAS system
with a NVAI

081006-2 / Vol. 18, AUGUST 2023 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putationalnonlinear/article-pdf/18/8/081006/7011655/cnd_018_08_081006.pdf by Virginia Polytechnic Institute and State U
niversity, Sunit Kum

ar G
upta on 10 M

ay 2023



where ½M1�; ½C1�, and ½K1� are ð4� 4Þ matrices with nondimen-
sional parameters, f1nlf g represents the nonlinear force terms for
the system, F1eqf g is a ð3� 1Þ force vector, and fyg ¼
yH; yN ; ya½ �0 is a ð3� 1Þ displacement coordinate vector. These

matrices are defined in the Appendix.
Prime 0ð Þ denotes the derivative with respect to the nondimen-

sional time s. For the analytical treatment of the coupled system,
we rewrite Eq. (3) in a compact state-space form as

y01 ¼ y2 (4a)

y02 ¼ 2f1y2 � y1 � 2f2 y2 � y4ð Þ � kr1 y1 � y3ð Þ � kr2 y1 � y5ð Þ
� 2f3 y2 � y6ð Þ � krnl1y3

1 � krnl2 y1 � y5ð Þ3 þ FX2sinðXsÞ;
(4b)

y03 ¼ y4 (4c)

y04 ¼ �2f3a y6 � y2ð Þ � kr2a y5 � y1ð Þ � krnl2a y5 � y1ð Þ3 (4d)

y05 ¼ y6 (4e)

y06 ¼ �kr3a2y3 � 2f4a2y4 � kr1a2 y3 � y1ð Þ � 2f2a2 y4 � y2ð Þ
(4f )

where y1; y2; y3; y4; y5; y6½ � ¼ yH; y
0
H; yN ; y

0
N ; ya; y

0
a

� �
. Having

established the nondimensional governing equations of motion,
next we present the analytical solution procedure along with the
linear stability analysis in Sec. 3.

3 Analytical Solution and Stability Analysis

The linear stability analysis of a nonlinear system is an impor-
tant step and has to be performed carefully as it provides the criti-
cal values of the control parameters at which steady-states lose or
gain stability. Note that the coupled nonlinear system in the cur-
rent analysis, i.e., Eq. (4), is a nonautonomous system with a har-
monic excitation; therefore, the steady-states will always be
periodic in nature instead of being constants as in the case of an
autonomous system. Since a linear stability analysis uses steady-
state solutions, we first obtain the steady-state periodic solutions
of the coupled nonlinear system using the method of harmonic
balance, as presented next.

3.1 Analytical Solution Using the Method of Harmonic
Balance. As mentioned earlier, we use the method of harmonic
balance to get the steady-state periodic solutions of the current
nonlinear system. Since linear methods are not sufficient to ana-
lyze systems expressing nonlinearity, the method of harmonic bal-
ance is employed to study the cubic nonlinearity embedded in our
system. The method of harmonic balance works by representing a
steady-state periodic solution of an ordinary or differential-
algebraic equation system by a Fourier series, i.e., a combination
of sinusoids [35]. The implementation of the method of harmonic
balance for this system is presented below.

To proceed with the method of harmonic balance, we assume
that the steady-state periodic solutions of Eq. (4) are synchronous
with the external forcing on the system. The analysis of a duffing
oscillator by Krack and Gross [35] revealed that a single harmonic
term in the harmonic balance method could sufficiently capture
the response of a forced duffing oscillator. Therefore, since our
system contains the same form of nonlinearity, the solution of Eq.
(4) can be assumed as

fygðsÞ ¼ fCgcosðXsÞ þ fDgsinðXsÞ (5)

with coefficient vector C and D are defined as

C ¼ C1 C2 C3 C4 C5 C6

� �T
;

D ¼ D1 D2 D3 D4 D5 D6

� �T

On substituting the assumed form of the solution in Eq. (4) we
get

�XfCgsinðXtÞ þ XfDgcosðXtÞ þ X½A�fCgcosðXtÞ
þ X½A�½D�sinðXtÞ þ N1½ � ¼ Feqf g (6)

where ½A� is a ð6� 6Þ matrix and both N1½ � and Feq½ � are ð6� 1Þ
column vectors. N1½ � contains the nonlinear terms of the equation.
These matrices are defined in the Appendix.

By equating the coefficients of sine and cosine to zero in Eq.
(6), we get the set of 12 simultaneous nonlinear algebraic equa-
tions in terms of coefficients of C and D. These equations can be
solved for Cis and Dis, which further provide us the solution to
nonlinear coupled system (Eq. (4)) by utilizing Eq. (5). Having
obtained the steady-state solution to the nonlinear system, next,
we present the linear stability analysis.

3.2 Linear Stability Analysis. To perform the linear stability
analysis of steady-state periodic solutions, we provide a small per-
turbation to all steady-states as

yiðsÞ ¼ yisðsÞ þ �ziðsÞ; for i ¼ 1; 2; 3; 4; 5; 6 (7)

where yiss are the steady-state solutions of the system (obtained
using the method of harmonic balance) and �zisð� 1Þ represents
small perturbations around the steady-states. Since the steady-
state periodic solutions, i.e., yiðsÞs, of Eq. (4) satisfy Eq. (4), we
get linearized equations in terms of perturbed and steady-state
quantities as

z01 ¼ z2 (8a)

z02 ¼ �z1kr1 þ z3kr1 � z1kr2 þ z5kr2 � 3y2
1sz1krnl1 � 3y2

1sz1krn12

þ 3y2
1sz5krn12 þ 6y5sy1sz1krn12 � 6y5sy1sz5krn2 � 3y2

5sz1krn2

þ3y2
5sz5krn2 þ 2f1z2 � 2f2z2 þ 2f2z4 � 2f3z2 þ 2f3z6 � z1

(8b)

z03 ¼ z4 (8c)

z04 ¼ 3ay2
1z1krn2 � 3ay2

1z5krn12 � 6ay5y1z1krn2 þ 6ay5y1z5krn2

þ 3ay2
5z1krn2 � 3ay2

5z5krn2 þ akr2z1

� akr2z5 þ 2af3z2 � 2af3z6; (8d)

z05 ¼ z6 (8e)

z06 ¼ a2z1kr1 � a2z3kr1 � a2z3kr3 þ 2a2f2z2 � 2a2f2z4 � 2a2f4z4

(8f )

It should be noted here that the linearized equations, i.e., Eq. (8)
involve time-periodic coefficients in terms of steady-states, so it is
difficult to get the closed-form expressions for the critical values
of the control parameters. Therefore, we use the Floquet theory to
determine the stability of the steady-state periodic solutions
numerically. A detailed discussion on linear stability along with
nonlinear tools to explore the dynamics of the coupled system is
presented in Sec. 4.

4 Results and Discussions

In this section, we first compare the analytical solution (Eq. (5))
with the numerical simulation of the coupled HIM-HAS-NVAI
system to establish the accuracy of the analytical approach. The
analytical solution presented earlier is used to generate a linear
stability curve of the system in parametric space. Afterward,
numerical bifurcation analyses of the system are used to examine
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the nonlinear dynamics of the system for the different values of
the operating parameters, i.e., F and X. Finally, a parametric anal-
ysis is conducted to identify key design parameters of the system.

4.1 Validation of the Analytical Results From Method of
Harmonic Balance. As mentioned earlier, the first part of this
analysis involves the validation of the analytical results obtained
using the harmonic balance method (HBM) (Eq. (5)) by compar-
ing it against the direct numerical simulations of the coupled
HIM-HAS-NVAI system (Eq. (4)). For this purpose, we compare
the frequency-response curve of the primary system, i.e., HAS
yað Þ obtained using HBM and numerically for the parameter val-

ues listed in Table 1. The mass of the HIM is chosen to represent
the mass of a typical pneumatic chipping hammer, and the other
parameters of the Kelvin–Voigt model for the ground-stiffness
interaction are chosen to represent parameters of a material acted
on by a tool-bit. Furthermore, the linear and nonlinear parameters
of the NVAI are determined by the H1 optimization method [36]
and the principle of similarity [25,37], respectively.

Since it is difficult to get the closed-form expressions of the
coefficients in the analytical solution (Eq. (5)), we use the fixed
arc-length continuation method [38] to get numerical values of the
coefficients, of the analytical solution, at different values of the
excitation frequency for a given value of excitation amplitude.
While for the numerical simulations, we have used MATLAB’s
numerical ode solver “ode45” with high relative and absolute tol-
erance values. To get the amplitude–frequency response numeri-
cally, we uniformly divide the nondimensional excitation
frequency, X, in a given range. For each value of X, numerical
simulations are run for a sufficient time to get rid of the system’s
transient response. Thereafter, the peaks of the time response ya

are plotted for each value of X. The comparison between both
approaches has been shown in Fig. 2. From Fig. 2, we observe
that the response of the system using the analytical approach,
HBM, excellently matches with the response of the system using
the numerical approach. Having shown that the steady-state
responses of the system can be approximated using HBM, we will
use the analytical solution (Eq. (5)) in the remainder of the analy-
sis unless otherwise stated.

4.2 Linear Stability Curves. To perform the linear stability
analysis of the current system, the complete set of linear ordinary
differential equations (ODE’s) from Eq. (8) can be written in a
compact form as

_xðsÞ ¼ FðsÞxðsÞ

where FðsÞ is a Jacobian matrix with time-periodic coefficients
(due to the appearance of periodic steady-states) and xðsÞ is a state
vector with components xðsÞ ¼ y1; y2; y3; y4; y5; y6½ �T .

To study the stability characteristics of the coupled system, we
use the Floquet theory. To generate the stability plot in F� X
space, we divide the given range of F and X in 1000� 500

subregions with 1000 discrete points along the F-axis and 500 dis-
crete points along the X-axis. Next, we run the simulation to gen-
erate the fundamental matrix and obtain the Floquet multipliers,
fis, as the eigenvalues of the fundamental matrix. For each point,
we check the magnitude of the dominant Floquet multiplier. If the
magnitude of the dominant Floquet multiplier is less than one,
then the system is stable, and if it is greater than one, it becomes
unstable. Therefore, the stability boundary is defined as the locus
of operating points corresponding to the dominant Floquet

Table 1 Parameter values of the HIM-HAS-NVAI system used for simulations

Parameter Value Unit Parameter Value Unit Parameter Value Unit

mH 1:7 kg kHL 3:0� 105 N=m cH 50 Ns=m
ma 1:55 kg ka 4279 N=m ca 76 Ns=m
ms 0:049 kg ks 62804 N=m cs 192:90 Ns=m
mN 0:02mH kg kNL 13280 N=m cN 9:3 Ns=m
Fref 300 N xref 26:1 Hz b 0:04mH kg
kH 3:0� 108 Ns=m3 kN 2:5� 106 Ns=m3 x0 5:72� 10�5 �
w1 414:12 — a2 1:12 — f4 0:052 —
a 17:15 — f1 0:034 — f2 0:13 —
kr1 0:21 — kr2 0:052 — f3 0:0083 —
krnl1 3:27� 10�6 — krnl2 1:90� 10�8 — kr3 0:014 —

Fig. 2 Comparison of analytical and numerical solutions for
F 5 100 and parameter values listed in Table 1

Fig. 3 Stability curve in F 2X space for the parameter values
listed in Table 1
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multiplier with magnitude one. After evaluating the dominant Flo-
quet multiplier at every point, the boundary, separating the stable
and unstable region is plotted and shown in Fig. 3. From Fig. 3,
we observe the transitions in the stability of the periodic steady-
states after certain threshold frequencies. To understand the
dynamics involved with these transitions, bifurcation diagrams,
and Lyapunov spectra are generated and discussed in Sec. 4.3.

4.3 Bifurcation Analysis. For the numerical bifurcation anal-
ysis, we have used MATLAB’s ODE solver “ode45” with high val-
ues of relative and absolute tolerances, “ 10�8,” to solve our first-
order system of ODE’s. These bifurcation diagrams can be plotted
by fixing either of the control parameters, i.e., F or X, and varying
the other. In this work, we fix XðX ¼ 1:6903Þ, and vary F in

forward/increasing and backward/decreasing directions. To per-
form the above-mentioned step, we uniformly divide the bifurca-
tion parameter, F, in a given range and run the numerical
simulations for a sufficient time to capture the steady-state
response of the system at each value of F in both directions. Note
that for both forward and backward sweeps, the system’s final
response for a previous bifurcation parameter is used as the initial
condition for the numerical simulation corresponding to the next
value of the bifurcation parameter. These bifurcation diagrams,
showing the extrema of the hand-arm system’s motion, i.e., y5

(corresponding to y6 ¼ 0) are depicted in Figs. 4 and 5 for rela-
tively low and high values of F, respectively.

Figure 4 shows the bifurcation diagram for F : 0� 500 in for-
ward and backward direction. From Fig. 4, we can observe that
the system loses and regains Lyapunov stability. The Lyapunov

Fig. 4 Bifurcation diagram and its corresponding Lyapunov exponent spectrum for (i) forward sweep and
(ii) backward sweep with X 5 1:6903 and parameter values listed in Table 1

Fig. 5 Bifurcation diagram and its corresponding Lyapunov exponent spectrum for (i) forward sweep and
(ii) backward sweep with X set to 1:6903
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Fig. 6 Phase portraits for (i) periodic (F 5 100), (iii) quasi-periodic (F 5 300), and (v) chaotic motion (F 5 7900), and their corre-
sponding Poincare maps for (ii) periodic, (iv) quasi-periodic, and (vi) chaotic motion for X set to 1:6903 are shown. These
dynamics correspond to the dynamics obtained via a forward sweep.

Fig. 7 Lyapunov chart used to highlight different regimes of motion of the system in the parametric space X-F
obtained via (i) a backward sweep and (ii) a forward sweep
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stable region is also asymptotically stable as predicted by the sta-
bility plots (Fig. 3). We further observe the appearance of quasi-
periodic motions in the unstable region. The appearance of these
quasi-periodic motions can be further confirmed by plotting the
variation of Lyapunov exponents. The Lyapunov exponents (LE)
of the system are obtained using the method proposed by Wolf
et al. [39]. The Lyapunov exponents for this system are obtained
with the equations of motion transformed to an autonomous form.

The regions of F for which the largest LE is zero and the other
LE’s are negative correspond to periodic solutions. While the val-
ues of F where the two largest LEs are zero and the other LEs are
negative corresponds to quasi-periodic solutions [40,41]. From the
Lyapunov spectrum shown in Fig. 4, we can observe that the two
largest Lyapunov exponents become zero in the unstable regions,
signifying the existence of the quasi-periodic solutions. This
observation further verifies our bifurcation and linear stability
analyses.

Having established the existence of quasi-periodic solutions in
the unstable region, next, we present systems’ dynamics for larger
values of excitation amplitude ðFÞX ¼ 1:6903, and is shown in
Fig. 5 for forward and backward sweeps. This step is performed to
explore the dynamics resulting from a change in the stability of
the steady periodic solution. From Fig. 5, we can observe that the
steady periodic solutions lose stability at higher values of F
through quasi-periodic solutions, as two of the dominant Lyapu-
nov exponent become zero. Furthermore, chaotic attractors begin
to appear in the system when the quasi-periodic solutions lose
their stability. The existence of a chaotic attractor can be further
confirmed by the Lyapunov exponent, as the dominant Lyapunov
exponent becomes greater than zero. To further confirm the
appearance of periodic, quasi-periodic, and chaotic solutions, as
indicated by the numerical bifurcation diagrams and Lyapunov
exponents, phase portraits, and Poincare sections are generated
and are shown in Fig. 6. From Fig. 6, the appearance of periodic
motion is confirmed through a closed circular curve on the phase

Fig. 8 (i) Comparison of Lyapunov chart for different values of krnl2. Bifurcation diagrams for X 5 1:64 and
krnl2 5 (ii) 1:3 3 10–8, (iii) 1:9 3 10–8, and (iv) 2:7 3 10–8. The values of the x-coordinates of A1;A2;B1;B2;C1, and
C2 are 189; 358; 192; 318; 198, and 289, respectively.
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portrait and a set of points on the Poincare section. Also, quasi-
periodic and chaotic motions are correctly depicted as a closed
curve and a scattered group of points on the Poincare section,
respectively. Phase portraits aptly describe quasi-periodic and
chaotic motion as dense attractors; however, the Poincare section
provides a map that shows a clearer distinction between chaotic
and quasi-periodic motions. Next, we explore the effects of differ-
ent absorber parameters on the performance of the system.

5 Parametric Analysis

In this section, we examine the effects of the absorber parame-
ters on the safe operating region in the parametric space of F� X
to avoid the appearance of quasi-periodic and chaotic motion in
the coupled HIM-HAS-NVAI system.

Note that if the HAS was modeled as a continuous system, it
would consist of multiple natural frequency components. There-
fore, when the system is in operation, it would be unsatisfactory if

one of the natural frequency components of the HAS matches
with one of the frequency components of quasi-periodic or chaotic
motion exhibited by the system. Such occurrences could lead to
resonance and increase the risk of injury to the HAS. Based on
bifurcation diagrams and Lyapunov spectra for the system (Figs. 4
and 5), it has been observed that it is indeed possible for the sys-
tem to exhibit quasi-periodic and chaotic motion and hence, the
possibility of resonance. Therefore, it is desirable to select the
absorber parameters such that the appearances of quasi-periodic
or chaotic motion can be avoided.

Since Floquet multipliers only provide information about the
stability of steady-state periodic solutions of the system, we use
the Lyapunov exponents to characterize the systems’ behavior in
the parametric space of F� X. This further helps us to determine
safe (only periodic solutions) and unsafe (quasi-periodic and cha-
otic attractors) regions in the parametric space. As mentioned ear-
lier, for periodic motions, the largest LE is zero, and the other LEs
are negative, and for quasi-periodic motions, the two largest LEs

Fig. 9 (i) Comparison of Lyapunov chart for different values of f3. Bifurcation diagrams for X 5 1:8 and
f3 5 (ii) 0:006, (iii) 0:0083, and (iv) 0:014. The values of the x-coordinates of D1;D2;E1;E2;G1, and G2 are 224,
300; 233; 328; 213; and 375, respectively.
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are zero, and the other LEs are negative. Whereas, for chaotic
motions, the leading Lyapunov exponent is positive. Therefore,
the boundary separating the safe and unsafe region corresponds to
the set of parameters for which the condition for periodic motion
is not satisfied. This parametric space within which the system’s
safe and unsafe operating region is identified will be referred to as
a Lyapunov chart.

From Figs. 5(i) and 5(ii), we observe that for the forward and
backward sweeps, both the Lyapunov spectra and bifurcation dia-
grams detect different ranges of F for the onsets of quasi-periodic
and chaotic motions. Therefore, to determine the safe operating
region in the parametric space of F� X, the Lyapunov chart is
obtained by both forward and backward sweeps for the system
parameter values listed in Table 1. To obtain the Lyapunov charts
in both forward and backward sweeps, we divide the parametric
space into 60 discrete points along the X-axis and 50 discrete
points along the F-axis. For each value of X between 1:4 and 2,
the Lyapunov exponents are obtained for different values of F
between 0 and 500 in both forward and backward sweeps. Finally,

with the use of these Lyapunov exponents, we obtain the bound-
ary between the safe and unsafe operating region of the system.

Based on Figs. 7(i) and 7(ii), we can observe that the Lyapunov
chart in backward sweep detects the onset of chaotic or quasi-
periodic motion earlier (with regards to F) than the Lyapunov
chart obtained by forward sweep. In this study, we would like to
detect the early onset of the unsafe operation region of the system.
Therefore, the Lyapunov chart obtained by a backward sweep will
be used for further analysis. Next, the effect of different absorber
parameters on the system’s performance is characterized using the
Lyapunov chart.

The effect of krnl2 on the performance of the absorber is
shown in Fig. 8. From this figure, we observe that the area of the
unsafe operating region increases with an increase in krnl2 till the
value of krnl2 ¼ 1:9� 10–8. When krnl2 is increased past
1:9 � 10–8, the area of the unsafe operating region starts decreas-
ing. This observation implies that for given system parameters,
there is a critical value of krnl2, which maximizes the unsafe oper-
ating region.

Fig. 10 (i) Comparison of Lyapunov chart for different values of a. Bifurcation diagrams for X 5 1:6 and a 5 (ii)
13:3, (iii) 17:5; and (iv) 22:2. The values of the x-coordinates of H1;H2; J1; J2;K1, and K2 are 183, 362,
189; 315; 209, and 274, respectively.
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In this work, we set two criteria for an efficient design of the
NVAI: delay of the onset of the unsafe operating region as the pri-
mary criterion and minimization of the area of the unsafe operat-
ing region as the secondary criterion. From Fig. 8, we can observe
that smaller values of krnl2 satisfy the criteria set, and hence can
be selected for an efficient absorber design.

Next, a quantitative examination of the effect of varying values
of krnl2 on the system’s dynamics is shown through bifurcation
diagrams (Fig. 8). From Figs. 8(ii)–8(iv), we can observe that the
value of F (x-coordinate) corresponds to the first instance of a sig-
nificant jump in the amplitude of a periodic solution A1;B1ð , and
C1Þ increases with increase in krnl2. Furthermore, the point corre-
sponding to the second jump to higher amplitude periodic motion
from quasi-periodic or periodic oscillations A2;B2ð , and C2Þ
decreases with increase in krnl2. Further, the value of F corre-
sponding to the onset of quasi-periodic motion begins to move
toward the first location of the sudden jump in the amplitude of
periodic solutions as krnl2 increases. This further implies the early
onset of the unsafe operating region as the krnl2 increases.

Next, the effect of f3 on the performance of the absorber is
shown in Fig. 9. From Fig. 9, we can observe that the area of the
unsafe operating region of the system increases with an increase
in f3 up to f3 ¼ 0:0083. After this value of f3, the area of the
unsafe operating region starts decreasing. This further implies that
for the system parameter values listed in Table 1, the critical value
of f3 is 0:008, which maximizes the unsafe operating region.
Also, as f3 increases, the value of F corresponding to the onset of
unsafe operating region increases. This observation further
implies that the larger values of the absorber nondimensional
damping, f3, satisfy the subjective criteria defined earlier for an
efficient absorber design.

Similar to the case of krnl2, bifurcation diagrams are used to
assess the quantitative effect of varying values of f3 on the per-
formance of the system. Based on Figs. 9(ii)–9(iv), we can
observe that an increase in value of f3 results in an increase in the
distance between the values of F corresponding to the first
D1;E1;G1ð Þ and second instance D2;E2;G2ð Þ of the sudden jump

in the response of the system. Furthermore, the higher value of f3

delays the onset of the quasi-periodic motions and hence, satisfies
the design criteria for an efficient absorber.

Finally, the role of a on the performance of the system is pre-
sented in Fig. 10. The results show that decreasing values of a
from 22:2 to 17:2 causes an increase in the area of the unsafe
operating region of the system. However, when the value of a is
decreased past 17:2, the size of the unsafe operating region of the
system starts decreasing. Also, as the value of a decreases, the val-
ues of F spanned by the unsafe operating region increase. Thus, it
can be seen that the smaller values of the a satisfy the subjective
criteria defined earlier for having an efficient absorber design.
Similar to the previous parametric studies, we now explore the
effects of varying a on the system’s performance using bifurcation
diagrams. As a is increased from 13:3 to 14:7, the distance
between the F values for the first and second location where there
is a jump to higher amplitude motion decreases. Then at a ¼ 22:2,
only one location now exists where there is a significant jump to
high amplitude motion, i.e., at K2.

The results of this parametric study imply that the absorber
properties related to the above studied nondimensional parame-
ters, i.e., the absorber’s stiffness, damping, and inertance, can be
appropriately tuned to increase the safe operating region in the
parametric space of F� X. Also, as revealed by the bifurcation
diagrams, the absorber parameters can be appropriately selected
to delay or hasten the onset of a jump in the amplitude of the sys-
tem’s motion when F is used as a bifurcation parameter.

6 Conclusion

In this study, a nonlinear absorber’s ability to eliminate or
reduce harmful transmission of vibrations from an HIM to the
HAS was explored. The method of harmonic balance was used to

get an analytical solution for the system. A linear stability analy-
sis, which uses the analytical solution, was performed using the
Floquet theory. The system’s linear stability analysis revealed
unstable and stable regions in the parametric space of excitation
amplitude versus excitation frequency ðF� XÞ. Further explora-
tion of the stable and unstable regions using bifurcation diagrams
and a Lyapunov spectrum revealed periodic motion in the stable
region and quasi-periodic motion in the unstable space. For a
broader range of forcing amplitude parameters, i.e., for
F : 0� 8000, bifurcation diagrams, Lyapunov exponents, Phase
portraits, and Poincare maps revealed the existence of chaotic sol-
utions. These results also confirmed that Poincare maps better dis-
tinguish between quasi-periodic and chaotic motions than phase
portraits.

Further, Lyapunov exponents were used to identify quasi-
periodic and chaotic motion regions, also referred to as unsafe
operating regions, in the excitation force amplitude–frequency
ðF� XÞ parametric space. Subsequently, a parametric study was
performed to observe the effect of varying the absorber’s parame-
ters, krnl2; f3, and a, on the area of the unsafe operating region of
the system and on the delay of the onset of the unsafe operating
region. This parametric study revealed that the largest value of the
nondimensional parameter f3, and the smallest value of a and krnl2

meet the criteria for having the best absorber design parameters.
A parametric study using bifurcation diagrams, with bifurcation
parameter F, also revealed that a change in krnl2; f3, and a could
control the points at which a sudden jump in the nondimensional
amplitude related to the displacement of the HAS occurs.
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Appendix: Expressions Used in Eqs. (1), (3), and (6)

½M� ¼

mH þ ms 0 0

0 ma 0

0 0 mN þ b

2
6664

3
7775

½C� ¼

cH þ cN þ cs �cs �cN

�cs ca þ cs 0

�cN 0 cN

2
6664

3
7775

½K� ¼

kHL þ kNL þ ks �ks �kNL

�ks ka þ ks 0

�kNL 0 kNL

2
6664

3
7775

fnl½ � ¼

kN xH � xNð Þ3 þ kHx3
H

0

kN xN � xHð Þ3

2
66664

3
77775

Feq½ � ¼

Fw

0

0

2
6664

3
7775

½M1� ¼

1 0 0

0 1 0

0 0 1

2
6664

3
7775

½C1� ¼

�2f1 þ 2f2 þ 2f3 �2f2 �2f3

�2f3a 0 2f3a

�2f2a2 2f4a2 þ 2f2a2 0

2
6664

3
7775
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½K1� ¼

1þ kr1 þ kr2 �kr1 �kr2

�kr2a 0 kr2a

�kr1a2 kr3a2 þ kr1a2 0

2
6664

3
7775

fnl½ � ¼

krnl1y3
H þ krnl2 yH � yNð Þ3

krnl2a yN � yHð Þ3

0

2
6664

3
7775

F1eq½ � ¼

FX2sinðXsÞ

0

0

2
6664

3
7775

½A� ¼

0 �1 0 0 0 0

kr1 þ kr2 þ 1 �2f1 þ 2f2 þ 2f3 �kr1 �2f2 �kr2 �2f3

0 0 0 �1 0 0

a �kr2ð Þ �2af3 0 0 akr2 2af3

0 0 0 0 0 �1

a2 �kr1ð Þ �2a2f2 a2kr1 þ a2kr3 2a2f2 þ 2a2f4 0 0

2
66666666666664

3
77777777777775

N1½ � ¼

0 �

krnl1 C1cosðXsÞ þD1sinðXsÞð Þ3 þ krn2 C1 � C5ð ÞcosðXsÞ þ D1 � D5ð ÞsinðXsÞ
	 
3 �

0 �

akrnl22 C1cosðXsÞ þ D1sinðXsÞð Þ3 þ 3 C5cosðXsÞ þ D5sinðXsÞð Þ C1cosðXsÞ þD1sinðXsÞð Þ2�3 C5cosðXsÞ þ D5sinðXsÞð Þ2 C1cosðXsÞ þ D1sinðXsÞð Þ þ C5cosðXsÞ þ D5sinðXsÞð Þ3
� �

0 �

0 �

2
666666666666664

3
777777777777775

Feq½ � ¼

0

FX2sinðXsÞ

0

0

0

0

2
66666666666664

3
77777777777775
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