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ABSTRACT
Simultaneous energy harvesting and vibration attenuation

has been a topic of great interest in many recent investigations
in mechanical metamaterials. These studies have shown the
ability to harvest electrical power using weak electromechani-
cal coupling in periodic metamaterials with no effect on the ma-
terial’s bandgap boundaries. However, the effect of the elec-
tromechanical resonator on the topological properties (i.e. the
bandgap topology) and localized mode shapes of a quasiperi-
odic metamaterial has not yet been determined. In this paper, we
study a quasiperiodic metamaterial coupled to electromechani-
cal resonators to observe its bandgaps and localized vibration
modes. We show here the analytical dispersion surfaces of an
infinite quasiperiodic metamaterial with electromechanical lo-
cal resonators. The natural frequencies of a semi-infinite system
are also simulated numerically to validate the analytical results
and show the band structure for different quasiperiodic patterns,
load resistors, and electromechanical coupling coefficients. Fur-
thermore, the mode shapes are presented here for a semi-infinite
structure showing localized vibration within the bandgaps. The
results demonstrate that quasiperiodic metamaterials with elec-
tromechanical local resonators can be used to harvest energy
without changing the topology of the bandgaps for the case of
weak electromechanical coupling. The observations given here
can be used to guide designers in choosing electromechanical
resonator parameters and quasiperiodic pattern parameters for
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an effective energy harvesting metamaterial.

1 INTRODUCTION
Mechanical Metamaterials are a newer class of artificially

structured materials that exhibit many unique dynamic proper-
ties [1]. These materials are of particular interest in the areas of
vibration control and energy harvesting. Metamaterials with pe-
riodic structures, for example, are known to produce a bandgap
in their frequency response for wavelengths close to their lattice
constant [2–6]. In the frequency range of the bandgap, waves
cannot propagate and are reflected back due to Bragg scattering.

Local resonators can also be imbedded in a structure to form
locally resonant metamaterials with additional bandgaps at wave-
lengths much shorter than the lattice constant [7,8]. The location
and size of these additional bandgaps can be tuned through de-
sign of the local resonator’s parameters [9] and the number and
location of resonators [10].

Recently, there has been great focus on the use of metama-
terials for simultaneous vibration control and energy harvesting.
By introducing piezoelectric patches to the resonators and shunt-
ing them to external circuits, these locally resonant metamate-
rials can be used to harvest electric power and control vibra-
tions. [11–14]. It has been shown that weak electromechanical
coupling does not alter the band structure or negatively impact
the vibration reduction performance of locally resonant periodic
metamaterials [15, 16]. Due to the electromechanical coupling
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FIGURE 1. A SCHEMATIC OF THE QUASIPERIODIC META-
MATERIAL WITH ELECTROMECHANICAL LOCAL RES-
ONATORS

in the resonators, tuning of the shunt circuit is useful for tuning
the resonant frequency of the local resonator and the bandgap
[17–20]. Various methods have also been explored to increase
the energy harvesting performance of these metamaterials such
as using graded patterns in the shunt circuits [21] and physically
coupling resonators [22].

Quasiperiodic metamaterials also possess unique topologi-
cal properties that can be useful in improving both vibration con-
trol and energy harvesting. One such property is the existence of
additional bandgaps that are spanned by edge modes in finite sys-
tems [23, 24]. When quasiperiodic patterns and local resonance
are used together, multiple bandgaps appear that can be tuned
separately by the parameters of the resonators and the quasiperi-
odic pattern [25]. The introduction of a phase variable to the
quasiperiodic pattern also allows for transition of the edge mode
from one boundary to the opposite [26]. These localized edge
modes may pave the way for effective energy harvesting as only
the few cells with large amplitude vibrations will need energy
harvesters embedded in them. However, it is currently unknown
what effect electromechanical coupling may have on the band
structure and localized vibration modes of a quasiperiodic struc-
ture.

In this paper we consider a quasiperiodic chain with lo-
cal electromechanical resonators. The quasiperiodic pattern is
present through a variation in the spring stiffness between cells.
The electromechanical resonators are shunted to an external load
resistor for harvesting the generated power. First, the governing
equations of motion are presented, and the dispersion surfaces
are determined analytically for an infinite system. Then the band
structure is validated through numerical simulation of a semi-
infinite system. Vibration mode shapes are plotted for multiple
edge modes, and discussion is given for energy harvesting de-
sign consideration. Furthermore, the effects of electromechani-
cal coupling parameters on the band structure and edge modes
are observed.

FIGURE 2. 2D SURFACE S(x,φ) = cos(2πQx + φ) SAMPLED
TO GENERATE SPRING STIFFNESS CONSTANTS. SAMPLED AT
RED DOTS ALONG BLACK LINES OF CONSTANT PHASE, φ

2 SYSTEM DESCRIPTION AND MATHEMATICAL
MODELING
A schematic of the quasiperiodic structure under consider-

ation is shown in Fig. 1. The structure consists of S crystals of
mass M. Within each cell is imbedded a local electromechani-
cal resonator shunted to an external resistor R. The electrome-
chanical resonator has an effective mass, mp, effective stiffness,
kp, electromechanical coupling coefficient, θ , and capacitance of
the piezoelectric element, Cp. Each cell is connected by springs
whose constant kn is defined by the sampling of the 2D surface
S(x,φ) = cos(2πQx+φ) at x = xn (Fig. 2). This surface can be
defined by the quasiperiodic parameter, Q, and the phase vari-
able, φ . As such, the spring constant is defined as

kn = k0[1+αcos(2πQn+φ)] (1)

The governing equations of motion for the nth mass and elec-
tromechanical resonator are

mün +(kn−1 + kn)un − kn−1un−1 − knun+1

+mp(ÿn + ün) = 0 (2)
mpÿn + kpyn −θvn =−mpün (3)
RCpv̇n + vn +Rθ ẏn = 0 (4)

where yn = Yn − un is the relative displacement of the nth res-
onator relative to the nth mass.
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FIGURE 3. DISPERSION SURFACES AS A FUNCTION OF µ

AND φ FOR Q= 1/2 SHOWING FOUR BULK BANDS AND THREE
BANDGAPS

Imposing a Bloch periodic solution of

un = Ūne j(µn−ωt) (5)

yn = Ȳne j(µn−ωt) (6)

vn = V̄ne j(µn−ωt) (7)

where µ is the non-dimensional wavenumber, will yield the gov-
erning equations

(−mω
2 + kn−1 + kn)Ūn − kn−1Ūn−1e− jµ

− knŪn+1e jµ −mpω
2Ȳn = 0 (8)

(−mpω
2 + kp)Ȳn − kpŪn −θV̄n = 0 (9)(

− jω +
1

RCp

)
V̄n − jω

θ

Cp
Ȳn + jω

θ

Cp
Ūn = 0 (10)

This system of equations provides an analytical relationship
between the frequency and wavenumber which will be used to
obtain the dispersion surfaces for an infinite structure. Further
analysis of a semi-infinite structure yields the eigenvalues and
eigenvectors, giving us the natural frequencies and mode shapes
of the structure.

For this study, we will be observing the band structure for
a full range of quasiperiodic parameters with a greater focus on
Q = 1/2 and 1/4. Although the system is only quasiperiodic for
irrational Q values and periodic for rational Q values, the spec-
trum depends continuously on Q. As such, it can be accurately
represented through sampling over rational values of Q [27]. Nu-
merical simulation is used to determine the natural frequencies

FIGURE 4. DISPERSION SURFACES AS A FUNCTION OF µ

AND φ FOR Q = 1/4 SHOWING EIGHT BULK BANDS AND
SEVEN BANDGAPS

for a semi-infinite system varying the phase variable, φ , as well
as the quasiperiodic parameter, Q.

FIGURE 5. NATURAL FREQUENCIES FOR A CHAIN OF S =

60 CELLS (BLACK LINES) SUPERIMPOSED ON BULK BANDS
(SHADED GREY) WITH VARIATION IN THE PHASE VARIABLE,
φ and Q = 1/2.
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FIGURE 6. NATURAL FREQUENCIES FOR A CHAIN OF S =

60 CELLS (BLACK LINES) SUPERIMPOSED ON BULK BANDS
(SHADED GREY) WITH VARIATION IN THE PHASE VARIABLE,
φ and Q = 1/4.

3 EFFECT OF ELECTROMECHANICAL RESONATOR
ON THE BAND STRUCTURE
Here we will consider a semi-infinite chain of S = 60 masses

and resonators with the following parameters: m = 1 kg, k0 = 1
N/m, mp = 0.2 kg, kp = 0.3 N/m, R = 10 MΩ, Cp = 13.3
nF, θ = 10−10 N/V. After calculating the roots of the system

FIGURE 7. LOCALIZED MODE SHAPE FOR A CHAIN OF S= 60
MASSES (BLACK) AND ELECTROMECHANICAL RESONATORS
(RED) WITH Q = 1/4 CORRESPONDING TO THE NATURAL FRE-
QUENCY at point ’A’ in Fig. 6.

FIGURE 8. LOCALIZED MODE SHAPE FOR A CHAIN OF S= 60
MASSES (BLACK) AND ELECTROMECHANICAL RESONATORS
(RED) WITH Q = 1/4 CORRESPONDING TO THE NATURAL FRE-
QUENCY at point ’B’ in Fig. 6.

of equations derived from equations 8-10, we plot the disper-
sion surfaces for the infinite structure as a function of the non-
dimensional wavenumber, µ and the phase variable, φ . We can
see these surfaces in Figs. 3 and 4 for Q = 1/2 and 1/4, respec-
tively.

In each case, the dispersion relations identically mirror those
for a structure without electromechanical coupling. For this rea-

FIGURE 9. LOCALIZED MODE SHAPE FOR A CHAIN OF S= 60
MASSES (BLACK) AND ELECTROMECHANICAL RESONATORS
(RED) WITH Q = 1/4 CORRESPONDING TO THE NATURAL FRE-
QUENCY at point ’C’ in Fig. 6.
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FIGURE 10. LOCALIZED MODE SHAPE FOR A CHAIN OF
S = 60 MASSES (BLACK) AND ELECTROMECHANICAL RES-
ONATORS (RED) WITH Q = 1/4 CORRESPONDING TO THE NAT-
URAL FREQUENCY at point ’D’ in Fig. 6.

son, the dispersion surfaces for a structure without electrome-
chanical coupling are not included here. There is a clearly de-
fined bandgap centered on the resonant frequency of the local
resonator splitting the surfaces into two bulk surfaces. Above
and below this bandgap, each surface is further split into multi-
ple bulk bands separated by a number of bandgaps determined
by the quasiperiodic parameter.

FIGURE 11. RELATIVE POWER HARVESTED FROM A CHAIN
OF S = 60 CELLS WITH Q = 1/4 EXCITED WITHIN THE FIRST
BANDGAP AT POINT ’A’ IN FIG. 6.

FIGURE 12. RELATIVE POWER HARVESTED FROM A CHAIN
OF S = 60 CELLS WITH Q = 1/4 EXCITED WITHIN THE LAST
BANDGAP AT POINT ’D’ IN FIG. 6.

To further validate the analytical results, we plot the nat-
ural frequencies for semi-infinite chains in black over the bulk
band structure in grey. These are plotted in Figs. 5 and 6 for
Q = 1/2 and 1/4, respectively. For the semi-infinite systems, we
see not only the bands matching the bulk band, but also addi-
tional modes that span the bandgaps (highlighted in red) migrat-
ing from one boundary to the opposite as the phase varies. These
additional modes often indicate the presence of edge states with
localized vibration modes and are a recognizable feature of a fi-
nite quasiperiodic structure.

These edge states can be easily observed by plotting the
mode shapes of the structure corresponding to natural frequen-
cies within the bandgaps. To demonstrate this, the mode shapes
are given for the first and last two bandgaps in the structure with
Q = 1/4 and φ = π/2. These points are labeled A-D in Fig. 6
with corresponding mode shapes plotted in Figs. 7-10, respec-
tively. The masses are shown as black circles with the local res-
onators included in red. In all cases, the area of large relative vi-
bration is limited to a small portion of the structure, though we do
see greater localization in some modes than in other. For exam-
ple, in the last bandgap, only about eight cells undergo significant
vibration while in the second to last bandgap, around thirty cells
undergo significant vibration. It is important to note here that
the waves are not evanescent or rapidly decaying due to damp-
ing. The abrupt decay in wave amplitude is due to the quasiperi-
odic patterning in the metamaterial rather than electromechanical
damping.

In addition, one can observe that in the first two bandgaps,
the resonators are moving in phase with the masses while in
the last two bandgaps, the resonators are moving out of phase
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FIGURE 13. SPECTRUM OF NATURAL FREQUENCIES FOR A
CHAIN OF S = 60 CELLS (BLACK LINES) SUPERIMPOSED OVER
A BULK SPECTRUM OF S = 600 CELLS (SHADED GREEN) WITH
θ = 10−10 N/V, φ = 0 AND VARIATION IN THE QUASIPERIODIC
PARAMETER, Q.

with the masses. This shows that for bandgaps occurring be-
low the resonators’ natural frequency, the resonators will be in
phase with the main masses. Similarly, at frequencies above
the resonators’ natural frequency, the resonators will be out of
phase with the main masses. This can be leveraged to obtain
more effective energy harvesting by exciting structures within
bandgaps above the resonators’ natural frequency. With the res-
onators moving out of phase of the masses, there will be greater
relative displacement leading to greater voltage difference in the
piezoelectric material.

To further validate this, the instantaneous power from each
cell is plotted from the voltage mode shapes in Figs. 11 and 12
within the first and last bandgaps, respectively. For comparison,
both are plotted relative to the maximum power obtained from a
cell in either mode. It is shown that the relative power harvested
in the last bandgap is multiple orders of magnitude larger than
that in the first bandgap. It is also worth noting that in any of
the mode shapes, the majority of the power comes from just a
handful of cells. In the case of excitation within the last bandgap,
99% of the power is harvested from the last three cells alone.

The band structure is also plotted over the full range of
quasiperiodic parameters in Fig. 13 resembling the Hofstadter
butterfly commonly found in quantum mechanics. Here the nat-
ural frequencies of the semi-infinite system are plotted in black
over the bulk bands approximated from S = 600 cells in green.
From this, we can see that the bandgap produced from the lo-
cal resonators is topologically trivial as it remains constant with
variation in the quasiperiodic parameter. The other bandgaps,

FIGURE 14. SPECTRUM OF NATURAL FREQUENCIES FOR A
CHAIN OF S = 60 CELLS (BLACK LINES) SUPERIMPOSED OVER
A BULK SPECTRUM OF S = 600 CELLS (SHADED GREEN) WITH
θ = 10−3 N/V, φ = 0 AND VARIATION IN THE QUASIPERIODIC
PARAMETER, Q.

however, are topologically nontrivial and depend greatly on the
quasiperiodic parameter. We also see again that in the semi-
infinite case, there are edge modes spanning each of the topo-
logically non-trivial bandgaps. These results were further tested
with variation in the load resistor with resistance values of 10
Ω ≤ R ≤ 107 Ω. The resulting band structures showed no
changes due to variation in the load resistance. The results in-
dicate that weak electromechanical coupling has no noticeable
effect on the topology of the band structure. This is in good
agreement with the results obtained by [16].

To test the case of stronger electromechanical coupling,
the band structure was obtained for a range of coupling coeffi-
cients of 10−10 N/V ≤ θ ≤ 10−1 N/V. For coupling coefficients
θ ≤ 10−5 N/V, there is no noticeable change to the band struc-
ture. However, as the electromechanical coupling gets stronger,
the band structure begins to degrade until the bandgaps collapse
on themselves. This can be seen in Fig. 14 for a coupling co-
efficient of θ = 10−3 N/V. In this case, the topologically trivial
bandgap appears to have completely collapsed, and multiple of
the other bandgaps have merged together. This indicates that for
very strong electromechanical coupling, the band structure may
be significantly altered. However, it is also worth noting that in
most engineering applications, it is uncommon for the coupling
coefficient to exceed the order of 10−10 N/V.
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4 CONCLUSION
In this paper, we investigated the effect of energy harvesting

on the band structure topology and localized vibration modes of
locally resonant quasiperiodic metamaterials. The system under
consideration was represented by a semi-infinite chain of spring-
mass elements with the spring stiffness constants varying in a
quasiperiodic pattern. Each cell is connected to an electrome-
chanical local resonator modeled as a spring-mass system and
shunted to a load resistor. Analytical dispersion surfaces are
given for an infinite system and validated numerically for a semi-
infinite system.

The system is shown to have topologically nontrivial
bandgaps determined by the quasiperiodic parameter. When the
structure is excited within one of these bandgaps, it will pro-
duce edge-localized vibration modes. At frequencies above the
local resonators’ natural frequency, the masses and resonators
are out of phase leading to greater energy harvested. Within any
bandgap, the majority of energy is harvested from a small per-
centage of cells in the structure.

The band structure of the semi-infinite system is determined
for a full range of phase variables and quasiperiodic parameters.
It is also tested for different load resistors and electromechanical
coupling values. The results show that quasiperiodic metamate-
rials with local resonators can be used to harvest energy with-
out changing the topology of the bandgaps for the case of weak
electromechanical coupling. However, very strong coupling can
cause the performance to degrade as the band structure deforms
and bandgaps collapse. Electromechanical coupling also has no
negative impact on the ability of a quasiperiodic metamaterial to
host localized modes of vibration. When compared to the state
of the art periodic energy harvesting metamaterials, the proposed
quasiperiodic metamaterial provides greater efficiency in energy
harvesting. With vibrations localized to a small portion of the
metamaterial, a much smaller percentage of electromechanical
energy harvesters is required to harvest a comparable amount of
energy.
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