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Abstract

Recent work in nonlinear topological metamaterials has revealed many useful properties such as
amplitude dependent localized vibration modes and nonreciprocal wave propagation. However, thus far,
there have not been any studies to include the use of local resonators in these systems. This work
seeks to fill that gap through investigating a nonlinear quasiperiodic metamaterial with periodic local
resonator attachments. We model a 1-dimensional metamaterial lattice as a spring-mass chain with
coupled local resonators. Quasiperiodic modulation in the nonlinear connecting springs is utilized to
achieve topological features. For comparison, a similar system without local resonators is also modeled.
Both analytical and numerical methods are used to study this system. The dispersion relation of the
infinite chain of the proposed system is determined analytically through the perturbation method of
multiple scales. This analytical solution is compared to the finite chain response, estimated using the
method of harmonic balance and solved numerically. The resulting band structures and mode shapes are
used to study the effects of quasiperiodic parameters and excitation amplitude on the system behavior
both with and without the presence of local resonators. Specifically, the impact of local resonators on
topological features such as edge modes is established, demonstrating the appearance of a trivial bandgap
and multiple localized edge states for both main cells and local resonators. These results highlight the
interplay between local resonance and nonlinearity in a topological metamaterial demonstrating for the
first time the presence of an amplitude invariant bandgap alongside amplitude dependent topological
bandgaps.

Keywords: Metamaterials, Nonlinear Vibrations, Perturbation Techniques

1 Introduction
Metamaterials are artificial engineered structures that are patterned with special configurations and material
constituents [1–3]. These structures possess properties not found in naturally occurring materials, ranging
from zero or negative values of standard engineering parameters (such as density and Poisson’s ratio [1]),
to nonlinear phenomena (such as gap solitons [4] and asymmetric wave propagation [5]). Metamaterials
have a foundation in optics and electromagnetics, exploiting elastic and wave properties such as motion,
deformations, stresses and mechanical energy [6, 7]. These concepts were later extended for elastic wave
propagation [2] and acoustics [8]. The unusual features of metamaterials make them beneficial for numerous
applications including vibration and noise control [9], energy harvesting [10], structural health monitoring
[11], and acoustic diodes or rectifiers [12]. Within elastic media, metamaterials are usually patterned in
periodic (phononic), quasiperiodic, or random structural configurations [13]. It was observed that periodic
structures prevent waves from propagating through the structure at certain frequency ranges, known as
bandgaps, through a phenomenon known as Bragg scattering. Therefore, low frequency waves can be banned
from propagating through the structure, thus achieving significant vibration attenuation [2, 14]. However,
since the Bragg scattering is restricted to certain lattice constants, only large structures can be controlled.

This large structure requirement can be counteracted by introducing local resonators into metamaterials
[15]. Thus, applications of vibration attenuation can be extended to much smaller structures and applications.
Local resonators are also capable of widening the original bandgap developed by Bragg scattering, as the
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bandgap is directly influenced by the resonator parameters [16]. Furthermore, by introducing multiple
resonators, additional multi-frequency bandgaps can be obtained [9, 17].

In addition, nonlinear elements can also be included in a metamaterial [18]. On top of the potential
for improved bandgap performance, the introduction of nonlinearity also results in other interesting wave
propagation phenomena such as gap solitons [4], dark and enveloped solitons [19], nonlinear cloaking [20–
22], and wave nonreciprocity [23–25]. These phenomena can be applied for a host of applications. One
option for the addition of nonlinearity to the metamaterial system is the use of nonlinear springs. These
springs can have a combined linear and nonlinear stiffness or be essentially nonlinear, with nonlinear stiffness
only. In the literature, study of nonlinear metamaterials is often focused on obtaining the band structure
analytically or numerically [26, 27]. The former uses perturbation techniques (such as Lindstedt–Poincare
[28], multiple scales [29] and homotopy analysis [30]), while the latter applies frequency and spectro-spatial
analysis [31–34].

Quasiperiodic arrangements have also been shown to improve energy harvesting and vibration control
through topologically protected modes. The investigation of topological phases of matter in metamaterials
has shown the presence of robust topologically protected modes that do not propagate inside the bulk and
are localized within lower dimensions [35]. One passive method for manifesting these topological modes is
the breaking of spatial inversion symmetry while maintaining time-reversal symmetry [36–38]. This can be
achieved by introducing quasiperiodic modulation into a structure using patterns such as the Aubry-André
model as seen in [39–42]. This results in a spectrum that is analogous to the Hofstadter butterfly [43] with
additional nontrivial topological bandgaps inside the bulk of propagating waves in periodic structures. These
topological bandgaps host localized modes that can be beneficial in vibration mitigation [44] showing high
displacement in a few cells while preventing wave propagation to other cells. Localization can also be moved
along the metamaterial by topological pumping [45].

Further investigations have been made studying the effects of nonlinearity on topological metamaterials.
The majority of these studies generally fall into one of two paths. The first path observes the effect of
nonlinearity on a metamaterial that is topological in the linear regime. The second uses nonlinearity to
strategically design metamaterials to induce topological properties in the metamaterial. In both cases, the
amplitude dependence of the nonlinear response has led to studies in the frequency shift [46–48] and stability
[49, 50] of topological edge states. One most common result of combining topological and nonlinear effects
is the existence of solitons that are topologically robust [51–53].

Recent efforts in metamaterials have revealed interesting dynamical properties of locally resonant meta-
materials with a wide variety of applications. Foremost among these is simultaneous vibration suppression
and energy harvesting through the use of electromechanical resonators [34]. Modulating resonator parameters
in quadratic [54] or quasiperiodic [42] patterns can even produce far superior energy harvesting performance
over other metamaterials. In addition to enhanced harvesting energy, modulated resonators can be utilized
to produce topological effects in metamaterials with simpler, non-topological host structures [39, 41]. Fur-
thermore, local resonators have also proven useful in controlling waves through the design of two-dimensional
waveguides [55] and electromechanical diodes [12]. Other applications in the nonlinear regime include control
over breather propagation [56], and the strengthening of nonlinear phenomena such as frequency shifts and
wave localization [57].

While the many valuable properties of local resonators have been widely studied, local resonators have
not yet been introduced to nonlinear topological metamaterials. The aim of this work is to investigate the
interactions between local resonance, nonlinear, and topological phenomena. In particular, we investigate
a system that consists of a spring-mass chain with coupled local resonators and quasiperiodicity in the
nonlinear connecting springs. The infinite chain model is solved analytically using the method of multiple
scales, providing a closed form solution for the slow flow equations and nonlinear frequency correction factor.
The method of harmonic balance is used to numerically estimate the behavior of a finite chain, providing
insight into the natural frequencies and mode shapes of both main cells and local resonators. Both of
these methods are used to study the effects of quasiperiodic parameters and excitation amplitude on the
system behavior, focusing on the potential for vibration localization and control. The system is compared
to a previously studied system lacking resonators [58], and the effect of local resonators on topological edge
states and the behavior of local resonators in the proposed nonlinear quasiperiodic system is examined.

2 Modeling and Solution Methods
This work considers a 1-dimensional nonlinear locally resonant metamaterial with stiffness modulation in the
main springs as shown in Fig. 1. The metamaterial is represented by a spring mass chain of identical masses,
m, joined by modulated springs with linear and cubic nonlinear components. Each mass is coupled to a local
resonator with mass, mr and stiffness, kr. Modulation in the main springs follows the Aubry-André Model
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Figure 1: Schematic of nonlinear, quasiperiodic chain with local resonators.

such that the stiffness constant between mass n and mass n+ 1 is defined as

kn = k0[1 + λcos(2πnθ + ϕ)] (1)

with average stiffness, k0, and modulation amplitude, λ. This pattern is defined by its quasiperiodic param-
eter, θ, and phase shift, ϕ. It should be noted that |λ|< 1 in order to avoid negative values of stiffness kn.
Rational and irrational values of θ produce periodic and quasiperiodic patterns, respectively. The governing
equations of motion for the nth mass and resonator are

mün + kn−1(un − un−1) + kn(un − un+1) + kr(un − yn) + ϵkn−1(un − un−1)3 + ϵkn(un − un+1)3 = 0 (2)

mrÿn + kr(yn − un) = 0 (3)

where un and yn are the displacements of the nth mass and resonator, respectively, and ϵ is a small dimen-
sionless parameter defining the strength of the nonlinearity. These equations can be expressed compactly in
matrix form for the jth unit cell as

Müj + K(0)uj + K(−1)uj−1 + K(1)uj+1 + ϵfNL = 0 (4)

where for a system with q masses in its unit cell, M, K(0), K(−1), and K(1) are 2q × 2q mass and stiffness
matrices, uj is the 2q×1 vector of mass and resonator displacements, and fNL is the 2q×1 nonlinear forcing
vector.

2.1 The method of multiple scales
To derive the dispersion relation for an infinite chain, the perturbation method of multiple scales (MMS) is
utilized with the fast time scale, T0 = t, and the slow time scale, T1 = ϵt. This method provides the simplest
algebraic method for determining an analytical amplitude-wavenumber relationship. While using a first
order approximation is accurate for weak nonlinearity, its accuracy will decrease with strong nonlinearity.
At high amplitudes, a first order approximation is insufficient to detect higher order harmonics present in the
response or to determine the stability of solutions. However, higher order harmonics and stability analysis
are outside of the scope of this work and will be left for future work.

Using the MMS, we can assume expansions for the displacements in the form of

uj = u(0)
j (T0, T1) + ϵu(1)

j (T0, T1) +O(ϵ2) (5)

and the time derivative can be expressed as

∂2

∂t2
= D2

0() + 2ϵD0D1() +O(ϵ2) (6)

where Dn = ∂/∂Tn. Using these expansions, the equation of motion can be broken into linear and nonlinear
components by order of ϵ yielding order ϵ0

D2
0Mu(0)

j + K(0)u
(0)
j + K(−1)u

(0)
j−1 + K(1)u

(0)
j+1 = 0 (7)
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order ϵ1
D2

0Mu(1)
j + K(0)u

(1)
j + K(−1)u

(1)
j−1 + K(1)u

(1)
j+1 = −2D0D1Mu(0)

j − fNL (8)

At order ϵ0, the problem is linear, so the solution can be expressed as

u(0)
j = 1

2A(T1)ψei(µj−ω0T0) + c.c. (9)

where A is the amplitude, ψ is the mode shape, µ is the dimensionless wavenumber, ω0 is the linear natural
frequency, and c.c. denotes the complex conjugate. Substituting the solution into the linear equation yields
the linear eigenvalue problem

ω2
0Mψ = K(µ)ψ (10)

where
K(µ) = K(0) + K(−1)e

−iµ + K(1)e
iµ (11)

the solution of which obtains the linear dispersion relation and eigenvectors of the system.
Looking now to the nonlinear problem (i.e., the order ϵ problem), Eq. 8 is decoupled through the use of

modal coordinates, then non-secular terms are isolated to derive the slow flow equations. Next, we introduce
the polar form of the displacement amplitude

An = αn(T1)e−iβn(T1) (12)

For a trimer lattice with θ = 1/3, the slow flow equations are then solved to yield

α′
n = 0 (13)

β′
n = 3α2

ncn(µ)
8mω0,nηn

(14)

where

cn(µ) = −2k3ψ̄1ψ3(|ψ1|2+|ψ3|2)e−iµ + k3ψ̄
2
1ψ

2
3e

−2iµ + k3ψ̄
2
3ψ

2
1e

2iµ

−2k3ψ̄3ψ1(|ψ1|2+|ψ3|2)eiµ + (k1 + k3)|ψ1|4+(k1 + k2)|ψ2|4

+(4k1|ψ2|2+4k3|ψ3|2−2k1(ψ̄1ψ2 + ψ̄2ψ1))|ψ1|2+(k2 + k3)|ψ3|4 (15)
+(4k2|ψ3|2−2k1ψ̄1ψ2 − (2k1ψ1 + 2k2ψ3)ψ̄2 − 2k2ψ2ψ̄3)|ψ2|2

−2k2(ψ̄2ψ3 + ψ̄3ψ2)|ψ3|2+k1ψ̄
2
1ψ

2
2 + (k1ψ

2
1 + k2ψ

2
3)ψ̄2

2 + k2ψ̄
2
3ψ

2
2

and
ηn = |ψ1|2+|ψ2|2+|ψ3|2+

√
m

mr
(|ψ4|2+|ψ5|2+|ψ6|2) (16)

with ψn being the nth element of the eigenvector associated with wavenumber, µ, and ψ̄n being its
complex conjugate. It can be shown that cn is a purely real quantity.

The solution further allows us to express the nonlinear frequency in terms of the frequency correction
factor, β′

n as
ωn = ω0,n + ϵβ′

n (17)

It is worth noting here that the frequency correction factor for this system is nearly identical to that
presented in [58] for a system without local resonators. The primary distinction here is in the presence of
the mass ratio term, ηn indicating that the frequency shift is directly influenced by the ratio of main cell
mass to resonator mass.

2.2 The method of harmonic balance
While the method of multiple scales provides the dispersion relations for an infinite chain, this solution does
not capture the edge modes present in the system. For this, an analysis of a finite chain is required. Although
the method of multiple scales provides a simple algebraic approach to analyzing a single unit cell, it quickly
becomes unruly when analyzing an entire chain of significant length. Instead, the harmonic balance method
is used here following the procedures outlined in [47, 58]. This method also allows us to estimate the mode
shapes for varying excitation amplitude. To examine these modes, a finite chain of N = 42 cells with free
boundary conditions at each end is studied.
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Beginning with the equations of motions in Eqs. 2 and 3, periodic solution forms for the displacement of
the main cell and resonator masses are assumed as

un = an cos (ωt) + bn sin (ωt) (18)

yn = cn cos (ωt) + dn sin (ωt) (19)

where an, bn, cn, dn are unknown displacement coefficients, and ω = 2π/T is the unknown assumed angular
frequency with period T , resulting in 4N + 1 unknowns.

A corresponding set of 4N+1 nonlinear equations are obtained by substituting Eqs. 18 and 19 into the gov-
erning equations of motion, then setting the coefficient terms of cos (ωt) and sin (ωt) to 0. The final equation
is provided by setting the L2 norm of the displacement coefficients, x = {a1, b1, c1, d1, ..., aN , bN , cN , dN }T ,
equal to the total chain amplitude A.

∥x∥2= A (20)

For comparison to the infinite chain in the MMS solution, chain amplitude A is also used to define the
Bloch wave amplitude, αn, by αn = A/

√
θN . This is to ensure that when the wave solution is extended to

a finite lattice with N masses, the resulting L2 norm is equal to A [58].
The described set of 4N + 1 algebraic nonlinear equations are solved numerically using a trust-region

algorithm through MATLAB’s ”fsolve” function. To investigate the amplitude dependant effects of nonlin-
earity, the amplitude is first set to a small value, A = 10−3. The initial guess for this case is the solution to
the linear problem. Following this, A is increased in small increments, with each increase using the previous
solution as the initial guess. Thus, the displacements and frequencies of the finite chain are calculated for a
range of A.

3 Results and Discussions
Using the previously described solution methods, we examine selected variations of the proposed metama-
terial. In this study, we consider a trimer lattice (θ = 1/3) with the following parameters: m = 1 kg, k0 = 1
N/m, λ = 0.6, mr = 0.2 kg, kr = 0.3 N/m, and ϵ = 0.1. Although the system is only quasiperiodic for irra-
tional θ values and periodic for rational θ values, the dispersion relations depend continuously on θ and can
be accurately represented through sampling over rational values of θ. Several cases are studied, specifically
a chain with linear springs or nonlinear springs, and with resonators or without resonators. While the linear
dispersion relation will be given for a full range of phase variable, ϕ, the nonlinear dispersion relation will be
given only for ϕ = 0.35π as more attention is given to its amplitude dependence than its phase dependence.
Thus, the nonlinear dispersion relation is determined for varying displacement amplitudes, A, with set ϕ.

3.1 Band structure
The dispersion relations are shown in Fig. 2 for linear systems with and without resonators. The bulk
passbands for an infinite chain, modeled from the unit cell and solved via MMS, are shown in blue. The
natural frequencies of a finite chain, modeled with 42 masses and solved by harmonic balance, are overlaid
as black lines. Comparing Fig. 2(a) and (b), the presence of the resonators in the linear chain has expected
effects on the band structure as seen in previous studies [41, 42]. The dispersion band is split in two by a
topologically trivial bandgap centered on the resonant frequency of the resonators. Above and below this
bandgap, both passbands are split into additional passbands by topologically nontrivial bandgaps, resulting
in a total of six passbands compared to the three passbands of the non-resonator case. The location and
number of these nontrivial bandgaps are determined by the quasiperiodic parameter. Both with and without
resonators, the frequencies of the finite chain reveal the presence of edge states that span the bandgaps. The
frequency of these edge states is dependent on ϕ for the linear chain. Observing the case with resonators in
Fig. 2(b) confirms that these edge states are present for nontrivial bandgaps only as there is no edge state
present in the topologically trivial bandgap.

To observe the amplitude dependence, the nonlinear dispersion is plotted with increasing amplitude for
the chains without and with resonators in Fig. 3. As in the linear case, the presence of resonators introduces a
trivial bandgap, with nontrivial bandgaps on either side. In the nonlinear regime, frequencies shift upward
with increasing amplitude for a positive (hardening) nonlinearity with ϵ = 0.1 shown in Fig. 3(b). This
affects several bandgap boundaries; however, the upper limit of the trivial bandgap shows no dependence
on the amplitude, remaining constant as the amplitude increases. Edge mode frequencies also increase with
amplitude, some approaching the neighboring bulk passbands at higher amplitudes. As they approach, edge
modes eventually run tangent to the passband. While the majority of the finite chain modes remain within
the infinite chain bulk passbands, the highest modes in each passband enter the bandgaps as amplitude
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(a) (b)

Figure 2: Effect of phase variable ϕ on the dispersion relations of a linear chain (a) without resonators and
(b) with resonators.

increases and they are shifted to higher frequency. Previous works have shown that these modes, as well as
the previously mentioned edge states, may display vibration localization [58]. Thus, the behavior of these
modes is further investigated through the finite chain mode shapes acquired through harmonic balance.

When considering negative (softening) nonlinearity with ϵ = −0.1, similar trends are identified except
that frequencies are shifted downward instead of upward as depicted in Fig. 3(c). The bulk passbands shift
downward in frequency, but the upper limit of the trivial bandgap remains unchanged. The edge modes
shift downward causing some to enter or leave the bandgaps. For the fourth edge mode, we again see the
edge mode shift in frequency until it approaches the adjacent passband. This time however, the edge mode
approaches the lower passband rather than the upper passband with hardening nonlinearity. Since the
frequency shift is downward, the edge modes starting at the lower frequency end of their bandgaps remain
close to the lower passband and do not enter the bandgap. For example, the first edge mode is seen to move
further into the bandgap with increasing amplitude in Fig. 3(b) under the influence of positive nonlinearity.
However, for negative nonlinearity in Fig. 3(c), it remains close to the passband and never enters the bandgap
as the amplitude increases. A significant difference to note is in the behavior of the modes that separate
from the sixth passband. For positive nonlinearity, these are the highest frequency modes in the passband,
and as the amplitude increases, they enter a bandgap and never return to the passband. But with negative
nonlinearity, these are the lowest frequency modes in the passband, and because they shift downward, they
enter the fifth bandgap and eventually join with the fifth passband. The effects of this behavior on the mode
shapes will be detailed in the next section.

To further investigate the effect of the excitation amplitude on the band structure, we plot the natural
frequencies in Fig. 4 over a range of quasiperiodic parameters at low amplitude (A = 0) in Fig. 4(a) and high
(A = 5) amplitude with hardening and softening nonlinearity in Fig. 4(b)-(c), respectively. For each case, we
observe that the bulk spectrum takes the expected form of the Hofstadter butterfly. At low amplitude, there
is good agreement with previous studies [42]. The trivial bandgap is clearly displayed showing no dependence
on the quasiperiodic parameter and no edge modes within it. Meanwhile, the topological bandgaps show
great dependence on the quasiperiodic parameter. Looking to the higher amplitude cases, the previously
noted effects of amplitude are confirmed. There is a slight but noticeable increase in frequency of the
passbands for hardening nonlinearity and a decrease in frequency of the passbands for softening nonlinearity.
These shifts are more significant for higher frequency modes. At the higher amplitude, the quasiperiodic
parameter has a stronger impact on the location of the higher frequency bandgaps for hardening nonlinearity
but a weaker impact for softening nonlinearity. For example, the uppermost “wing” of the butterfly with
hardening nonlinearity in Fig. 4(b) has a maximum frequency of Ω = 3.94 at θ = 0 and drops down to
Ω = 1.85 at θ = 0.5. When compared to the linear regime in Fig. 4(a), we see a range of Ω = 2.56−1.77 over
the same variation in quasiperiodic parameter. Furthermore, with softening nonlinearity in Fig. 4(c), the
upper “wing” spans from Ω = 2.05−1.72. The additional higher frequency modes entering the bandgaps can
also be seen here. Fig. 4(b)-(c) shows that for high amplitude, the upper “wings” representing the bandgaps
become less distinctive as more modes split from the bulk passbands and span the bandgaps. Additional
curves also appear above the butterfly image in Fig. 4(b) indicating the modes that separated upward from
the uppermost passband.
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(a) (b)

(c)

Figure 3: Effect of excitation amplitude A on the dispersion relations of a nonlinear chain at phase ϕ = 0.35π
(a) without resonators, (b) with resonators and hardening nonlinearity, ϵ = 0.1 and (c) with resonators and
softening nonlinearity, ϵ = −0.1.

3.2 Mode shapes
The effect of amplitude on the mode shapes of a nonlinear quasiperiodic chain without resonators is shown in
Fig. 5. Mode shapes are normalized to the maximum displacement value for each amplitude, and the mode
shapes for A = 0.1, 2.5, and 5 are outlined in black for clarity. Three selected mode branches are shown
here: two edge states in Fig. 5(a) and (b) respectively, and the 41st mode in (c). The former two show that
the edge modes result in localization to the ends of the chain. This localization is most pronounced at lower
displacement amplitudes, where the effects of nonlinearity are negligible. However, as amplitude increases,
the localization is affected to varying degrees. For the first edge mode in Fig. 5(a), increasing amplitude
results in a more localized shape; while for the second edge mode in Fig. 5(b), higher amplitude results in a
less localized shape. This can be explained through the band structure in Fig. 3(a) where the corresponding
modes are highlighted with dotted curves and Roman numerals (I)-(III). Here, it is clear that while the first
edge mode frequency increases with amplitude, it does not approach the second passband, remaining within
the bandgap even at the highest value of A. On the other hand, the second edge mode does approach the
third passband, running tangent to the passband at increased amplitude. Thus, its behavior is more similar
to the bulk passband modes with less prominent localization. It can be concluded that localization is most
significant when the mode frequency is within a bandgap and not approaching the edges. The phase ϕ will
therefore have a significant impact on the effect of nonlinearity on mode shape localization, as it dictates
the edge mode frequencies at low amplitude, and thus whether or not an edge mode will approach the next
passband with increasing amplitude.

Meanwhile, the 41st edge mode, shown in Fig. 5(c), begins within the third passband, then increases
with amplitude to enter the bandgap. Thus, its mode shape becomes more localized, similar to the first edge
mode. This case also illustrates the localization of modes that begin at the upper edge of the passbands and
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(a) (b) (c)

Figure 4: Natural frequency spectrum plotted over a range of quasiperiodic parameters, θ, with hardening
nonlinearity, ϵ = 0.1, at (a) low amplitude, A = 0 and (b) high amplitude, A = 5.

(a) (b) (c)

Figure 5: Effect of excitation amplitude A on selected mode shapes of a hardening nonlinear chain (ϵ = 0.1)
with N = 42 masses, without resonators, and ϕ = 0.35π. (a) mode 15 (1st edge mode); (b) mode 29 (2nd
edge mode); (c) mode 41.

enter the bandgaps at higher amplitude. The resulting mode shapes are localized to various points in the
chain, forming discrete breathers. Breathers, which are solutions localized in space and periodic with time,
have been established in prior work to emerge as modes at the edge of the passbands enter the nonlinear
regime [58–60]. This is of particular interest in the second bandgap, where localized edge states and discrete
breathers are both present. Overall, these observations for the chain without resonators are consistent with
the previous work by Rosa et al. [58].

With the addition of resonators, many of the previous observations are still applicable. Though the band
structure is split into six passbands rather than three, the behavior of the three passbands above and below
the trivial bandgap is observed to follow similar patterns, with each set of passbands corresponding to the
three passbands of the non-resonator case. However, there are some notable differences in the presence of
resonators. To compare and contrast the effect of resonators and the behavior of passbands 1-3 and 4-6, the
mode shapes of selected modes with varying displacement amplitude are shown in Fig. 6. Displacements of
the main cells are marked with red circles, while the resonator displacements are marked with blue squares.
All displacements are normalized to the maximum displacement of the main cells at each amplitude.

The response for passbands 1-3 with resonators is shown in Fig. 6(a)-(c). The first and second edge modes
are shown in (a) and (b), respectively, while the 41st mode is shown in (c). In all modes, it is clear that
the resonators have larger displacement amplitude relative to the main cells, and that the relative resonator
amplitude increases slightly for higher amplitude. The resonator amplitude can also be observed to increase
as the mode frequencies approach the trivial bandgap and thus the resonator natural frequency. The first
edge mode is very similar to the case without resonator, with displacement localized to one end of the chain.
The second edge mode, shown in Fig. 6(b), is similar to the non-resonator case at low amplitude, however,
localization does not decrease as amplitude increases. The continued localization even at high amplitude
may be explained by the band structure in Fig. 3(b) which also highlights the selected modes with dotted
curves and Roman numerals (I)-(VI). Looking closely at the second edge mode, it can be seen that while the
frequency does increase with amplitude, it remains away from the bandgap boundary and does not reach the
point where it approaches and runs tangent to the third passband as in the non-resonator case. Thus, its
behavior does not shift toward the passband behavior, and remains localized. The 41st mode in Fig. 6(c) also
displays differences from the case with no resonator. While there are two clear peaks in the displacement,
localization does not intensify as amplitude increases. This is due to the fact that, unlike the non-resonator
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(a) (b) (c)

(d) (e) (f)

Figure 6: Effect of excitation amplitude A on selected mode shapes of a hardening nonlinear chain (ϵ = 0.1)
with N = 42 masses, with resonators, and ϕ = 0.35π. (a) mode 15 (1st edge mode); (b) mode 29 (2nd edge
mode); (c) mode 41; (d) mode 57 (3rd edge mode); (e) mode 71 (4th edge mode); (f) mode 83.

case, the 41st mode frequency does not separate from the bulk passband, and the mode shape is unaffected.
For passbands 4-6, the third and fourth edge modes are shown in Fig. 6(d) and (e), while the 83rd mode

is shown in (f). Here, the displacement response is extremely similar to the case without resonator, including
the formation of breathers in mode 83. Unlike passbands 1-3, the displacement of resonators relative to the
main cells varies. For the third edge mode, resonator displacement is greater than main cell displacement,
while for the other two modes, it is significantly less. This indicates that the resonator displacement decreases
as we look at modes further from the trivial bandgap, matching the behavior in the lower three passbands.

One major difference between passbands 1-3 and 4-6 is that the edge modes for the lower three passbands
have the resonators moving in phase with the main cells, while the resonators are out of phase for the upper
three passbands. This is illustrated by Fig. 7, which shows mode shapes for the first and third edge modes
with low displacement amplitude. Further exploration of the chain with resonators confirms that all modes
below the trivial bandgap, and thus below the resonator natural frequency, have resonators in phase with
the main cells, while above the trivial bandgap, resonators are out of phase. This matches observations of a
similar system studied by LeGrande et al. [61].

For comparison, the response of some of these modes are also plotted for negative nonlinearity in Fig. 8.
Shown here are the first and fourth edge modes in Fig. 8(a) and (b), respectively, and mode 72 in (c). These
modes correspond to those in Fig. 3(c) that are highlighted with dotted curves and Roman numerals (I)-(III).
Like with positive nonlinearity, the edge modes here show strong localization at low amplitudes. However,
their response at high amplitudes varies. For the first edge mode, the influence of negative nonlinearity
pushes the frequency into the bulk passband rather than into the bandgap. This leads to a decrease in
localization at high amplitudes shown in Fig. 8(a). Looking to the fourth edge mode, it also significantly
decreases in localization just as it did with positive nonlinearity. However, the edge mode reaches the lower
passband at an amplitude near A = 2.5 whereas for the case of positive nonlinearity, the edge mode reaches
the upper passband at a lower amplitude near A = 2. This causes the edge mode to remain localized at
a higher amplitude for negative nonlinearity. This can be seen when comparing the response at amplitude
A = 2.5 for positive nonlinearity in Fig. 6(e) and negative nonlinearity in Fig. 8(b). At this amplitude, there
is a higher degree of localization for negative nonlinearity than for positive nonlinearity.

Another significant difference can be found in the response of the higher frequency modes that start in
the bulk passband but show significant frequency shift. Figure 8(c) displays the mode shape associated with
the 72nd mode which is the lowest frequency mode in the sixth passband. As previously mentioned, this
mode undergoes a significant decrease in frequency separating from the bulk passband and entering into the
bandgap. As it does, a centrally localized breather solution emerges in the mode shape. However, unlike with
the case of positive nonlinearity, as the amplitude increases, the mode frequency eventually approaches the
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(a) (b)

Figure 7: Selected mode shapes of nonlinear chain (N = 42) with resonators, ϕ = 0.35π, A = 0.1. (a) Mode
15 (1st edge mode); (b) Mode 57 (3rd edge mode).

(a) (b) (c)

Figure 8: Effect of excitation amplitude A on selected mode shapes of a softening nonlinear chain (ϵ = −0.1)
with N = 42 masses, with resonators, and ϕ = 0.35π. (a) mode 15 (1st edge mode); (b) mode 71 (4th edge
mode); (c) mode 72.

fifth passband. As it does so, the degree of localization decreases and the wave begins to be dispersive again.
This can be seen in Fig. 8(c) where the wave is more localized at amplitude A = 2.5 than it is at amplitude
A = 5. This effectively produces an amplitude window within which breather solutions exist. At mid-level
amplitudes, breathers will propagate with strong localization, but at lower or higher amplitudes, the wave
will be dispersed along the chain. This demonstrates nonlinear mode pumping similar to topological pumping
and driven mainly by the softening nonlinearity instead of patterning. This differs from the response with
positive nonlinearity which produces breather solutions at all amplitudes above a set value.

4 Conclusion
This work investigated the effect of local resonators in a nonlinear metamaterial with quasiperiodic stiffness
modulation. The proposed system was modeled as a 1-dimensional lattice of masses connected by cubic
nonlinear springs. Linear and nonlinear stiffness of the connecting springs was modulated following the
Aubry-André Model. Each main mass was coupled to a local resonator also modeled as a spring-mass system.
Multiple techniques were applied to study this nonlinear system, with the response of an infinite chain model
solved analytically through the method of multiple scales and the response of a finite chain estimated through
the method of harmonic balance. The resulting frequency band structure and displacement mode shapes
were compared to a similar system lacking local resonators to determine their effects.

In studying the proposed system, linear and nonlinear band structures were examined to determine
the effects of phase variable and displacement amplitude. The results lacking resonators were found to be
consistent with previous works, including the presence of nontrivial bandgaps, topological edge modes and
amplitude dependence due to nonlinearity. With the addition of resonators, an additional trivial bandgap
was observed, with nontrivial bandgaps appearing both below and above. Unlike the topological bandgaps,
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this trivial bandgap appeared to be invariant with excitation amplitude. The resulting passbands below and
above the trivial bandgap were shown to align closely with the passbands of the system without resonators.
The presence of topological edge modes in nontrivial bandgaps was demonstrated, but as expected, no edge
mode appeared within the trivial bandgap. It was also observed that some modes near the upper edge of
the passbands shifted into the bandgaps as they entered the nonlinear regime.

The mode shapes of the system with and without resonators were also studied. Both with and without
resonators, edge modes were shown to localize displacements to the ends of the chain. This localization was
shown to change as edge modes entered the nonlinear regime. Modes that shifted deeper into the bandgaps
showed increased localization, while edge modes that approached the edge of the passbands showed decreased
localization. Meanwhile, some non-edge modes shifted into the bandgaps as they entered the nonlinear
regime, resulting in discrete breathers. Examining mode shapes also confirmed that in the presence of
resonators, the passbands above the trivial bandgap behaved almost identically to the passbands of the
non-resonator system. While also similar, the behavior of modes below the trivial bandgap showed some
differences to the non-resonator system. The displacement amplitude of resonators relative to the main cells
was found to vary, with lower modes having resonator displacement greater than the main cells, while higher
modes were the opposite. The phase of the local resonators was also found to be affected, with resonators
being in phase with the main cells when below the trivial bandgap, and out of phase when above.

In conclusion, this work investigates the impact of local resonators on a nonlinear topological metamaterial
and demonstrates that they can be seamlessly introduced to a nonlinear topological metamaterial. The
proposed metamaterial was shown to combine the effects of nonlinearity, stiffness modulation and local
resonators with little conflict. Traits such as amplitude dependence and localized topological edge modes
continued to manifest, and new bandgaps were added by the resonators. The resulting increase in number
of edge modes, passbands, and the presence of a trivial bandgap all serve to increase the versatility of the
proposed metamaterial in both the linear and nonlinear regimes.
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Appendix A Method of multiple scales
To derive the dispersion relation for an infinite chain, the perturbation method of multiple scales (MMS) is
utilized with the fast time scale, T0 = t, and the slow time scale, T1 = ϵt. We can assume expansions for the
displacements in the form of

uj = u(0)
j (T0, T1) + ϵu(1)

j (T0, T1) +O(ϵ2) (A.1)

and the time derivative can be expressed as

∂2

∂t2
= D2

0() + 2ϵD0D1() +O(ϵ2) (A.2)

where Dn = ∂/∂Tn.
Using these expansions, the equation of motion can be broken into linear and nonlinear components by

order of ϵ yielding order ϵ0

D2
0Mu(0)

j + K(0)u
(0)
j + K(−1)u

(0)
j−1 + K(1)u

(0)
j+1 = 0 (A.3)

order ϵ1
D2

0Mu(1)
j + K(0)u

(1)
j + K(−1)u

(1)
j−1 + K(1)u

(1)
j+1 = −2D0D1Mu(0)

j − fNL (A.4)
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At order ϵ0, the problem is linear, so the solution can be expressed as

u(0)
j = 1

2A(T1)ψei(µj−ω0T0) + c.c. (A.5)

where A is the amplitude, ψ is the mode shape, µ is the dimensionless wavenumber, ω0 is the linear natural
frequency, and c.c. denotes the complex conjugate. Substituting the solution into the linear equation yields
the linear eigenvalue problem

ω2
0Mψ = K(µ)ψ (A.6)

where
K(µ) = K(0) + K(−1)e

−iµ + K(1)e
iµ (A.7)

the solution of which obtains the linear dispersion relation and eigenvectors of the system.
Looking now to the nonlinear equation, it is helpful to use modal analysis to decouple our system. We

introduce new modal coordinates
zj = ΦHM1/2uj (A.8)

z(0)
j = 1

2[ΦHM1/2ψ]Aei(µj−ω0T0) (A.9)

where ΦH is the Hermitian transpose of the matrix of eigenvectors. After making this transformation, we
are left with the decoupled equations of motion

D2
0z

(1)
j,n + ω2

0,nz
(1)
j,n = −D0D1[ΦHM1/2ψ]nAne

i(µj−ω0,nT0) − [ΦHM−1/2fNL]n (A.10)

where [ ]n denotes the nth element in a vector.
To help identify non-secular terms, the nonlinear forcing term can be decomposed as

fNL = (FNL
1 e−iω0,nT0 + FNL

2 e−3iω0,nT0 + c.c.)eiµj (A.11)

Introducing this along with the polar form of the displacement amplitude

An = αn(T1)e−iβn(T1) (A.12)

allows us to remove the secular terms from the RHS of Eq. A.10. Separating into real and imaginary
components yields the slow flow equations:

[ΦHM1/2ψ]nω0,nβ
′
nαne

−iβn − [ΦHM−1/2FNL
1 ]n = 0 (A.13)

[ΦHM1/2ψ]nω0,nα
′
ne

−iβn = 0 (A.14)

where ′ denotes a derivative with respect to T1. Evaluation of the matrix components gives

[ΦHM1/2ψ]n = m1/2ηn (A.15)

[ΦHM−1/2FNL
1 ]n = 3

8α
3
ne

−iβnm−1/2cn(µ) (A.16)

where for a trimer lattice with θ = 1/3,

ηn = |ψ1|2+|ψ1|2+|ψ1|2+
√

m

mr
(|ψ1|2+|ψ1|2+|ψ1|2) (A.17)

and

cn(µ) = −2k3ψ̄1ψ3(|ψ1|2+|ψ3|2)e−iµ + k3ψ̄
2
1ψ

2
3e

−2iµ

+k3ψ̄
2
3ψ

2
1e

2iµ − 2k3ψ̄3ψ1(|ψ1|2+|ψ3|2)eiµ

+(k1 + k3)|ψ1|4+(k1 + k2)|ψ2|4+(4k1|ψ2|2

+4k3|ψ3|2−2k1(ψ̄1ψ2 + ψ̄2ψ1))|ψ1|2+(k2 + k3)|ψ3|4 (A.18)
+(4k2|ψ3|2−2k1ψ̄1ψ2 − (2k1ψ1 + 2k2ψ3)ψ̄2

−2k2ψ2ψ̄3)|ψ2|2−2k2(ψ̄2ψ3 + ψ̄3ψ2)|ψ3|2

+k1ψ̄
2
1ψ

2
2 + (k1ψ

2
1 + k2ψ

2
3)ψ̄2

2 + k2ψ̄
2
3ψ

2
2

with ψn being the nth element of the eigenvector associated with wavenumber, µ, and ψ̄n being its complex
conjugate. It can be shown symbolically that cn is a purely real quantity.
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The slow flow equations are then solved to yield solutions

α′
n = 0 (A.19)

β′
n = 3α2

ncn(µ)
8mω0,nηn

(A.20)

The solution further allows us to express the nonlinear frequency in terms of the frequency correction
factor, β′

n as
ωn = ω0,n + ϵβ′

n (A.21)
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