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Within the field of elastic metamaterials, topological metamaterials have recently received much attention due to their
ability to host topologically robust edge states. Introducing local resonators to these metamaterials also opens the
door for many applications such as energy harvesting and reconfigurable metamaterials. However, the interactions
between phenomena from local resonance and modulation patterning are currently unknown. This work fills that gap
by studying multiple cases of spatially modulated metamaterials with local resonators to reveal the mechanisms behind
bandgap formation. Their dispersion relations are determined analytically for infinite chains and validated numerically
using eigenvalue analysis. The inverse method is used to determine the imaginary wavenumber components from which
each bandgap is characterized by its formation mechanism. The topological nature of the bandgaps is also explored
through calculating the Chern number and integrated density of states. The band structures are obtained for various
sources of modulation as well as multiple resonator parameters to illustrate how both local resonance and modulation
patterning interact together to influence the band structure. Other unique features of these metamaterials are further
demonstrated through the mode shapes obtained using the eigenvectors. The results reveal a complex band structure
that is highly tunable, and the observations given here can be used to guide designers in choosing resonator parameters
and patterning to fit a variety of applications.

I. INTRODUCTION

Man-made structures with specially designed configura-
tions and constituents, known as metamaterials, have received
great attention recently due to their ability to possess proper-
ties not found in natural homogeneous materials1,2. While
originally developed for electromagnetic and optical wave
propagation3, the technology has since expanded to include
acoustic4 and mechanical wave propagation5. The unique
properties of these metamaterials are valuable for a large va-
riety of applications including vibration and noise control6,
energy harvesting7, mechanical computing8, structural health
monitoring9, and cloaking10.

Mechanical metamaterials are commonly arranged
in carefully designed configurations such as periodic1,
quasiperiodic11, or random12 patterns. These patterns offer
exceptional dynamical properties. For instance, periodic pat-
terning enables the formation of a bandgap in the frequency
response due to Bragg Scattering. Within this bandgap, waves
are forbidden from propagating and instead get reflected
by the material13–18. The frequency of these bandgaps
corresponds to wavelengths near the lattice constant. This
allows for low frequency vibration attenuation and control.
However, limitations of the lattice dimensions limit the
application of this bandgap to larger structures and low
frequency vibrations1.

To overcome this requirement, local resonators can be
embedded inside the structure to form locally resonant
metamaterials19. The local resonators open up a bandgap
at wavelengths much larger than the lattice constant. These

a)Electronic mail: obarry@vt.edu

bandgaps are formed as a result of Bragg scattering and
mode hybridization, and they depend strongly on the resonator
parameters20. Note that in the presence of local resonators,
Bragg scattering is not essential because very low frequency
resonators can still be excited by long wavelength waves.
Therefore, bandgaps can still be formed in the absence of pe-
riodicity and in metamaterials with random configurations12.

While locally resonant metamaterials hold many improve-
ments in vibration attenuation over periodic structures, they
are only effective near their design frequency. For this rea-
son, much work has been done recently to widen the range
of operating frequencies. Some studies have included mul-
tiple resonators with different resonator frequencies to pro-
duce multiple bandgaps at different frequency ranges 6,21,22.
Others have used different kinds of resonators to broaden the
bandgap such as bistable resonators23 and alternately coupled
resonators24. Introducing patterns into the spacing or param-
eters of the resonators has also been shown to be an effec-
tive method for broadening or opening new bandgaps25,26. In
order to produce more adaptable locally resonant metamate-
rials, electromechanical elements have also been introduced
through piezoelectric resonators. Studies have shown that
by shunting these resonators to circuits, the locally resonant
bandgaps can be actively tailored by the circuit parameters
without need for changing the geometric or material parame-
ters of the resonators27–30. In addition to this, nonlinear phe-
nomena have demonstrated great value in enhancing bandgap
control and size. With nonlinear resonators, nonlinear fre-
quency shifts can occur in all wavelengths allowing for more
broadband use31. Nonlinear Coriolis and centrifugal forces
have also been utilized to design resonators that can slide to
passively tune themselves to the input wave frequency32,33.

Metamaterials with spatial modulation patterns, such as
quasiperiodic arrangements, have been shown to greatly en-
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hance vibration control and energy harvesting through the ap-
pearance of additional bandgaps and topologically protected
edge modes. While periodic and locally resonant metama-
terials produce topologically trivial bandgaps, quasiperiodic
metamaterials are known to host multiple robust topologi-
cally protected modes that do not propagate inside the bulk
and are localized within lower dimensions34. These topo-
logical modes are manifested passively through the break-
ing of spatial inversion symmetry while holding time-reversal
symmetry35–37. One method to achieve this is through the
quasiperiodic modulation of parameters within the structure
following patterns such as the Aubry-André model38 as seen
in11,39–45. When plotted, the band structures for these meta-
materials are analogous to the Hofstadter butterfly46 with mul-
tiple additional non-trivial topological bandgaps appearing
within the bulk propagation zones of periodic structures. Each
of these bandgaps is spanned by a topological edge mode
which host localized vibrations in finite chains41. By intro-
ducing a phase variable, these edge modes can be pumped
from one edge to the other47–49.

Although locally resonant metamaterials have shown supe-
rior dynamical properties over other metamaterials, little work
has been done to explore their arrangement with spatial pat-
terning, thus revealing their topological features. A locally
resonant quasiperiodic metamaterial is first proposed in43 with
quasiperiodic patterning present in the location of identical
resonators along a continuous beam. Due to the combina-
tion of effects, the bulk spectrum is analogous to the Hofs-
tadter butterfly with multiple topological bandgaps along with
a single topologically trivial bandgap determined by the pa-
rameters of the resonators. A discrete quasiperiodic chain
is studied in50 with quasiperiodic modulation of the main
chain springs and identical electromechanical resonators. It
is demonstrated that weak electromechanical coupling does
not impact the band structure. Quasiperiodic modulation of
resonator parameters is seen in51 which experimentally plots
the Hofstadter butterfly and demonstrates localized vibrations.
This reveals the possibility to introduce topological effects
purely in the resonators allowing for advanced wave con-
trol and topological phenomena to be present in materials
that must remain homogeneous for structural, load bearing,
or other reasons. By introducing both spatial and temporal
modulation to local resonator parameters, multiple works52,53

have even broken reciprocity and demonstrated one-way wave
propagation.

In spite of these works, the interactions between local res-
onance and spatial patterning remain ambiguous. The mecha-
nisms behind bandgap formation in metamaterials with mod-
ulated resonator parameters are unknown, and hence, design
and tuning of these metamaterials remains elusive. In this pa-
per, we examine a system of topological metamaterials with
spatially modulated local resonators to investigate the inter-
actions between local resonance and topological effects for
bandgap formation. The system consists of a spring-mass
chain with each mass coupled to a local resonator. Multiple
cases are studied in which the modulation patterning is present
in the main chain stiffness, resonator stiffness, resonator mass,
or a combination of those sources. The dispersion relation of

the infinite chain is determined from the analytical solution of
a single unit cell. Results are then validated through the nu-
merical solution of a finite chain using eigenvalue analysis for
band structures and eigenvectors for mode shapes. The sys-
tem is compared to previous metamaterials with modulation
in the main chain to observe the effect of the modulation loca-
tion. The bandgaps are characterized by both their formation
mechanism and topological nature through analysis of the in-
verse dispersion relations and Chern number. Furthermore,
resonator parameters are varied to determine their influence
on the topological bandgaps.

II. MATHEMATICAL MODELING OF THE SYSTEM
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FIG. 1. Schematic of metamaterial consisting of a spring mass chain
with local resonators and with spatial modulation in the main spring
stiffness, kn, resonator stiffness, kr,n, and resonator mass, mr,n.

This work considers 1-dimensional locally resonant meta-
materials with spatial modulation in a variety of parameters
as shown in Fig. 1. The metamaterial is represented by a
spring-mass chain of identical masses, m, joined by springs
with stiffness, k. Each mass is also coupled to a local res-
onator with mass, mr and stiffness, kr. Spatial modulation is
included in either the main spring stiffness, resonator mass,
resonator stiffness, or a combination of these locations. The
modulation follows the Aubry-André Model38 such that the
nth modulated parameter, Zn is defined as

Zn = Z0[1+λcos(2πnθ +φ)] (1)

with average value, Z0, and modulation amplitude, λ . This
pattern is defined by its quasiperiodic parameter, θ , and phase
shift, φ . Rational and irrational values of θ produce periodic
and quasiperiodic patterns, respectively. The governing equa-
tions of motion for the nth mass and resonator are

mün + kn−1(un −un−1)+ kn(un −un+1)

+kr,n(un − yn) = 0 (2)

mr,nÿn + kr,n(yn −un) = 0 (3)

where un and yn are the displacements of the nth mass and
resonator, respectively. We impose a Bloch periodic solution
of

un = Ūnei(µn−ωt) yn = Ȳnei(µn−ωt) (4)
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where Ūn and Ȳn are the mass displacement and resonator dis-
placement amplitudes, respectively, with frequency, ω , time,
t, and non-dimensional wavenumber µ . This will yield the
new governing equations

(−mω
2 + kn−1 + kn + kr,n)Ūn − kn−1Ūn−1e−iµ

−knŪn+1eiµ − kr,nȲn = 0 (5)

(−mr,nω
2 + kr,n)Ȳn − kr,nŪn = 0 (6)

To obtain an analytical expression for the dispersion rela-
tions of an infinite chain, a single unit cell will be studied.
The equations of motion for the jth unit cell can be expressed

in matrix form as

(−Mω
2 +K)u j = 0 (7)

where M is the mass matrix, K is the stiffness matrix, and u j is
the vector of mass and resonator displacements, u j = [Ū; Ȳ].
To obtain nontrivial solutions to Eq. 7, the coefficient matrix
must be singular. By setting the determinant equal to zero,
the characteristic equation can be obtained. From this char-
acteristic equation, the dispersion relation is determined. For
a chain with N masses in its unit cell, the mass and stiffness
matrices are 2N ×2N, and the characteristic equation has 2N
roots yielding 2N bands in the dispersion relation. For this
study, we will consider a chain with quasiperiodic parameter
θ = 1/3 (N = 3) with stiffness matrix

K =


k1 + k3 + kr,1 −k1eiµ −k3e−iµ −kr,1 0 0
−k1e−iµ k1 + k2 + kr,2 −k2eiµ 0 −kr,2 0
−k3eiµ −k2e−iµ k2 + k3 + kr,3 0 0 −kr,3
−kr,1 0 0 kr,1 0 0

0 −kr,2 0 0 kr,2 0
0 0 −kr,3 0 0 kr,3

 (8)

To validate the analytical dispersion relations, numerical
simulation is used to obtain the natural frequencies of finite
chains from the eigenvalues over the full range of the phase
variable, φ . Furthermore, the mode shapes are also deter-
mined numerically from the system eigenvectors.

III. RESULTS

To best understand the dynamic interactions between local
resonance and spatial modulation, we will consider here four
cases determined by where the modulation is present in the
chain. Case one will have modulation in the stiffness of the
main springs with identical (i.e. periodic) resonators. The
remaining three will have modulation present in the local res-
onator parameters. Case two will modulate the resonator stiff-
ness, and case three will modulate the resonator mass. Case
four will modulate both the resonator stiffness and mass in
such a way that the natural frequency of the local resonators
remains constant. Both infinite and finite chains will be stud-
ied with 60 cells in the finite chains. A quasiperiodic pa-
rameter of θ = 1/3 will be used, producing a unit cell of
three masses and resonators. Except where stated otherwise,
the systems will have the following parameters: m = 1 kg,
mr,0 = 0.2 kg, k0 = 1 N/m, kr,0 = 0.3 N/m, and λ = 0.6. The
phase angle, φ , will be varied through the full range from 0 to
2π . For the modulated parameters, the subscript 0 denotes the
average value.

In this section, we will explore how both the band structure
and mode shapes of each case are determined by the inter-
actions between spatial modulation and local resonance. We
start by comparing the band structures for each case to ob-

serve how the location of modulation impacts the band struc-
ture. From there, further parametric analysis demonstrates
how proper tuning of resonator parameters can be leveraged
alongside modulation to shape the band structure. Finally, the
mode shapes are displayed to examine how unique properties
of the band structure impact the localized vibration modes of
the systems.

A. Effect of Spatial Modulation Location

Calculating the roots to the characteristic equation obtained
from equation 7 yields the 3D dispersion surfaces shown in
Fig. 2. Here, the frequency is given as the nondimensional fre-
quency, Ω =ω/ω0 where ω0 =

√
k0/m, and it is a function of

the dimensionless wavenumber, µ , and phase variable, φ . The
six roots of the characteristic equation produce a dispersion re-
lation with six passband surfaces separated by five bandgaps
for each case. In general, there is little difference between
cases as the wavenumber is varied. The one exception to this
is that for cases with modulation in one resonator parame-
ter (cases two and three), there are occasionally passbands
showing opposite trends with changes in wavenumber. For
example, in case two, in Fig. 2(b), the fourth (light blue) pass-
band decreases in frequency as the wavenumber approaches
π whereas the fourth passband increases for each other case.
Similarly, the second (green) passband in case three, shown in
Fig. 2(c), increases as the wavenumber approaches π whereas
the second passband decreases for each other case.

With variation in the phase angle, φ , however, there are
more significant changes from case to case. Especially for
cases two and three, the middle passbands show significant
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FIG. 2. Infinite dispersion relations detailing dimensionless wavenumber, Ω, as a function of dimensionless wavenumber, µ , and phase
variable, φ , for (a) case one, with modulation in main cell stiffness, k, (b) case two, with modulation in the resonator stiffness, kr, (c) case
three, with modulation in the resonator mass, mr, and (d) case four, with modulation in the resonator stiffness, kr, and mass, mr.

periodic oscillations while the first and fourth cases do not.
Furthermore, variation in phase angle can reveal meaningful
trends in topological phenomena in finite chains such as topo-
logical pumping, demonstrated in Section 3C. For these rea-
sons, the following analysis will primarily focus on variation
in phase angle, φ for both the finite and infinite chains.

Although changing the location of parameter modulation
from the main cells (case one) to the resonator parameters
(cases 2-4) does not change the number of bandgaps in the
frequency spectrum, the behavior of the bandgaps can still be
significantly altered. By introducing multiple resonator fre-
quencies in cases two and three, there is the possibility for
coupling bandgap formation mechanisms (i.e. local resonance
and Bragg scattering) within pre-existing bandgaps. Such
behavior has been previously reported in work by Gao and
Wang22 in which a hybrid metamaterial with different multi-
resonator unit cells displayed bandgaps with coupled behav-

ior of both local resonance and Bragg scattering. To charac-
terize the mechanisms behind bandgap formation, the inverse
method is used on the characteristic equation to obtain the real
and imaginary components of the wavenumber at a given fre-
quency. From the imaginary component of the wavenumbers,
the bandgap mechanism can be determined based on criteria
developed by Liu and Hussein20.

The real and imaginary wavenumber components are given
in Fig. 3 for each case. In this representation, bandgaps pro-
duced by Bragg scattering yield attenuation zones with imag-
inary wavenumbers that are symmetric and roughly semicir-
cular. On the other hand, locally resonant bandgaps produce
asymmetric attenuation zones with a much stronger peak cen-
tered on the natural frequency of the resonator. The natural
frequency for each resonator, defined as wr,n =

√
kr,n/mr,n,

is shown here as a dashed blue line. In case one, shown in
Fig. 3(a), there is only one resonator frequency and only one
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FIG. 3. Real and imaginary wavenumber components as a function of frequency for cases 1-4 (a)-(d), respectively, with phase φ −φ0 = 0.6π .
Nonzero imaginary components, shown in red, indicate the existence of a bandgap with the formation mechanism labeled for each bandgap.
The resonator frequencies are shown by the dashed blue lines.

locally resonant bandgap corresponding to it. The remaining
bandgaps are all due to Bragg scattering. This same behavior
is seen in case four (Fig. 3(d)) since this case also only has one
resonator natural frequency. For cases two and three however,
there are three locally resonant bandgaps with peaks matching
the three natural frequencies of the resonators. Compared to
the Bragg scattering bandgaps, the locally resonant bandgaps
show much stronger attenuation. Due to this, introducing
modulation to the resonator parameters can produce signifi-
cant improvements to the vibration attenuation performance
of these metamaterials.

As mentioned previously, changing the modulated parame-
ter can alter the dispersion relation as it varies with the phase,
φ . To analyze this further, the finite and infinite band struc-
tures are plotted for all four cases in Fig. 4. The bulk dis-
persion bands for the infinite chain are shown in grey with
the natural frequencies of the finite chain overlaid as black
lines. The additional topological edge modes that span the
bandgaps are highlighted in red, and the natural frequencies

of the resonators are displayed as dashed blue lines. The first
case studies a chain with identical resonators and spatial mod-
ulation in its main cell stiffnesses. While the primary focus of
this paper is on cases with modulated resonators, a brief dis-
cussion of case one is given to be used as a baseline standard
of comparison for the remaining three cases. A more thor-
ough analysis of this case can be found in50. For case one,
we see that the band structure in Fig. 4(a) consists of six bulk
bands split by five bandgaps. Four of the bandgaps each con-
tain a single topologically non-trivial edge mode, while the
middle bandgap is topologically trivial, with no edge mode
present. This trivial bandgap is centered on the single natural
frequency of the resonators, and it evenly splits the dispersion
bands with three passbands above it and three below.

After investigating the topological features of modulation
in the stiffness of the main springs, we examine modulation
in the local resonators. Indeed, unlike other metamaterials,
locally resonant metamaterials allow us to achieve patterning
through modulating the local resonator parameters. This will
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FIG. 4. Band structure for an infinite (grey background) chain and finite (black lines) chain of 60 cells with modulation present in (a) the main
spring stiffness (case one), with inset figure zooming in on the third passband, (b) the resonator stiffness (case two), (c) the resonator mass
(case three), and (d) both the resonator stiffness and mass (case four), with inset figure zooming in on the third and fourth passbands. Edge
modes spanning the bandgaps are shown as red lines, and the resonator natural frequencies are shown as dashed blue lines. The Chern number
for each bandgap is also labeled. Cases 2-4 are shifted by phase shift φ0.

be investigated in the remaining three cases. While there are
some similarities, there are also many significant differences
to discuss. We can see that for every case, there are still six
passbands and five bandgaps as well as multiple edge modes
spanning the topological bandgaps. However, one major dif-
ference is a shift in the initial placement of the edge modes
at phase φ = 0 for cases with modulated resonator parameters
(cases 2-4). As seen in Fig. 4, varying the phase angle causes
the topological bandgaps to grow and shrink while also mov-
ing the edge states within the bandgaps. By moving the edge
state nearer or further from the bulk bands, one can improve
the degree of localization in the chain as well as change the
localization edge. This has been used as a primary method
to achieve topological pumping11,47–49,54 and nonreciprocal
wave propagation53,55–57. As such, it is incredibly important
to know how the edge states migrate with the phase value. For
previously studied cases with modulation only in the main
chain, the movement of the edge states has been symmetric

about the phase φ = π , touching the bulk bands at φ = 0 or
2π and at φ = π . This is demonstrated in case one in Fig. 4(a)
with modulated k. However, when modulation is introduced
to the resonators instead, as in cases 2-4 (Fig. 4(b)-(d)), the
edge states undergo a phase shift and are no longer symmetric
about φ = π . The results presented in Fig. 4(b)-(d) are shifted
by a phase, φ0, to maintain symmetry. The original band struc-
tures without the phase shift are given for cases two and three
in Fig. 5. Without the phase shift, the points of symmetry,
which correspond to the points of contact with the bulk bands,
are found instead to be at φ = 2π/3 and φ = 5π/3. While they
are not included here for brevity, similar results were also ob-
tained for other values of the quasiperiodic parameter. From
these results, it was determined that the phase shift is directly
related to the quasiperiodic parameter and can be quantified
as

φ0 =±(1−θ)π (9)
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FIG. 5. Band structure for an infinite (grey background) chain and finite (black lines) chain of 60 cells with modulation present in the resonator
(a) stiffness (case two) and (b) mass (case three) without phase shift, φ0, leading to asymmetric edge modes, highlighted as red lines.

Since there are two points of symmetry in the edge state, the
phase could be shifted in either direction to a point of sym-
metry. For the specific case of θ = 1/2, symmetry is already
achieved, and no phase shift is necessary. In all figures, the
positive phase shift will be included whenever modulation is
present in the resonator parameters.

With modulation in just one of the local resonator param-
eters, such as in cases two (Fig. 4(b)) or three (Fig. 4(c)),
there is not just one resonator frequency, but multiple. In the
systems studied here with θ = 1/3, there are three. These
three resonator frequencies have a significant impact on the
band structure of the system, and it is crucial to understand
how their interactions lead to bandgap formation. Because
there are multiple resonator frequencies, we will discuss not
only the individual frequency values, but also the resonator
frequency range. This range is defined in terms of both its
size and location, where the size is the difference between the
highest and lowest resonator frequencies, and the location is
at the average resonator frequency, ωr,0 =

√
kr,0/mr,0. This

frequency range highlights the effects of varying the source
of modulation, and it can be visualized in Fig. 4(b)-(c) as the
area between the upper and lower dashed blue lines. Even
when the resonator parameters (kr,0 and mr,0) are kept con-
stant, the resonator frequency range may differ between cases
two and three. In this section, we wish to isolate the effects
of the source of modulation, while in the next section, we will
explore how to manipulate the resonator frequency range. In
order to accomplish this and provide a more direct compar-
ison, different resonator parameters are used between cases
two and three to produce the same resonator frequency range
in Fig. 4(b)-(c). For case two, shown in Fig. 4(b) with mod-
ulated kr, we use the standard parameters kr,0 = 0.3 N/m and
mr,0 = 0.2 kg. For case three, shown in Fig. 4(c) with modu-
lated mr, we change the average stiffness to kr,0 = 0.192 N/m
and keep the mass the same. This produces a nondimensional
resonator frequency range of 0.77-1.55 for both cases.

When considering how the band structure changes with the
phase angle, φ , the multiple resonator frequencies of cases
two and three result in a much higher sensitivity to the phase
angle. The effects of this are largely present within the res-
onator frequency range itself. In general, the passbands and
bandgaps undergo larger variation with the phase angle as
shown in Fig. 4(b)-(c). This includes the middle (trivial)
bandgap which shows no significant variation for cases one
and four as seen in Fig. 4(a) and (d). In addition, Fig. 4(b)-(c)
indicate that this middle bandgap still appears centered near
the average natural frequency of the resonators, ωr,0, but its
width is no longer constant and varies periodically with the
phase.

Perhaps the most significant impact of having multiple res-
onator frequencies in cases two and three is that there are
multiple points at which the passbands shrink to zero width
and disappear, causing the two adjacent bandgaps to merge.
These occur at points where the passband is crossed by one
of the frequencies of the resonators. As the resonator fre-
quency approaches the passband, the passband shrinks until it
eventually produces a bandgap where the resonator frequency
crosses the passband. These points are also closely tied to
where two resonator frequency values converge. For exam-
ple, in Fig. 4(c), the fourth passband shrinks to zero width as
resonator frequencies cross it at φ = 0.61π and 0.72π . These
points lie on either side of the crossing of two resonator fre-
quencies at φ = 0.67π . This shrinking of passbands indicates,
for the first time, the ability to change the number of bandgaps
and passbands in a spatially modulated system without chang-
ing the modulation pattern. A locally resonant system with
θ = 1/3 has always been shown to have six passbands with
five bandgaps. But with modulation in the resonators and an
appropriate choice of phase variable, it is possible to instead
have five passbands with four bandgaps. This is seen again
in Fig. 4(c). At the point φ = 0.61π , when the fourth pass-
band closes, the band structure has only five passbands and
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8

FIG. 6. (a) Zoomed-in band structure of case two from Fig. 4(b), displaying the intersection of two resonator frequencies within the second
bandgap and the crossing of the third passband by a resonator frequency. Four points of interest are highlighted at φ −φ0 = 0.58π , 0.6345π ,
0.64π , and 0.66π . (b) The real and imaginary wavenumber components are given as a function of frequency at φ −φ0 = 0.6345π when the
resonator frequency crosses the third passband. (c)-(e) The imaginary component of the wavenumber is plotted at φ − φ0 = 0.58π , 0.64π ,
and 0.66π , respectively, for each point of interest, displaying how the bandgap mechanisms transition with the phase angle, φ . The resonator
frequencies are shown by the dashed blue lines.

four bandgaps.

At these critical transition points, the resonator natural fre-
quency crosses from one bandgap into another, often joining a
second resonator frequency within the same bandgap. As the
resonator frequency transitions from one bandgap to the next,
it also changes the nature of the bandgaps it is leaving and
entering. This can be observed through the imaginary compo-
nents of the wavenumber as the transition is made. One exam-
ple of this is found in the second case, when the middle res-
onator frequency crosses from the third bandgap into the sec-
ond bandgap near φ −φ0 = 0.63π . A close-up view of this fre-
quency crossing is shown in Fig. 6(a) alongside the wavenum-
ber components at the point of crossing in Fig. 6(b) and the
imaginary component of the wavenumbers at three other criti-
cal points in Fig. 6(c)-(e). At point (I), both resonator frequen-

cies are in separate bandgaps, and both bandgaps are formed
by local resonance, as displayed in Fig. 6(c). At point (II),
in Fig. 6(b), the upper resonator frequency is coincident with
the third passband, causing the passband to disappear and the
adjacent bandgaps to merge. Looking to the real component
of the wavenumber, there exist only five passbands instead
of six. Furthermore, from the imaginary component of the
wavenumber, it is evident that the second resonant peak has
disappeared. The single merged bandgap displays the width
common among Bragg scattering bandgaps as well as one
peak at the frequency of the lower resonator frequency. After
the upper resonator frequency crosses the third passband, the
two resonator frequencies coexist within the second bandgap.
An example of this is highlighted by point (III) in Fig. 6(d).
This results in the third bandgap transitioning to a Bragg scat-
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FIG. 7. Spectrum of natural frequencies for a chain of 1000 cells with φ − φ0 = 0 and variation over the full range of the quasiperiodic
parameter, θ for cases 1-4 (a)-(d), respectively. The standard parameters are used for kr,0 and mr,0. The spectra resemble the Hofstadter
butterfly with the ‘wings’ representing significant bandgaps.

tering bandgap while the second bandgap obtains two atten-
uation peaks. At point (IV), shown in Fig. 6(e), the two res-
onator frequencies are identical, causing the lower bandgap
to again have a single peak while the upper bandgap remains
as a Bragg scattering bandgap. This transition reveals further
bandgap tuning capability from modulated resonators, allow-
ing for control over the number and location of locally reso-
nant bandgaps through a single parameter.

In a similar fashion, the increased variation in passbands
and bandgaps with the phase angle also makes it possible for
two passbands to overlap in their frequency range at differ-
ent phase angles. This can be seen for the first bandgap in
Fig. 4(b) where the upper limit of the first passband is 0.81
and the lower limit of the second passband is 0.78. While the
overlap occurs at different phase angles, it prevents the forma-
tion of a complete bandgap across all phase values, and it can
be very problematic in some applications such as topological
pumping. Fortunately, this can be resolved by carefully select-
ing resonator parameters that expand the bandgap size. This

will be demonstrated in the following section.
Another significant difference between cases with modula-

tion in the main chain and in the resonators is the presence
of an additional mode within the middle (third) bandgap. In
case one, the third bandgap is topologically trivial and con-
tains no modes within it, but for cases 2-4, there is an ad-
ditional mode within the third bandgap. To understand the
presence of this additional mode, it is necessary to discuss the
topological nature of this bandgap. The bulk-boundary corre-
spondence principle can be used to relate the presence of edge
modes within bandgaps to the Chern number58. The Chern
number is a topological invariant used to define the topolog-
ical nature of the bulk bands and bandgaps. For each bulk
band, the Chern number can be evaluated analytically as an
integer over the domain (µ,φ) ∈ D = [0,2π]× [0,2π] as

C =
1

2πi

∫
D

∇×AdD (10)

where ∇ = (∂/∂ µ)eµ +(∂/∂φ)eφ and A = u∗ ·∇u with (·)∗
denoting the complex conjugate. The Chern number labeling

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

02
03

93
7



10

FIG. 8. Integrated Density of States for cases 1-4 (a)-(d), respectively, with φ −φ0 = 0. Select bandgaps are highlighted by dashed white lines,
and inset figures zoom in on the trivial bandgap highlighted by the black rectangle.

a gap, Cg, is obtained by summing the Chern numbers for each
bulk band below the gap. A nonzero gap label indicates that
the gap is topological and guarantees the presence of an edge
mode spanning the gap from one bulk band to the other. The
value of the gap label, |Cg|, is equal to the number of modes
spanning the bandgap, and the sign indicates the direction of
mode migration with increasing phase, φ . While the Chern
number can be evaluated using Eq. 10, direct computation is
often challenging. Instead, the Chern number is evaluated nu-
merically following the approach found in59. As shown in
Fig. 4, the third bandgap has a Chern number of zero for each
case while the remaining bandgaps have gap labels of ±1.

The Chern number for the bandgaps can also be approxi-
mated from the computed Integrated Density of States (IDS)
over a spectrum of the full quasiperiodic parameter, θ . The
IDS at frequency, Ω, is defined as

IDS(Ω) = lim
N→∞

∑n[ωn ≤ Ω]

N
(11)

where ωn is the nth natural frequency, and [·] are the Iverson

brackets returning a value of 1 when the statement within is
true and a value of 0 otherwise. In other words, the IDS at
a frequency, Ω, is a summation of the number of natural fre-
quencies below it, normalized to the size of the chain, N. The
value theoretically converges as the size approaches infinity,
but it is practical here to consider a large chain of N = 1000
masses. To best understand how the Chern number is cal-
culated over a spectrum of the quasiperiodic parameter, it is
worthwhile to first observe how the frequency spectrum varies
with the quasiperiodic parameter. This bulk spectrum, com-
monly known as the Hofstadter butterfly, is shown in Fig. 7
for each case. As the name implies, the spectra emulate a
butterfly shape with major and minor wings representing var-
ious bandgaps. The major ‘wings’ of the butterfly display
bandgaps that change with the quasiperiodic parameter, θ , but
are always present whereas the minor ‘wings’ are not constant
across all θ values. In case one, the trivial bandgap can be
clearly seen as the constant frequency bandgap splitting the
bulk spectra into two separate butterflies. For cases 2-3, there
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are remnants of a significant central bandgap, but their overall
spectra display significant distortion from case one. Mean-
while, case four does display a constant central bandgap.

Looking now to the IDS, in Fig. 8, we can see the effects
of these distortions on the topological nature of the bandgaps
through the Chern number. In Fig. 8, the colormap represents
the frequency, and the lines of sharp color change indicate the
bandgaps. These jumps in frequency arise because all fre-
quencies within a bandgap share the same IDS. In this repre-
sentation, the bandgaps can be expressed as a line

IDS(θ) = a+bθ (12)

with intercept, a, and slope, b. Using Streda’s formula,
∂ IDS
∂θ

=Cg, the bandgap label is determined to be equal to the
slope of the bandgap line, b. Some of these lines are high-
lighted in Fig. 8 as dashed white lines with their equations
shown. These results agree well with the numerical calcula-
tions showing Chern numbers of -1, 0, and 1 for bandgaps
with quasiperiodic parameter θ = 1/3. Therefore, a topo-
logically trivial bandgap can be identified as the horizontal
(b = Cg = 0) bandgap. Referring back to the butterfly spec-
tra in Fig. 7, these horizontal trivial bandgaps line up with the
constant central bandgaps splitting the spectra in half. The
bandgaps with slope ±1 represent the major ‘wings’ of each
butterfly. Looking to the IDS plots in Fig. 8, every case con-
tains a horizontal bandgap at IDS = 1 indicating the topolog-
ically trivial nature of this bandgap.

It is made evident that moving the modulation from the
main cell to the resonator parameters does not influence the
topological nature of the bandgaps. However, upon closer in-
spection, there are minor variations in the trivial bandgaps
with modulated resonator parameters. The inset figures in
Fig. 8 display zoomed in views of the trivial bandgap. In case
one, shown in Fig. 8(a), there is a very distinct horizontal line
across all values of the quasiperiodic parameter. However, for
the remaining cases in Fig. 8(b)-(d), this is not the case. While
there is still a jump in color along the line IDS = 1, the line
varies slightly to higher or lower IDS values, and there are
multiple points along the line where the bandgap is crossed
by other colors. These differences can be explained by how
the trivial bandgap varies with parameter changes and by the
presence of an additional mode within the bandgap. In cases
two and three (Fig. 8(b)-(c)), the trivial bandgap does not re-
main constant for all values of the quasiperiodic parameter.
While these changes can impact the trivial bandgap, they do
not alter its topologically trivial nature.

With the bandgap determined to be topologically trivial, the
additional mode appearing within the bandgap cannot be iden-
tified as a topological edge mode. However, other types of
localized modes within the bandgaps have been previously
reported in literature. One kind sharing many similar quali-
ties is the defect mode reported in43,60. Reference43 reports
on a continuous beam with local resonators spaced along the
beam following a quasiperiodic pattern. In that system, an
additional mode appears that is dependent on the boundary
conditions. In the trivial bandgap, there are no modes under
pinned-pinned boundary conditions and one additional mode
under clamped-free boundary conditions. Furthermore, the

additional edge mode does not span the full frequency range
of the bandgap. Instead, it separates from the upper passband
and returns to it without ever touching the lower passband.
The same behavior is observed here in cases 2-4. The modes
within the trivial bandgap do not span the bandgap. Rather,
they separate from the fourth passband and return to it without
touching the third passband. Despite not being a topological
edge mode, these modes still display vibration localization,
which will be demonstrated later.

While cases two and three are very similar to one another
and display many differences from case one, case four shares
some characteristics with each of the other cases. Since case
four includes equal modulation in both the resonator mass
and stiffness, the resonators have a single constant natural fre-
quency as in case one rather than a resonator frequency range
as in cases two and three. Because of this, the band struc-
ture for case four (Fig. 4(d)) is closest to that of case one
(Fig. 4(a)). In general, the bandgaps and passbands for case
four show significantly lower variation than we see in any of
the other cases. Due to these nearly flat bandgaps, we do not
find any overlapping passbands as can be seen in cases two
and three. There are also no points at which any passbands
close since the resonator frequency remains within the middle
bandgap and never crosses a passband. Although case four
lacks a resonator frequency range, it does still share some
characteristics with cases two and three. For example, case
four experiences the same phase shift in its edge modes due to
the modulation in its resonators. Case four also hosts an addi-
tional edge mode within its third bandgap, shown in Fig. 4(d).
Like in cases two and three, this edge mode does not span the
entire bandgap but remains near to the fourth passband.

B. Effect of modulated resonator parameters

As previously mentioned, in cases with a single modulated
resonator parameter (cases two and three), the band structure
and bandgap formation are strongly determined by the fre-
quency range of the resonators. As such, it is important to
know the effect of manipulating this frequency range. Be-
cause the natural frequencies of the resonators are directly in-
fluenced by the resonator stiffnesses and masses, we will now
study how changes in the average values and in the modula-
tion of these parameters can be used to control the location
and size of this frequency range. It is worth noting here that
while changing the resonator parameters can alter the bandgap
properties, they cannot change the topological nature of the
bandgaps as the Chern number remains invariant under these
perturbations.

Figure 9 shows the band structure for case two with mod-
ulated resonator stiffness for varying values of average res-
onator stiffness, kr,0, and mass mr,0. Similar results are shown
in Fig. 10 for case three with modulated resonator mass. To
vary the mass and stiffness of the resonators, the average val-
ues are increased or decreased by a factor of three. This re-
sults in low and high mass values of mr,0 = 0.067 kg and
mr,0 = 0.6 kg as well as low and high stiffness values of
kr,0 = 0.1 N/m and kr,0 = 0.9 N/m. As mentioned before, case
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FIG. 9. Finite and Infinite band structures for case two with variations in either the average resonator stiffness, kr,0, or average resonator mass,
mr,0. Resonator parameters are (a) standard average mass, mr,0 = 0.2 kg and one third the standard average stiffness kr,0 = 0.1 N/m (b) standard
average mass, mr,0 = 0.2 kg and triple the standard average stiffness kr,0 = 0.9 N/m (c) standard average stiffness, kr,0 = 0.3 N/m and triple the
standard average mass mr,0 = 0.6 kg and (d) standard average stiffness, kr,0 = 0.3 N/m and one third the standard average mass mr,0 = 1/15
kg.

three uses different stiffness values resulting in low and high
values of kr,0 = 0.064 N/m and kr,0 = 0.576 N/m. As expected,
the resonator frequency range can be shifted up or down by
manipulating the resonator parameters. In Fig. 9(a),(c) and
Fig. 10(a),(c), the resonator frequency range is moved to a
lower frequency than in Fig. 4(b)-(c) by either decreasing the
average resonator stiffness or increasing the average resonator
mass. Likewise, in Fig. 9(b),(d) and Fig. 10(b),(d), the res-
onator frequency range is moved to a higher frequency by
either increasing the average resonator stiffness or decreas-
ing the average resonator mass. When shifting this range
to lower frequencies, there is not a significant decrease in
the upper limit of the uppermost passband. As such, with
more bandgaps shifted to lower frequencies, there are fewer
bandgaps in the upper frequency range, and the space is dom-
inated by just one or two passbands. Rather than the bandgaps

growing to fill this spectral region, the passbands instead grow
very wide causing the upper bandgaps to shrink significantly.
For example, in Fig. 4(b), the two uppermost passbands cover
a frequency range of 0.31 at φ −φ0 = 0 while in Fig. 9(a), the
same passbands cover a much larger frequency range of 0.86.
In some more extreme cases, like that found in Fig. 10(a), the
upper bandgap may effectively disappear altogether leading
to a merge in the upper two passbands. Furthermore, as these
upper passbands shrink, they also oscillate less with the phase
angle.

On the other hand, shifting the resonator frequency range
upward (shown in Fig. 9(b),(d) and Fig. 10(b),(d)) produces
an opposite result. As the resonator frequency range shifts
upward, more bandgaps are brought into the higher frequency
regime. This produces significantly wider passbands in the
low frequency region with thin bandgaps disappearing in ex-
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FIG. 10. Finite and Infinite band structures for case three with variations in either the average resonator stiffness, kr,0, or average resonator
mass, mr,0. Resonator parameters are (a) standard average mass, mr,0 = 0.2 kg and one third the standard average stiffness kr,0 = 0.064 N/m
(b) standard average mass, mr,0 = 0.2 kg and triple the standard average stiffness kr,0 = 0.576 N/m (c) standard average stiffness, kr,0 = 0.192
N/m and triple the standard average mass mr,0 = 0.6 kg and (d) standard average stiffness, kr,0 = 0.192 N/m and one third the standard average
mass mr,0 = 1/15 kg.

treme cases such as in Fig. 9(d). Shifting the range upward
does have a more significant impact on the upper limit of
the uppermost passband though. As the resonator frequen-
cies approach the upper limit of the band structure, the limit is
pushed upward and begins to vary more dramatically to match
the variation in the resonator frequencies. Despite the upper
frequency limit of the band structure increasing, the upper
passbands shrink drastically as the bandgaps become much
wider. This results in multiple very thin passbands that oscil-
late significantly with changes in the phase angle. For exam-
ple, in Fig. 10(d), the upper limit of the sixth passband oscil-
lates between Ω = 2.22 and Ω = 2.74 while the upper limit
of the same passband in Fig. 10(c) remains nearly constant at
Ω = 2.05.

While the band structure is strongly tied to the resonator
frequency range, there are multiple methods to achieve the

same frequency range, and it is valuable to distinguish be-
tween additional effects of these methods. For example, the
same resonator frequency range is achieved in Fig. 9(b),(d)
and Fig. 10(b),(d), but the band structures are not the same.
The range can be increased or decreased by changing either
kr,0 or mr,0, but the choice of parameters can determine other
features such as bandgap size. A major trend to note is the
effect that the resonator mass has on the bandgap sizes. When
comparing band structures with the same resonator frequency
range, like Fig. 10(a) and (c), for example, the system with a
larger average resonator mass, mr,0, will have larger bandgaps
within its resonator frequency range. The parameter being
modulated can also impact the band structure further. When
modulation is found in the resonator mass, mr, the bulk bands
remain closer to the resonator frequencies at higher frequency
ranges than when modulation is found in the resonator stiff-
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FIG. 11. Effect of changing modulation amplitude, λ , on the band structures of cases two (first row), three (second row), and four (third
row) with low modulation amplitude, λ = 0.3 (left columns), and high modulation amplitude, λ = 0.9 (right columns). Standard resonator
parameters of kr,0 = 0.3 N/m and mr,0 = 0.2 kg are used in cases two and four (a), (b), (e), (f), and standard resonator parameters of kr,0 = 0.192
N/m and mr,0 = 0.2 kg are used in case two (c), (d). The inset figures in (e)-(f) display zoomed in views of the third and fourth passbands.
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FIG. 12. Effect of changing both resonator stiffness and mass simultaneously on band structures with identical resonator frequency range
for cases two (a)-(b), three (c)-(d), and four (e)-(f) with low parameters (left column figures), and high parameters (right column figures).
Low parameters are one-third the standard resonator parameters, and high parameters are triple the standard values. This yields low resonator
parameters of kr,0 = 0.1 N/m and mr,0 = 1/15 kg for cases two (a) and four (e) and kr,0 = 0.064 N/m and mr,0 = 1/15 kg for case three (c).
High parameters are kr,0 = 0.9 N/m and mr,0 = 0.6 kg for cases two (b) and four (f) and kr,0 = 0.576 N/m and mr,0 = 0.6 kg for case three (d).
Inset figures zoom in on the fourth bandgap in (b), third and fourth, bandgap in (e), and third bandgap in (f).
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ness, kr. This can be seen when comparing Fig. 9(b) and
Fig. 10(b). Both cases share the same resonator frequency
range, and both experience an increase in the upper limit of
their uppermost passband. However, in the case with mod-
ulation in the resonator stiffness (Fig. 9(b)), the upper band
is pushed much further upward by the maximum resonator
frequency. On the other hand, when modulation is in the res-
onator mass (Fig. 10(b)), the upper band clings tightly to the
maximum resonator frequency and does not shift to as high of
a frequency as in the previous case. This is seen most clearly
in Fig. 10(d) where the uppermost passband is nearly identical
to the maximum resonator frequency.

While changing a single parameter can shift the resonator
frequency range to higher or lower frequencies, it also changes
the size of the frequency range. By increasing (decreasing) the
average resonator frequency, the resonator frequency range
also increases (decreases) in size. It is not possible to shift
the resonator frequency range without also changing its size.
However, it is possible instead to change the size of the res-
onator frequency range without changing its location. As long
as the average resonator frequency, ωr,0, remains constant, the
range will not change in location. This can be achieved by
changing the amplitude of modulation, λ . Figure 11 shows
the band structures for cases 2-4 with higher and lower mod-
ulation amplitudes. The plots in the left column show that
for lower modulation amplitude, the size of the resonator fre-
quency range is greatly reduced. Similarly, for higher modu-
lation amplitude, the range is increased. By changing the am-
plitude of modulation, the resonator frequency range changes
size, but its location, defined by the average resonator fre-
quency, ωr,0, remains constant. As the modulation ampli-
tude increases, the passbands and bandgaps experience sig-
nificantly greater variation with the phase angle. Despite the
bandgap sizes changing more dramatically with the phase, the
total combined width of the bandgaps also increases as the
modulation amplitude increases. This trend can even be found
in case four in Fig. 11(e)-(f) with a single constant resonator
frequency. Even though the resonator frequency remains con-
stant, the increase in variation of the resonator parameters
leads to an increase in bandgap size and variation.

While increasing the bandgap size in this way can be ben-
eficial, the increase in variation can actually be more detri-
mental to the system dynamics. As mentioned before, we can
sometime see the existence of multiple passbands that overlap
in frequency range at different phase variables. In these in-
stances, there is no complete bandgap across all phase angles.
When the variation in bandgap and passbands increases, these
instances occur more commonly and display larger areas of
overlap. This can be seen most strongly in Fig. 11(b). When
compared to the standard case with lower λ in Fig. 4(b), the
overlap originally found in the first bandgap increases signif-
icantly to account for almost the entire second passband, and
the third bandgap goes from having no overlap to having sub-
stantial overlap from its adjacent passbands. It is possible to
remediate the overlap of passbands by increasing the bandgap
width through careful selection of the average resonator pa-
rameters which is detailed below. However, at higher modu-
lation amplitudes, this becomes a much greater challenge.

Although the resonator frequency range is strongly influen-
tial to the band structure, it is not the only determining factor
in bandgap formation. Even without changing the resonator
frequency range, the individual resonator parameters can sig-
nificantly alter the band structure. Figure 12 shows the band
structures for cases 2-4 with the same resonator frequency
range but different resonator parameters. Since the resonator
frequency range is directly tied to the average resonator fre-
quency, changes made to both the resonator mass and stiff-
ness that do not change the ratio between them, kr,0/mr,0, will
have no impact on the resonator frequency range. As seen
in Fig. 12, increasing both the mass and the stiffness will in-
crease the bandgap size in all three cases without changing
the resonator frequency range. This observation demonstrates
strong alignment with findings previously documented in the
literature regarding the impact of the local resonator’s mass
on the bandgap’s size61. More specifically, the change in
bandgap size effects the middle bandgap most strongly with
effects diminishing as you move to further bandgaps above or
below it. If the resonator parameters are lowered enough, we
can observe, as before, significantly overlapping passbands
due to the bandgaps still oscillating with the phase despite
being very thin. But through increasing the parameters, this
overlap disappears. These trends also hold true for case four
in Fig. 12(e)-(f) showing larger bandgaps with larger resonator
parameters even with a single resonator frequency.

C. Mode Shapes

The pronounced effect that comes from modulating the res-
onator parameters appears not only in changes to the band
structure, but also in the mode shapes. From the band struc-
ture, we observed the presence of an additional mode span-
ning the middle bandgap as well as changes to the other edge
modes. These changes are reflected here in the mode shapes.
When a finite chain is excited at a frequency within a topo-
logical bandgap, edge localized vibration modes arise. These
edge modes have been well documented in previous studies,
so an in depth discussion of most of the edge modes will be
withheld. Instead, greater attention will be given to two major
differences in the mode shapes that are caused by modulating
the resonator parameters rather than the main chain parame-
ters.

The first major difference is the existence of an additional
edge mode in the topologically trivial (third) bandgap which
does not appear in the case with periodic resonators. To val-
idate the existence of this edge mode, the mode shapes of
main mass displacement are plotted in Fig. 13 for cases 2-4
when excited within the third bandgap. Case one is excluded
here because in this case, there is no additional mode present
within the third bandgap. As such, there is no vibration mode
to display. Here, the system consists of a finite chain with
60 cells, and the mode shapes are shown to vary over a full
range of the phase variable. For better visualization, the mode
shapes are normalized to the maximum value of mass dis-
placement within that mode. With each case, vibrations are
localized to one edge of the chain or the other. Even though
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FIG. 13. Displacement mode shapes varying with phase angle, φ , for cases 2-4 (a)-(c), respectively, with standard parameters and excited
along the additional mode within the third bandgap.

FIG. 14. Displacement mode shapes varying with phase angle for case two in the fourth bandgap (a) and case three in the second bandgap
showing two topological pumping cycles in a full phase cycle.

the additional edge mode does not span the entire width of the
bandgap, the mode follows the same behavior of other edge
modes. At one end of the phase spectrum, with φ − φ0 = 0,
the edge mode frequencies are joined to a bulk passband as
shown in Fig. 4, and the localization is focused on one end of
the chain. As the phase increases, the edge mode frequency
separates from the passband, increasing the degree of local-
ization before momentarily returning to the passband again at
φ − φ0 = π . The effect of this on the mode shapes is evi-
dent in Fig. 13. In each case, the vibration is localized to one
end of the chain, and at the point φ − φ0 = π , as the mode
frequency touches the passband, the location of vibration lo-
calization switches to the opposite end.

The other major difference is found in how the edge modes
approach and touch their adjacent bulk bands. When modu-
lation is found in the main chain stiffness, the frequency of
an edge mode will span its bandgap a number of times cor-
responding to the magnitude of the bandgap’s Chern number,
|Cg|. For example, in a bandgap with |Cg|= 1, the edge mode
frequency will approach one passband, touch it once, then turn
to approach the other passband and touch it once all within a

full 2π phase cycle. This results in the edge mode migrat-
ing from one edge to the other when the frequency touches a
passband. This is also the case when both the resonator mass
and stiffness are modulated together, as in case four. How-
ever, there are exceptions to this trend when a single resonator
parameter is modulated. For some bandgaps with |Cg| = 1,
rather than only touching each passband once, the edge mode
frequency will sometimes touch one passband, remain close to
it, and touch the same passband two more times before cross-
ing the bandgap to touch the other passband. This can be seen
in Fig. 4(b)-(c) for case two within the fourth bandgap and
case three within the second bandgap, respectively. The mode
shapes are given in Fig. 14 for the two bandgaps mentioned
above. For instances such as these, the edge mode frequency
comes into contact with the adjacent passbands not twice, but
four times. Each time it does so, the vibration localization
switches from one edge to the other. This can be validated
in Fig. 14(a) by noting that it switches localization at phase
angles of φ −φ0 = 0.5π,1π, and 1.5π . These correspond di-
rectly to the points in Fig. 4(b) where the edge mode frequency
touches the passband. Because |Cg| = 1 for these bandgaps,

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

02
03

93
7



18

the edge mode frequency only fully spans its bandgap once,
but despite this, the mode migration resembles the migration
of mode shapes with Chern numbers greater than one, such
as those reported by Liao and Zhou54. For purposes where
the phase angle is actively being cycled, such as for topologi-
cal pumping, this faster migration of edge modes can be quite
valuable. In traditional cases, the phase angle would need to
be modulated by an entire half cycle from 0− π to pump a
localized wave from one end of the chain to the other. Within
these bandgaps however, localization switches direction more
times within one cycle. This allows for pumping of the wave
from one edge to the other in half of the previous phase cycle.
For systems with time varying phase, this can lead to faster
transportation of mechanical energy along the chain.

IV. CONCLUSIONS

In this paper, we investigated the mechanisms behind
bandgap formation in metamaterials due to combined effects
from local resonance and spatial modulation of resonator pa-
rameters. The metamaterial studied was modeled as a 1-
dimensional lattice of masses connected by springs with each
mass coupled to a local resonator modeled as a spring-mass
system. Spatial modulation of parameters was present for
different cases consisting of modulation in the main chain
stiffness, resonator stiffness, resonator mass, or combinations
of those sources. The dispersion relations for infinite chains
were obtained analytically through analysis of the unit cell.
These results were validated numerically for finite chains us-
ing eigenvalue analysis. The mode shapes were also deter-
mined for finite chains from the eigenvectors. Both the for-
mation mechanism and topological nature of each bandgap
were revealed. Furthermore, the band structures were plotted
for a variety of sources of modulation as well as for a variety
of resonator parameters to determine how the patterning and
local resonance interact to form bandgaps.

The results indicate that moving parameter modulation
from the main chain stiffness to the resonator parameters sig-
nificantly alters the band structure. With the presence of mod-
ulated resonators, multiple locally resonant bandgaps form
from bandgaps previously opened by Bragg scattering. By
changing these bandgaps to locally resonant bandgaps, the vi-
bration attenuation performance was improved. The topologi-
cally trivial bandgap hosted an additional edge mode while re-
maining topologically trivial. The phase of the edge states was
also shifted asymmetrically. Due to having multiple unique
resonators, the local resonance phenomena was not defined
by a single resonator frequency, but by a resonator frequency
range which holds significant influence over the band struc-
ture. Within this range, there occurs multiple points in the
band structure at which some passbands disappear and the ad-
jacent bandgaps merge. As the passband closes and reopens,
the adjacent bandgaps also undergo transitions between lo-
cally resonant and Bragg scattering bandgaps. These points
reveal a new method for determining the number and type of
bandgaps in a system that is independent of the modulation
parameter. It has also been demonstrated that both the size and

location of the resonator frequency range can be tuned through
judicious choice of the resonator parameters and modulation
amplitude. By changing one parameter to increase the aver-
age resonator frequency, the range can be shifted upward and
grow. Changing the modulation amplitude can also change the
size of the range without altering its location. From the mode
shapes, we validated that the additional edge mode present in
the middle bandgap hosts localized vibrations. Furthermore,
we observed the presence of edge states with faster pumping
of the vibration localization from edge to edge. Rather than
taking a full 2π to pump the wave from one edge to the next
and back, these edge states can pump the wave back and forth
in half the phase.

In conclusion, for metamaterials with spatially modulated
resonators, the band structure is strongly determined by both
the resonator parameters and the location and strength of mod-
ulation. Methods of tuning these complex band structures
have been outlined through careful selection of resonator pa-
rameters. A study of the mode shapes revealed the pres-
ence of an additional edge mode as well as vibration local-
ization that switches direction with greater frequency. Be-
cause of their dependence on resonator parameters and pat-
terning, these phenomena have the potential to be introduced
to many non-resonant materials with any kind of structure.
This paves the way for strongly adaptable metamaterials with
features valuable for a variety of applications including wave
guiding, energy harvesting, topological pumping, and wave
nonreciprocity.
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