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Abstract

This paper investigates a weakly nonlinear metamaterial with electromechanical
local resonators coupled to a resistance-inductance shunt circuit. An analytical
solution is developed for the system using the perturbation method of multiple
scales, and validated through direct numerical integration. Linear and nonlinear
band structures are used for parametric analysis of the system, focusing on the
effect of system parameters on band gap formation and vibration attenuation. In
addition, the effects of nonlinearity and the interaction with shunt parameters
are examined. Results describe multiple methods of tuning band gaps and pass
bands of the system through various parameters, demonstrating the flexibility and
potential of the examined metamaterial.

Introduction

Metamaterials are artificially engineered structures that possess properties not
found in naturally occurring materials (Hussein et al. 2014). The unusual fea-
tures of metamaterials make them beneficial for numerous applications including
vibration and noise control, energy harvesting, non-destructive testing, and acous-
tic rectifiers.

Metamaterials consist of many unit cells arranged in periodic or aperiodic
patterns. It has been observed that periodic structures prevent waves from prop-
agating through the structure at certain frequency ranges, known as band gaps
(Kushwaha et al. 1993). Because these band gaps are constrained by the unit cell
dimensions, the application of basic metamaterials was limited to large structures
(Hussein et al. 2014). To expand the use of metamaterials to smaller components,
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Liu et al. (2000) introduced local resonators, showing that locally resonant metama-
terials are able to control vibrations at wavelengths much smaller than the lattice
constant. Local resonators are also capable of widening the original band gap. Fur-
ther manipulation of the system’s band structure can also be achieved by introducing
multiple resonators (Huang and Sun 2010).

Band gaps can also be affected by the incorporation of piezoelectric materials
and shunt circuits. Piezoelectric materials have long been utilized in both active
and passive methods for vibration control (Hagood and von Flotow 1991), and more
recently have been incorporated into metamaterials (Thorp et al. 2001). By in-
cluding piezoelectric elements in a metamaterial, the mechanical system dynamics
can be coupled to an easily modifiable shunt circuit, enabling convenient adjustment
of the metamaterial’s overall properties. Incorporating piezoelectric materials and
shunt circuits enables techniques such as the use of negative capacitance (Beck et
al. 2011) or resonant shunt circuits (Wang and Chen 2015) to control vibrations
and create or broaden band gaps. In addition, shunt circuits also offer an avenue
for simultaneous energy harvesting. An important parameter in any work involving
piezoelectric materials is the system’s electromagnetic coupling factor. This parame-
ter is dependent on the design and material properties of the piezoelectric component
(Sugino et al. 2017). Though this piezoelectric coupling coefficient is usually on the
order of 107! for engineering applications (Erturk and Inman 2011), signifying weak
electromagnetic coupling, some features may only be apparent in the case of strong
electromagnetic coupling.

Combining the two previously discussed methods, researchers have also investi-
gated metamaterials with both local resonators and shunt circuits. Sugino et al.
(2017) studied a locally resonant material coupled to a shunt with piezoelectric el-
ements. This work differs from Sugino’s by incorporating the piezoelectric material
into the local resonators. In addition, the effects of nonlinearity and potential in-
teractions with shunt parameters are examined. This paper applies analytical and
numerical methods to investigate the effect of electromechanical coupling and shunt
circuit parameters on wave propagation and energy harvesting in a nonlinear acous-
tic metamaterial with resistance-inductance shunt. The metamaterial is modeled
through a nonlinear system of governing equations, and the perturbation method
of multiple scales is utilized to derive an approximate solution. This solution is
validated against the direct analytical solution for the linear case, and the directly
integrated numerical results for the nonlinear case. The solution from the method of
multiple scales is then used to analyze the effect of parameters on the system band
structure as well as their interaction with nonlinearity, focusing on the resultant
applications for simultaneous vibration control and energy harvesting.
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Figure 1: Schematic of nonlinear metamaterial with electromechanical resonators.

Mathematical Modeling of the System

The system studied in this work is a nonlinear acoustic metamaterial coupled with
electromechanical local resonators. The metamaterial consists of a chain of cells
connected by nonlinear springs as shown in Figure 1. Each nonlinear spring has linear
spring coefficient K and nonlinear spring coefficient a. Each resonator consists of a
substrate covered by a piezoelectric layer, with total effective mass m, and effective
linear stiffness k,. The piezoelectric layer is shunted to a resistance-inductance (RL)
circuit as shown in Figure 1. This circuit has voltage difference v,, resistance R,
and inductance L. The piezoelectric layer has capacitance C), and electromechanical
(EM) coupling coefficient §. The absolute displacement of cell n is u,, and the
absolute displacement of the attached piezoelectric resonator is 1,,*.

Following Bukhari and Barry (2020), we introduce nondimensional variables:
Up = Un/Uo, Yn = Yn/Us, and v, = ©,/Vy, where Uy and Vj are initial displace-
ment and velocity, respectively. Here, 3, = 4 — u, is the relative displacement of
piezoelectric local resonator n with respect to cell n. We also introduce nondimen-

sional time 7 = w,t, where
wp =\ K/M (1)

is the mechanical natural frequency of a unit cell.
With these variables, the normalized coupled equations of motion for each cell,
local resonator, and shunt circuit can be written for an infinite chain as:

Up + 2Up — Upg1 — Up—1 + a(un - Un+1)3 + a(un - unfl)3 + %Q%(un + yn) =0 (2)

O3y, + ol + Uy + = 0 (4)

where a = aUZ/K, Q) = w,/w,, wp = \/kp/mp, k = ky/K, a1 = 0Vy/k,Up, az =
Lw,/R, Qs = w,/we, w? =1//LC,, az = RCyw,, and ay = Rw,Uy/ V.

e
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To develop an approximate solution of the nonlinear governing equations of mo-
tion Egs. (2)-(4), the perturbation method of multiple scales is utilized. This method
is described in the following section.

Solving With Method of Multiple Scales

The perturbation method of multiple scales (MMS) is carried out following the proce-
dure outlined by Nayfeh (2011). First we introduce a small dimensionless parameter
e (e < 1) in the governing equations by defining multiple time scales:

To=7, Ti=c¢T (5)

where Tj is the fast time scale and T} is the slow time scale. The time derivative
operators are then perturbed and can be expressed as

o Dy + €Dy + O(é?) (6a)
oT

52

ﬁ = Dg —+ 2€DOD1 -+ 0(62) (6b)
where D,, = 6/0T,,. Following this, the solutions of the nonlinear governing equations
of motion (Egs. (2) - (4)) can be expressed as power series in powers of € as

U (T) = uno(To, T1) + €upn 1 (1o, T1) + O(€2> , (7a)
yn(T> = y'IL,O(TOu Tl) + Eyn,l(TOa Tl) + 0(62) ) (7b>
Un(T) = n0(T0, T1) + €v,1(To, Th) + 0(62) ) (7c)

The governing equations are converted into a weakly nonlinear form by rescaling
the parameter a« = ce. Through introducing this substitution and Eqgs. (5)—(7) into
Egs. (2)—(4), then collecting different orders of € we get the linear and nonlinear
problems.

For O(e") terms, the problem is linear. Thus, the solution can be expressed as:

Uno(Ty) = Ae!ME=T0) 4 ¢ ¢ (8a)
Yno(Tp) = BelmF=T0) 4 ¢ ¢ (8b)
Vno(Ty) = CelF=T0) 4 ¢ ¢ (8¢)

where £ is the wavenumber and w is the linear frequency normalized by mechanical
natural frequency w,. A, B, and C' are functions of the slow time scale 77, and c.c.
denotes the complex conjugate of the preceding term.

Solving the linear problem gives B and C' in terms of A:

C=T,B (9)
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B=T,A (10)
as well as the linear dispersion relation:
—w? +2—2cos(k) — Vkw*(1+T3) =0 (11)

where I'; and I’y are functions of w? and various parameters.

Solving Eq. (11) reveals six roots for w in the form of three complex conjugate
pairs. Consequently, the band structure may have up to three pass bands depending
on the system parameters.

Collecting O(e') terms provides the nonlinear problem, which can be used to
determine A(7}). The polar form of A(T}) is defined as:

1 )
A(Tl) = §G(T1>€Zb(T1) (12)
Solving for a and b yields the equations:
gad +hat + f=0 (13)

—hd' + gab' +1=0 (14)

where g, h, f,and [ are functions of w and system parameters. Here, prime (') denotes
the derivative with respect to 77.
Egs. (13) and (14) can then be solved for the slow flow equations:

a = cya’ (15)

V = ca? (16)

where ¢q and ¢; are functions of g, h, f,and [. By comparing the values of ¢y and ¢y,
it can be observed that the magnitude of ¢y is extremely small compared to that of
¢1. Therefore, it can be assumed negligible, ¢y ~ 0. This gives ¢’ = 0 and a(T}) = a
constant ag. Thus, the nonlinear frequency correction factor is:

V = ca; (17)

and the nonlinear frequency is:

Integrating Eq. (17) yields the approximate solution for b(7}):
b=ciaiTh (19)

The linear and nonlinear dispersion curves derived by the method of multiple
scales are then validated against a numerical solution and used to conduct band
structure analysis of the system.
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Figure 2: Validation of numerical and analytical results; (a) Linear problem, eca? =

0; (b) Nonlinear problem, eaa? = 0.06.

Band Structure Analysis

0.1 Validation

To validate the linear and nonlinear dispersion relations, they are compared to a
numerical simulation of the system. The system is as described in Figure 1, with
500 cells coupled to electromechanical resonators with RL shunt circuits. Cells are
connected with both linear and nonlinear springs. Shunt parameter values are: R =
10 Q, L = 0.2212 H, and C, = 1.13e-10 F. The mass of each main cell is M =
0.125 kg, and the mass ratio between each piezeoelectric resonator and main cell is
mp/M = 0.1. The mechanical and electrical resonance frequencies of the resonator,
w, and w,, are tuned such that w, = w, = w. = 2eb rad/s. These parameters are
chosen based on the similar system examined by Abdelmoula and Abdelkefi (2015).
The case of weak EM coupling 6 = 110 N/V is considered.

Following the similar procedure described by Bukhari and Barry (2020), the sys-
tem is validated by exciting the chain with a transient wave packet and numerically
integrating the governing equations using the built-in MATLAB solver ode45. For
a given wavenumber, the system is simulated for a long time to allow the wave to
propagate through the chain. After this, a 2D Fast Fourier transform (2DFFT) is
applied to the time data collected in the wavenumber and frequency domains. The
transformed data is then used to determine the natural frequency of the system by
finding the frequency associated with the maximum power density point. By deter-
mining the natural frequencies corresponding to a range of wavenumbers over the
first Brillouin zone, the dispersion curves are numerically constructed and compared
to the analytical solution in Figure 2, which plots normalized frequency w against
wavenumber k.

Both linear and nonlinear dispersion relations are compared in Figure 2. These
comparisons show good agreement between analytical and numerical solutions for
both the linear and nonlinear dispersion relations. It should be noted that the
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numerical solution is unable to capture certain frequencies of the nonlinear solution
in the medium and short wavelength limits for both branches. These areas, known as
pseudo band gaps, are due to a significant frequency shift associated with transient
wave packet excitation (Zhou et al. 2018). When excited within these pseudo band
gaps, the solution appears instead at frequencies within the long and short wavelength
limits.
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Figure 3: Effect of system parameters on linear band structure, w, = w,,: (a) Effect of
EM coupling, m,/M = 0.1, R = 10* Q, L = 0.2212 H; (b) Effect of resonator/main
cell mass ratio, § = 107! N/V, R = 10 Q, L = 0.2212 H; (c) Effect of shunt
resistance, § = 107 N/V, m,/M = 0.1, L = 0.2212 H; (d) Effect of shunt inductance,
6 =10"" N/V, m,/M =0.1, R = 10° Q.

Linear Band Structure

Next, the validated analytical dispersion relations are used to study the effect of se-
lected parameters on the band structure, beginning with the linear dispersion relation
calculated using Eq. (11). The parameters examined are EM coupling coefficient 0,
the mass ratio between the piezoelectric resonator and main cell m,, /M, shunt resis-
tance R, and piezoelectric capacitance C,. Unless otherwise noted, parameter values
are the same as in Section 0.1. Comparisons are also made to the band structure of
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the system examined by Bukhari and Barry (2020), which is similar except for the
absence of inductor in the shunt circuit.

Varied EM coupling is shown in Figure 3(a), with the value of 6 ranging from
weak EM coupling at § = 1e-10 N/V to strong EM coupling at § = le-1 N/V. For
weak coupling values, # = 1le-10 to le-3 N/V, the coupling has minimal effect on
the band structure, which is similar to the case of resistance-only shunt circuit in
Bukhari and Barry (2020). However, at § = 1e-2 N/V, a third mode branch can be
observed forming between the acoustic and optical modes. Instead of a single band
gap, two smaller band gaps are formed. These effects are more visible for 6 = le-1

N/V.
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Figure 4: Effect of system parameters on transmissibility, w. = w,, R = 103 Q,
L =0.2212 H: (a) Effect of EM coupling, m,,/M = 0.1; (b) Effect of resonator/main
cell mass ratio, # = 107! N/V.

Figure 3(b) displays the effects of varying the mass ratio between the piezoelectric
resonator and main cell. Here, the main cell mass is kept fixed at M = 0.125 kg
and the resonator mass is altered to meet the desired ratio. In addition to band gap
location, resonator mass has a clear effect on the width of the band gaps between
the modes, with the band gaps broadening as resonator mass increases. This is
consistent with the effects of mechanical-only resonators, which are well established
in the literature (Inman 1994). These broadening band gaps effect the middle mode
branch, which becomes increasingly narrow as mass ratio increases. In addition, the
upper boundary of the acoustic mode significantly increases with mass ratio.

The effects of shunt resistance are shown in Figure 3(c). It is clear that this
value effects the formation of the central mode branch. At low resistance values
R =102 to 10® Q, all three modes are present, but the central branch merges back
into the acoustic and optical modes as resistance increases. This high resistance
case is near identical to the band structure with resistance-only shunt studied by
Bukhari and Barry (2020). Due to this observation regarding the effect of high
shunt resistance, R = 10 § for all following analysis. In Figure 3(d), varied shunt
inductance is examined. Due to the electrical resonance frequency being fixed at

we = 1/,/LC, = w,, increasing L means decreasing C,, and vice versa. Increasing L

511



Downloaded from ascelibrary.org by Arun Malla on 01/27/23. Copyright ASCE. For personal use only; all rights reserved.

Earth and Space 2022

© ASCE

results in the central mode branch becoming broader as the band gaps move apart.

To supplement the study of the linear band structure, frequency response func-
tions (FRFs) are also obtained through direct numerical simulation of the 500-cell
metamaterial chain system. The transmissibility of the chain for each frequency is
determined by comparing the output power harvested by the 500th cell to the input
power at the 1st cell:

fo mn‘( )
Jy* Pin(t)dt

where t; = 3000 s. The resulting FRESs, shown in Figure 4, support the observa-
tions drawn from the band structure analysis while also making other details more
apparent.

Figure 4(a), displaying the effects of 6, shows similar results to the band structure
in Figure 3(a), with the band gap remaining consistent from = 1e-10 to 1le-3 N/V,
and splitting into two at § = le-1 N/V. However, at § = 1e-2 N/V, the band gap
broadens, but the central mode branch is not yet visible. This suggests that the
mode branch is too narrow to be visible, or that there is no significant difference
in vibration propagation between the mode and the band gaps for this value of
f. Another notable observation is the transmissibility of the central mode branch
at strong coupling, § = le-1 N/V. While waves certainly propagate with higher
amplitude in the mode than the band gaps, the transmissibility is also significantly
less than in the acoustic and optical modes. In addition, transmissibility drops off
gradually as the band gaps are approached, unlike the lower-coupling cases. Similar
observations are made by varying mass ratio, shown in Figure 4(b)

(20)

p =

Nonlinear Band Structure

The nonlinear band structure is also studied by taking into account the correction
factor defined by Eq. (18). The nonlinear stiffness parameter eaA? is varied to model
chains with nonlinear hardening (ecA? = 0.03) and nonlinear softening (eaA? =
—0.03). The effects of nonlinear hardening and softening are then combined with
the effects of EM coupling, mass ratio, and shunt inductance by varying selected
parameters.

The effect of nonlinear hardening or softening on the dispersion curves with de-
fault parameters is shown in Figure 5(a). As expected, hardening shifts the curves up
on the frequency axis, while softening shifts them down. The magnitude of the shift
is negligible for small wavenumber (long wavelength limit), and more pronounced for
the optical mode branch, especially at large wavenumber (short wavelength limit).
For the acoustic mode branch and central mode branch, the effects of nonlinearity
are largest around the medium wavelength region, but decrease near the end of each
mode. Thus, the effect on bandgap boundaries is present, but minimal. However,
the upper bound of the optical mode, where nonlinearity has prominent effect, is
significantly shifted.
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Figure 5: Effect of system parameters on nonlinear band structure for: (a) Default
parameters; (b) Weak EM coupling § = 107'° N/V; (¢) Large mass ratio m,/M =
0.5; (d) Shunt inductance L = 2L.

The cases of linear and nonlinear chains with weak EM coupling are displayed in
Figure 5(b). Here, the shifts of the cutoff frequencies due to nonlinear hardening and
softening are largely the same as the case of strong coupling. The band structure
has two branches rather than three, matching the effects of weak coupling previously
established. Again, the bounds at the top of the acoustic mode and the bottom of the
optical mode are not significantly affected by nonlinearity, with larger effects visible
at the upper bound of the optical mode. Similar results are seen when altering the
mass ratio, as displayed in Figure 5(c). As expected from the linear analysis, the
central mode branch becomes narrow, and band gaps are broader than the default
case. The effects of nonlinearity also become slightly more prominent in the acoustic
mode, and remain significant in the optical mode.

Finally, the shunt inductance is increased to L = 2L in Figure 5(d). As noted
in Figure 3(d), this results in the central mode branch occupying a larger frequency
range than the default case in Figure 5(a). Due to this, the effects of nonlinearity are
more prominent for this mode, especially in the medium wavelength region. However,
effects of nonlinearity still decrease in the short wavelength region, reducing the effect
on the band gap boundary.
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Conclusions

This work contains the analysis of a nonlinear, electromechanical metamaterial cou-
pled to a shunt circuit with both resistor and inductor. The system consists of a
chain of cells connected by nonlinear springs, with each cell coupled to an electro-
magnetic resonator consisting of piezoelectric element and shunt circuit. Both the
cells and resonators were modeled as spring-mass systems, with the resonator sys-
tem coupled to the dynamics of the shunt circuit. The resulting governing equations
were solved analytically using the perturbation method of multiple scales, and the
approximate solution was validated by direct numerical integration. The validated
analytical solutions were then used to examine the system’s band structure to view
the effect of electromagnetic coupling and resonator parameters including mass ratio,
shunt resistance, and shunt inductance. For the linear case, band structure analysis
was also supported by transmissibility diagrams obtained by solution of the linear
system equations. Focus was given to manipulating band gaps and the system’s
mode branches through resonator parameters, and the resulting effects on vibration
attenuation within the chain.

In this paper, several notable observations were made concerning shunt param-
eters. It was shown that using strong EM coupling and low resistance, a band
structure with three pass bands can be obtained, rather than the two pass band
structure from low EM coupling or resistance-only shunt. The effects of nonlinear
springs on the system dynamics, especially the interaction with the resonator and
shunt parameters, were also studied. With the insight gained from the parametric
study in this work, there is great potential for optimizing both vibration control and
energy harvesting in this and similar metamaterials.
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