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ABSTRACT
Metamaterials are engineered structures designed to manip-

ulate wave propagation according to the design and the intended
functionality. Depending on their configuration and input exci-
tation, these materials can behave linearly or nonlinearly. This
study theoretically examined the wave propagation behaviors in
one-dimensional nonlinear hierarchical metamaterial contain-
ing cascaded local resonators. The dispersion relations were
determined analytically and numerically validated. The numeri-
cal simulation is performed through the MATLAB built-in ode45
integrator excited by unidirectional traveling wave packets. The
results show that this hierarchical metamaterial simultaneously
excites both the acoustic and optical modes of the dispersion
spectrum. The simultaneous presence of both acoustic and opti-
cal modes is due to the spatially varying relative motion between
the masses. The second optical mode is converted to the first
optical and acoustic modes. In addition, hardening nonlinear-
ity transforms the input wave packet to solitary and dispersive
waves, while softening generates mainly dispersive wave pack-
ets. The nonlinear wave propagation behaviors observed in this
study are beneficial for the design of broad-band mechanical en-
ergy harvesters, diodes, and sensors.

1 Introduction
Metamaterials, with their engineered structures, are revolu-

tionizing the next generation of technological innovations and
developments in the areas of acoustics, electromagnetics, and op-
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tics. The research on metamaterials has expanded significantly in
recent years. Applications realized through structural metamate-
rials, such as cloaking [1–3], acoustic black holes [4], and stealth
technology [5], are pushing the boundaries beyond the limits of
classical materials.

Metamaterial design typically involves the integration of pe-
riodic phononic crystals [6] or locally resonant structures [7] to
achieve tailored wave manipulation. Nonlinearity is an emerg-
ing approach to further improve their functionality by opening
up new elastic wave features [8]. In contrast to their linear
equivalents, nonlinear metamaterials exhibit unique characteris-
tics such as wave localization [7], amplitude-dependent disper-
sion [9], pseudo-bandgap, and mode conversion [10, 11]. Non-
linearity can be weak or strong in proportion to the magnitude
of the input amplitude [12]. In weak nonlinearity, the effects are
small perturbations of the linear behavior, allowing the imple-
mentation of approximate analytical methods to derive the dis-
persion relations [13].

In the propagation of waves, frequency mode conversion is
an important phenomenon for altering the input frequency. In-
cident wave frequency mode conversion enabled the discovery
of several wave devices. A frequency up conversion was used
to design an acoustic rectifier [14], while designing a mechani-
cal diode takes advantage of the frequency shift [15]. However,
due to the relatively weak nonlinear parameters in conventional
materials, the resulting converted frequency components typi-
cally exhibit lower amplitudes [16]. In addition, such systems
are prone to generating unwanted frequency interplay. Alterna-
tively, nonlinear acoustic metamaterials have shown considerable
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potential to achieve efficient frequency conversion and energy
transfer [10].

In the design of monoresonator acoustic metamaterials, non-
linearity has been introduced into the local resonator [17], the
chain [15, 18], or both the local resonator and the chain [19].
The chain nonlinearity affects the short-wavelength limit, but lo-
cal resonator nonlinearity alters the long-wavelength limit, re-
spectively. The nonlinearity applied to the chain and multiple
local resonators affects both the long- and short-wavelength re-
gions. A study was conducted on a locally resonant Kresling-
origami metamaterial, where nonlinearity was introduced ex-
clusively within the resonator [17]. The results showed a dis-
persion shift due to nonlinear coupling. The propagation of
Hann-modulated transient wave packet was studied in an un-
damped locally resonant nonlinear acoustic metamaterial [15].
The frequency and wavenumber shifting led to the formation of
a pseudo bandgap, which is useful for the design of direction-
dependent wave filtering mechanical devices. Nonlinear damped
acoustic metamaterials with a single resonator [18] and nonlin-
ear diatomic metamaterials [20], were shown to exhibit damping-
dependent variations in the amplitude and shape of the transient
wave packet. Nonetheless, an acoustic metamaterial containing
a single resonator is less robust in terms of operating range than
that of a unit cell containing multiple masses [13].

Recently, a metamaterial consisting of two local resonators
arranged in parallel was designed to enable targeted energy trans-
fer through vibro-impact nonlinearity [21]. The vibro-impact
mechanism facilitated bidirectional energy transfer (mode con-
version) between the lower and higher frequency bands. More-
over, studies are showing that hierarchical metamaterials are ca-
pable of generating multiple mode branches [22, 23]. This en-
ables distinct multilevel energy routing, allowing for frequency
conversion beyond the excitation band. Recent efforts have fo-
cused on the design of hierarchical metamaterials, which offer
promising lightweight structures [22]. The band structure of lin-
ear pure mechanical [24] and electromechanical [25] light weight
hierarchical metamaterials with local resonators organized in
outward and inward configurations was investigated. The results
revealed that, specific structural configurations plays a critical
role in tailoring the band structure.

The need to reduce structural weight while simultaneously
enhancing wave propagation characteristics motivates the study
of hierarchical nonlinear metamaterials. In this work, we studied
the wave propagation behaviors in a nonlinear hierarchical meta-
material containing cascaded nonlinear resonators using analyt-
ical and numerical methods. The analytical method is useful to
predict the dispersion including cutoff frequencies, whereas the
spectrospatial analysis helps to detail distortion and other nonlin-
ear behaviors. Nonlinearities are applied to both the main chain
and local resonators to study their effect in all wavelength re-
gions.

2 System Design and Mathematical Modeling
The schematic diagram for the infinite chain is illustrated in

Fig. 1. The unit cell of the chain consists of the outer mass m0,
connected to the adjacent cells by linear and nonlinear stiffnesses
k0 and Γ0, respectively. The local resonators have masses m1 and
m2 which are connected to the outer mass by linear stiffnesses
(k1, k2, and k3) and nonlinear stiffnesses (Γ1, Γ2, and Γ3).

The equation of motion for the jth unit cell is expressed as:

m0ü j + k0(2u j −u j−1 −u j+1)+ k1(u j − y j1)+ k3(u j − y j2)

+ εΓ0
[
(u j −u j−1)

3 +(u j −u j+1)
3]+ εΓ1(u j − y j1)

3

+ εΓ3(u j − y j2)
3 = 0 (1)

m1ÿ j1 + k1(y j1 −u j)+ k2(y j1 − y j2)+ εΓ1(y j1 −u j)
3

+ εΓ2(y j1 − y j2)
3 = 0 (2)

 

FIGURE 1: Chain of hierarchical nonlinear metamaterial with
cascaded resonators.

m2ÿ j2 + k2(y j2 − y j1)+ k3(y j2 −u j)+ εΓ2(y j2 − y j1)
3

+ εΓ3(y j2 −u j)
3 = 0 (3)

where u j, y j1 and y j2 represent the displacements of the outer
mass and the local resonators, respectively, and ε is a weak per-
turbation parameter.

To simplify, dimensionless parameters αi =
ki
k0

, γ0 =
Γ0
k0

, and

γi =
Γi
k0

, are defined by normalizing the stiffness coefficients with
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respect to k0, while ω2
0 = k0

m0
is normalized with respect to m0.

Here, i represents the local resonator stiffness coefficient sub-
scripts 1, 2, and 3. In addition, η and β1 are the mass ratios
defined as η = m1+m2

m0
and β1 = m1

m1+m2
, satisfying the relations

m1 = ηβ1m0 and m2 = η(1−β1)m0. Using dimensionless time
τ = ωt, the differentiation operator can be transformed into the
form d

dt = ω
d

dτ
, d2

dt2 = ω2 d2

dτ2 , and Ω2 = ω2

ω2
0

. Then, Equations (1)

to (3) reduced to:

Ω
2 ∂ 2u j

∂τ2 +(2u j −u j−1 −u j+1)+ εγ0
[
(u j −u j−1)

3 +(u j −u j+1)
3]

+α1(u j − y j1)+α3(u j − y j2)+ εγ1(u j − y j1)
3 + εγ3(u j − y j2)

3 = 0
(4)

ηβ1Ω
2 ∂ 2y j1

∂τ2 +α1(y j1 −u j)+α2(y j1 − y j2)+ εγ1(y j1 −u j)
3

+ εγ2(y j1 − y j2)
3 = 0 (5)

η(1−β1)Ω
2 ∂ 2y j2

∂τ2 +α2(y j2 − y j1))+α3(y j2 −u j))

+ εγ2(y j2 − y j1))
3 + εγ3(y j2 −u j)

3 = 0 (6)

The Lindstedt-Poincare weakly nonlinear perturbation
method is implemented to derive the approximate dispersion re-
lations [26]. Using this method, the assumed weak perturbation
expressions for Ω, u j, y j1, and y j2 are:

Ω = Ω0 + εΩ1, u j = u0
j + εu1

j , y j1 = y0
j1 + εy1

j1, and y j2 =

y0
j2 + εy1

j2.
Further, assume a plane wave harmonic solutions in the form

of Equation (7) [15]:


u0

j =
A0

2
einκ eiτ + cc,

y0
j1 =

B0

2
einκ eiτ + cc,

y0
j2 =

C0

2
einκ eiτ + cc.

(7)

Here, A0, B0 and C0 are amplitudes of the outer mass, the
first and second resonators respectively, and cc is the complex
conjugate. By substituting the weak perturbation expressions
into Equations (4) to (6), performing some algebraic operations,
separating terms of order ε0 and ε1, and substituting the assumed

solutions given in Equation (7), we obtain the linear and nonlin-
ear dispersion Equations (8) and (9), respectively.

α3(α1α2 +α1α3 +α2α3 −α3β1ηΩ
2
0)+ [α1 +α3 −ηΩ

2
0(1−β1)]

× [α2
1 − (α1 +α2 −β1ηΩ

2
0)(α1 +α3 −Ω

2
0 +2(1− cos(κ)))]+

α2[2α2 +α1α2 +α1α3 −α2Ω
2
0 −2α2cos(κ)] = 0 (8)

[QP(Ω2
0

∂ 2

∂τ2 +α1 +α3)−Qα
2
3 − (Pα1 +α2α3)

2]u1
j+

QP[2u1
j −u1

j−1 −u1
j+1] = (Pα1 +α2α3)(PR2 +α2R3)

+Q(PR1 +α3R3) (9)

The detailed expressions for R1, R2, R3, P and Q are given
in the appendix. Expanding the right-hand side of Equation (9)
and equating the coefficients of secular forcing terms to zero,
the solution for the first-order dimensionless frequency Ω1 is a
function of the zero-order dimensionless frequency, Ω0 and the
wavenumber, κ . Refer to the appendix for the solution of Ω1. Fi-
nally, the corrected weak perturbation dispersion of the nonlinear
chain is given as:

Ω
i = Ω

i
0 + εΩ

i
1 (10)

where superscript i is an integer denoting the ith mode branch.

3 Spectrospatail Wave Analysis Using Analytical and
Numerical Methods

The dispersion relations obtained from the analytical method
are numerically validated as shown in Fig. 2. To numerically
construct the dispersion curves, transient wave analysis is em-
ployed. A Hann window transient wave packet is injected into
the finite chain consisting of 1500 unit cells. The normalized
system parameters used for this study are α1 = α2 = α3 = 1,
β1 = 0.75, η = 1, and ω0 = 1000 rad / s. The numerical simula-
tions are conducted using the initial conditions given in Equation
(11).

3 Copyright © 2025 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/SM

ASIS/proceedings-pdf/SM
ASIS2025/89275/V001T03A005/7568508/v001t03a005-sm

asis2025-167940.pdf by Virginia Polytechnic Institute and State U
niversity user on 15 D

ecem
ber 2025





u j(0) =
A0

2

(
H( j−1)−H

(
j−1−

2πNcy

κ

))
(

1− cos
(

jκ
Ncy

))
sin( jκ)

u̇ j(0) =
A0

2

(
H( j−1)−H

(
j−1−

2πNcy

κ

))
U j

y j1(0) = Fu j(0)
ẏ j1(0) = Fu̇ j(0)

y j2(0) = J
(
α3u j(0)+α2y j1(0)

)
ẏ j2(0) = J

(
α3u̇ j(0)+α2ẏ j1(0)

)

(11)

In Equation (11), H(x) is the Heaviside function, while Ncy
is chosen as 7, representing the number of cycles for the Hann-
modulated input wave packet. The function U j defines the uni-
directional traveling wave packet, and the constants F and J are
given in Equation (13):

U j =
ω

Ncy
sin

(
jκ

Ncy

)
sin( jκ)−ω

(
1− cos

(
jκ

Ncy

))
cos( jκ)

(12)


F =

α2α3 +α1(α2 +α3 +η(β1 −1)ω2
0 )

α2(α3 −ηω2
0 )−ηβ1ω2

0 (α3 +η(β1 −1)ω2
0 )

+α1(α2 +α3 +η(β1 −1)ω2
0 )

,

J =
1

α2 +α3 +η(β1 −1)ω2
0
.

(13)

Perfectly matched layers (PML) are applied on both ends
of the chain to reduce wave reflection. The profile of the PML
damping is chosen as [26]:

C( j) =Cmax

(
s

Npml

)d p

(14)

where Cmax = 2e4 Ns/m, d p = 3, and Npml = 5 are used for the
numerical simulation. Here, s starts at the beginning of the PML
and ends at Npml .

Using ode45 MATLAB built in integrator, the response of
the wave packet excitation is determined. A 2D fast Fourier
transformation (2D FFT) is applied on the amplitude response
matrix to reconstruct the dispersion numerically. In this study,
the linear chain is evaluated at εγ0 = εγi = 0, while the nonlinear

hardening and softening chains are evaluated at εγ0 = εγi = 0.06
and εγ0 = εγi = −0.06, respectively. The simulation times for
the excitations in the acoustic and optical modes are 3 s and 1.5
s, respectively.

Figure 2 shows the dispersion relations obtained from the
analytical and numerical analyses. The dispersion relation ex-
hibits three distinct mode branches, with the lower branch rep-
resenting an acoustic mode and the upper two corresponding to
optical modes. The approximate analytical dispersion of a non-
linear hardening chain shifts upward, while the dispersion of a
softening nonlinear chain shifts downward from the dispersion
of the linear chain. The analytical solution failed to predict the
second optical mode (third passband) precisely, due to the signif-
icant shifting from the linear curve in this region. The nonlinear
dispersion curve shifts considerably, which prevents it from ac-
curately representing the weak nonlinear second optical mode.
However, the numerical simulation shows that the dominant fre-
quency of the second optical mode is converted down. In both the
linear and nonlinear systems, exciting the chains using the sec-
ond optical mode converts the dominant frequencies down to the
acoustic and first optical modes, as illustrated in Fig. 2. Previous
studies have demonstrated that nonlinear acoustic metamateri-
als are capable of achieving frequency down-conversion [16]. In
contrast, the present design reveals that even a linear chain can
facilitate the down-conversion of higher-order modes as shown
in Fig. 2(a).

The dominant frequencies in the nonlinear chain exhibit
greater localization compared to those in the linear chain. Due to
mode conversion, the numerical method is unable to accurately
capture the dominant frequencies near the bandgap boundaries of
the traveling wave packet. The long-wavelength frequencies of
the optical modes are converted into the acoustic mode, whereas
the short-wavelength frequencies of the acoustic wave shift up to
the first optical mode.

When a mid-range wavelength first optical mode wave
packet is injected, the dominant frequencies shift toward zero
frequency and wavenumber for both types of nonlinearity. Hard-
ening nonlinearity exhibits dominant frequencies in both the
long-wavelength and short-wavelength regions of the first opti-
cal mode, as shown in Fig. 2(b). As illustrated in Fig. 2(c),
the dominant frequencies associated with the first optical mode
under softening nonlinearity are predominantly confined to the
short-wavelength region. On the basis of the dispersion analysis,
it is evident that these hierarchical metamaterials enable both the
linear and nonlinear chains to facilitate higher-frequency mode
down conversions. Although the approximate analytical solution
fails to capture the second optical mode, the numerical simula-
tion is also inadequate in resolving the cutoff frequencies for a
traveling wave packet.
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FIGURE 2: Dispersion predicated by analytical and numerical methods at β1 = 0.75. (a) linear chain dispersion, (b) nonlinear hardening,
and (c) nonlinear softening.

(a) (b) (c)

FIGURE 3: Spatial profile at the end of simulation when an acoustic wave packet is injected. (a) linear chain, (b) nonlinear hardening,
and (c) nonlinear softening.

3.1 Spectrospatial Behaviors
Unlike linear wave propagation, which maintains its shape,

nonlinear wave propagation is characterized by dispersion and
distortion [13]. Simple dispersion relations are insufficient to
describe these distinctive characteristics. Thus, in this subsec-
tion, both the spatial profiles at the end of the simulation and
the 2D fast Fourier contours of the traveling waves are provided.
The spatial profiles are useful for investigating how the com-
bined nonlinearity of the chain and local resonators changes the
shape of the excitation signal during its propagation. Further-
more, the 2D fast Fourier contours reveal unique behaviors such
as frequency shift, dispersion, and solitary waves.

3.1.1 Spatial Profile of Transient Wave Packet in
Hierarchical Metamaterials

Figure 3 illustrates the spatial profile at the end of the simu-
lation when the input excitation wave packet is in acoustic mode.
The long wavelength excitation, κ = π

9 , of the linear chain gen-
erates two localized wave packets with different amplitudes that

travel along the chain in the same direction. The amplitude of
the first wave packet is smaller than that of the second wave
packet, as shown in Fig. 3(a). In fact, when the chains are ex-
cited by the acoustic wave mode, the maximum amplitude of the
response is almost half that of the input signal. For medium,
κ = π

2 , and short, κ = 7π

9 , wavelength excitations, the shape
of the input wave packet is stretched, indicating that the wave
packet is distorted. This type of distortion is called dispersive
associated distortion [15]. The nonlinear chain distorts the shape
of wave packet in all wavelength regions. Hardening and soft-
ening nonlinearity mainly distort the first wave packet at the
long wavelength, while the second wave packet remains almost
undistorted. The hardening nonlinearity at the medium and short
wavelength excitation result in dispersive and solitary waves, as
shown in Fig. 3(b). The dispersive wave is a distributed low-
amplitude wave packet, while the solitary wave is a highly lo-
calized high-amplitude wave packet. The softening nonlinearity
significantly affects the first wave packet in the long wavelength
region. In addition, the solitary wave disappears in the softening
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l
(c)

FIGURE 4: Spatial profile at the end of simulation when first optical wave packet is injected. (a) linear chain, (b) nonlinear hardening,
and (c) nonlinear softening softening.
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FIGURE 5: 2D-FFT contour when first optical mode wave is injected. (a) linear chain is excited at κ = π

2 , (b) linear chain is excited at
κ = 7π

9 , (c) nonlinear hardening excited at κ = π

2 , (d) nonlinear hardening excited at κ = 7π

9 , (e) nonlinear softening excited at κ = π

2 ,
and (f) nonlinear softening excited at κ = 7π

9

for a short-wavelength wave, as demonstrated in Fig. 3(c).

The spatial profile of the wave packet propagation excited by
the optical mode at the end of the simulations is provided in Fig.
4. Wave packets in all wavelength limits are distorted when the
chain is excited by an optical mode branch. The spatial profiles
are generated by using the first optical mode excitation, since

the second optical mode excitation offers nearly similar spatial
profiles. The propagation of long-wavelength wave packets in
linear and hardening nonlinear chains shows distortion. It first
exhibits a spatially decreasing amplitude followed by a localized
wave packet with a higher amplitude, as shown in Figs. 4(a)
and 4(b). At medium and short wavelengths, dispersive and soli-
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FIGURE 6: The relative motion of outer mass and resonators in the linear chain at the end of the simulation excited by the short
wavelength first optical mode.

tary waves characterize the spatial profile in linear and nonlin-
ear hardening cases. The softening of the nonlinear chain gener-
ates dispersive and solitary wave packets for medium-wavelength
excitation, while only dispersive waves propagate in the short-
wavelength regime. The long wavelength is nearly undistorted,
as shown in Fig. 4(c). The spatial profiles reveal that hardening
nonlinearity localize and disperse the wave packets, while soft-
ening primarily gives dispersive wave packet.

3.1.2 Spectral Characterization of the Transient
Wave Packets

In this subsection, the spectral features of the transient wave
packet are explored in the vicinity of the carrier wavenumber and
frequency of the excitation wave packet. The contour lines are
the magnitude of the spectral amplitude as a function of κ and Ω

for linear and different types of nonlinearities. Given the signif-
icant influence of dispersion and nonlinearity on optical modes,
this subsection examines the 2D-FFT contour of optical modes.

The 2D-FFT contour shown in Fig. 5, illustrates the dis-
persion curve when the chain is excited by a first optical mode
branch. The applied excitation causes both types of wave mode,
acoustic and optical, to be present in the system. The optic-
acoustic coupling is attributed to the spatially varying relative
motion of the local resonators with respect to the outer mass
moving down the chain, as shown in Fig. 6. The first optical
mode is observed when the relative motion of one of the res-
onators is out of phase with the outer mass. The relative motion

of resonator 1 is out of phase, for instance, for the unit cells 360
to 370, reflecting the behavior of the first optical mode. There is
a transition from the out-of-phase motion to the in-phase motion
moving down the chain, resulting in acoustic mode.

The contour shown in Fig. 5(a) displays the optical and
acoustic mode branches when the linear chain is excited by
the medium-wavelength first optical mode. The shape of these
modes are undistorted. The shape of the optical mode is nearly
straight with a higher magnitude, indicating that it is a solitary
wave packet [15], while the acoustic mode evolves as a weak dis-
persive wave packet. When the linear chain is excited by a short-
wavelength first optical mode branch, both the optical and the
acoustic modes stretched more, as shown in Fig. 5(b). The prop-
agation of short-wavelength wave packet in the linear chain is
distorted by the dispersion effect. The optical mode branch con-
tains the dominant frequency components under both medium-
and short-wavelength excitations of the linear chain.

The dispersion of the medium-wavelength first optical mode
in the hardening nonlinear chain is shown in Fig. 5(c). Due to the
significant frequency shift, only weak acoustic and first optical
mode branches propagate as shown in Fig. 5(c). However, non-
linear hardening provides dispersive and solitary waves in both
the acoustic and first optical modes when excited by the short-
wavelength wave packet as displayed in Fig. 5(d). The dominant
frequency is noted in the solitary wave of the first optical mode,
which is observed in the neighborhood of the short wavelength
region as well. The dispersive wave of the acoustic mode is very
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FIGURE 7: 2D-FFT contour when second optical mode wave is injected. (a) linear chain excited at κ = π

2 , (b) linear chain excited at
κ = 7π

9 , (c) nonlinear hardening excited at κ = π

2 , (d) nonlinear hardening excited at κ = 7π

9 , (e) nonlinear softening excited at κ = π

2 ,
and (f) nonlinear softening excited at κ = 7π

9 .

weak in the long-wavelength region. Hardening nonlinearity in-
duces both localization and dispersion in the acoustic and optical
mode branches under short-wavelength excitation.

Exciting the nonlinear softening chain using the first optical
mode in the medium wavelength results in dominant frequency
down conversion, as shown in Fig. 5(e). The softening nonlinear-
ity allows the propagation of dispersive waves in the acoustic and
optical modes. The propagation of weak dispersive first optical
mode covers almost all wavelength regions, while the acoustic
mode is restricted in the medium-range wavelength region. The
short wavelength excitation, on the other hand, does not con-
vert down the dominant frequency. Instead, the dominant fre-
quency remains in the short-wavelength region of the first opti-
cal mode, as shown in Fig. 5(f). The first optical mode ranges
in the medium- and short-wavelength frequency, while the weak
dispersive acoustic mode is mainly noted in the short-wavelength
limit. However, in hardening nonlinearity, there is mode conver-
sion and wave localization.

Figure 7 illustrates the 2D-FFT contours obtained from the
second optical mode wave packet excitation. Under excitation
corresponding to the second optical mode, both resonators ini-
tially oscillate out of phase with the outer mass at the beginning

of the chain. As the wave packet continues to propagate, the sys-
tem undergoes a relative motion reconfiguration, which leads to
the conversion of the high-frequency mode to the low-frequency
modes. This is the reason why the system provides the first opti-
cal and acoustic modes at the end of the simulation.

The dispersion curves obtained from the excitation of the
second optical mode are nearly the same as the 2D-FFT contour
obtained from the excitation using the first optical mode. One of
the differences observed is that exciting the softening chain using
the medium-wavelength second optical mode provides a more
stretched acoustic mode, as seen in Fig. 6(e). In contrast, ex-
citing the chain using the medium-wavelength first optical mode
results in a less stretched acoustic mode, as shown in Fig. 5(e).
Further, when the second optical mode is converted down, there
is weak third-mode propagation.

The wave packet propagation behaviors, such as frequency
shift and frequency down conversion, observed in this nonlinear
hierarchical system, can be used for the design of sensors and di-
rectional mechanical wave devices. Optic-acoustic spatial mode
coupling is also beneficial for localized vibrational energy har-
vesting using conventional piezoelectric energy harvesters.
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4 CONCLUSION
In this work, the behavior of wave propagation in nonlinear

hierarchical medium is predicted using approximate analytical
and numerical approaches. The results indicated that hierarchical
metamaterials with cascaded local resonators can facilitate the si-
multaneous propagation of both acoustic and optical modes when
the chain is excited by a traveling wave packet. Furthermore, the
numerical simulation showed that when the chain is excited us-
ing the second optical mode, the input wave packet is converted
to lower harmonic modes. The spatial profiles revealed a region
with a relatively low amplitude dispersive wave and localized
high amplitude waves. These observations are further supported
by the 2D-FFT contour, and they are more clearly visible in the
2D-FFT contour. The 2D-FFT contour indicates the concurrent
propagation of low-frequency acoustic and high-frequency opti-
cal modes. This study theoretically demonstrates the significance
of cascaded local resonators in manipulating wave propagation
characteristics in nonlinear acoustic metamaterials for localized
wave control.
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Appendix A: Expression of Constants
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