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ABSTRACT
Metamaterials that make use of either topological pattern-

ing or local resonators have been vastly studied for their robust
edge states, energy harvesting capabilities, and reconfigurabil-
ity. However, these two metamaterials apply different bandgap
formation mechanisms, and their joint dynamic interactions are
not well defined. This work seeks to understand the formation
of bandgaps in structures with spatially modulated resonators.
Analysis is performed on a 1D spring-mass chain consisting of
two cases of quasiperiodic modulation. In the first case, the main
cell stiffness is modulated spatially, and in the second case, the
resonator stiffness is modulated spatially. For both cases, the
dispersion relation of the infinite chain is determined analyti-
cally, and confirmed by numerically calculating the eigenvalues
of a finite chain. For both cases, an analytical dispersion rela-
tion is obtained for an infinite chain and validated numerically
through eigenvalue analysis. By using the inverse method, the
mechanisms behind bandgap formation are determined through
the imaginary wavenumber components. The integrated den-
sity of states function is used to approximate the Chern number
and confirm the topological nature of each bandgap. The mode
shapes are also determined from the eigenvectors, revealing ben-
eficial features for topological pumping. From this, it is shown
that, for systems with modulated resonators, it is possible to al-
ter both how many bandgaps exist and how those bandgaps are
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formed. Overall, the results reveal a rich and highly tunable
band structure with many benefits over metamaterials with iden-
tical resonators.

1 INTRODUCTION
Metamaterials are carefully designed, man-made structures

with unique configurations or material constituents that allow
them to possess properties not found in nature [1, 2]. Metama-
terials first emerged to control electromagnetic and optical wave
propagation [3], but they can now be found in acoustic [4] and
mechanical [5] applications as well. Their unique dynamic prop-
erties are useful for a wide array of applications including vi-
bration and noise control [6], structural health monitoring [7],
energy harvesting [8], cloaking [9], and mechanical comput-
ing [10].

These properties are often obtained by arranging unit cells
in specific patterns including periodic patterns [1], quasiperiodic
patterns [11], or even random configurations [12]. Periodic pat-
terning, for example, produces bandgaps in the frequency re-
sponse through a phenomena known as Bragg scattering. At fre-
quencies within the bandgap, waves are reflected within the ma-
terial and prevented from propagating [13–18]. However, these
bandgaps are created at frequencies tied to the lattice constant
of the metamaterial. Thus, their applications are often limited to
structures with larger lattice constants or lower frequency vibra-
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tions [1].
Fortunately, local resonators have been introduced as a

means to overcome this design requirement [19]. Structures with
local resonators are capable of opening bandgaps over a much
wider range of wavelengths than just those near the lattice con-
stant. This is because locally resonant bandgaps are formed due
to mode hybridization and appear near the natural frequency of
the resonators rather than at wavelengths near to the lattice size
[20]. Furthermore, Bragg scattering is not necessary for bandgap
formation in the presence of local resonators. Therefore, locally
resonant structures can still form bandgaps in random or aperi-
odic configurations [12].

Although locally resonant metamaterials are capable of im-
proved vibration attenuation over periodic structures, their ef-
fectiveness is limited to frequencies near their design frequency.
This has led to much work attempting to widen their operational
frequency range. A common approach has been to include multi-
ple resonators with distinct resonator frequencies in order to cre-
ate multiple bandgaps at unique frequency ranges [6,21,22]. An-
other method has been to use different types of resonators such
as bistable [23] or coupled resonators [24] to broaden the locally
resonant bandgap. Adding a pattern to the resonators’ spacing or
parameters has also been effective for creating broader bandgaps
or multiple bandgaps [25, 26]. Furthermore, the introduction of
electromechanical elements, such as piezoelectric resonators, al-
lows local resonators to be more adaptable. By coupling these
electromechanical resonators to active circuits, it is possible to
tailor the bandgap via the circuit parameters without altering the
physical resonator parameters [27–30].

Spatially modulated metamaterials, such as those with
quasiperiodic patterns, have also been shown to strengthen en-
ergy harvesting and vibration control by producing multiple
bandgaps which host topologically protected edge modes. Pe-
riodic and locally resonant metamaterials are able to produce
bandgaps that are topologically trivial, but quasiperiodic meta-
materials can create multiple topologically robust bandgaps with
vibration modes that are localized to lower dimensions [31].
These modes are formed passively by breaking spatial inversion
symmetry while maintaining time-reversal symmetry [32–34].
This can be accomplished by modulating parameters within the
structure following a quasiperiodic pattern, such as the Aubry-
André model [35] as seen in [11, 36–42]. The frequency spec-
tra of these patterned metamaterials resemble the Hofstadter but-
terfly [43] as they display multiple topological bandgaps where
none exist in periodic structures. Furthermore, each topological
bandgap is traversed by a topological edge mode which displays
localized vibrations within finite structures [38]. The introduc-
tion of a phase variable in a second dimension allows for these
edge modes to be pumped from one edge of the structure to the
other [44–46].

Despite the superior dynamical properties of locally reso-
nant metamaterials, few works have revealed their topological

features through spatial modulation. The first proposed locally
resonant quasiperiodic metamaterial introduces a quasiperiodic
pattern to the spacing of resonators attached to a homogeneous
beam [40]. The combined resonance and patterning effects re-
sult in a frequency spectrum that includes multiple topological
bandgaps as well as one additional topologically trivial bandgap
at the resonators’ natural frequency. In [47], the main cells of a
discrete chain are modulated in a quasiperiodic pattern with iden-
tical electromechanical resonators. This work demonstrates that
weak electromechanical coupling has no impact on the topolog-
ical features in the band structure. The ability to produce topo-
logical edge modes through resonator patterning is first studied
experimentally in [48]. This work reveals the ability to create
topological phenomena solely through the resonator parameters,
allowing for topological features to be present in structures that
need to maintain homogeneity in their core structure. Further-
more, combined spatial and temporal modulation of resonator
parameters has been used to break reciprocity and produce one-
way wave propagation [49, 50].

Despite these works, the combined effects of local resonance
and spatial patterning are not well studied. No analytical study
has explored the underlying methods of bandgap formation in
metamaterials with modulated resonators, and thus, the design
and tuning of these metamaterials is challenging. In this work,
we study a topological metamaterial with quasiperiodic modu-
lation in the resonator stiffness to examine the interactions be-
tween topological features and local resonance. The proposed
metamaterial consists of a spring-mass chain in which each main
cell hosts a single local resonator. Two cases of modulation pat-
terning are considered, with modulation found in the main cell
stiffness or resonator stiffness. An analytical dispersion relation
is obtained for an infinite chain using a single unit cell. The
band structures and mode shapes for finite chains are also ob-
tained through eigenvalue analysis. The two cases are compared
to observe the impact of modulation location and reveal multiple
unique phenomena due to modulating resonator parameters. Fur-
thermore, the inverse method and analysis of Chern number are
used to characterize both the topological nature and formation
mechanism of each bandgap.

2 MODELING AND SOLUTION METHODS
In this work, we consider a 1-dimensional locally resonant

metamaterial shown in Fig. 1. The metamaterial consists of iden-
tical masses, m, connected by springs with stiffness, k, and cou-
pled to local resonators with stiffness, kr, and mass mr. Multi-
ple sources of spatial modulation are introduced including in the
main cell stiffness and in the resonator stiffness. The modulated
stiffness can be defined as

Kn = K0[1+λcos(2πnθ +φ)] (1)
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FIGURE 1: A diagram of the quasiperiodic metamaterial with variation in the stiffness of the main cells or resonators.

where, in this case, Kn may refer to either the main cell or res-
onator stiffness of the nth element. K0 is the average stiffness,
and λ is the modulation amplitude. This pattern, known as the
Aubry-André Model [35], is defined by the quasiperiodic param-
eter, θ , and phase variable, φ . The governing equations of mo-
tion for the nth mass and resonator are

mün + kn−1(un −un−1)+ kn(un −un+1)+ kr,n(un − yn) = 0 (2)

mr ÿn + kr,n(yn −un) = 0 (3)

for the displacement of the nth mass, un, and resonator, yn. We
impose a Bloch periodic solution of

un = Ūnei(µn−ωt) yn = Ȳnei(µn−ωt) (4)

with mass and resonator displacement amplitudes, Ūn and Ȳn, fre-
quency, ω , time, t, and non-dimensional wavenumber µ . Plug-
ging these solutions in yield new governing equations

(−mω
2 + kn−1 + kn + kr,n)Ūn − kn−1Ūn−1e−iµ

−knŪn+1eiµ − kr,nȲn = 0 (5)

(−mrω
2 + kr,n)Ȳn − kr,nŪn = 0 (6)

These equations provide an analytical frequency-
wavenumber relationship in the form of an eigenvalue problem
which can be used to obtain the dispersion relations through
modal analysis. By modeling a single unit cell, the dispersion
relations for an infinite system are revealed. Additionally, the
inverse method is used to obtain both parts of the complex
wavenumber. To further validate the analytical dispersion
relations, the eigenvalues and eigenvectors are calculated for a
finite chain, yielding the natural frequencies and mode shapes,
respectively, over the full range of phase variable, φ .

3 RESULTS
To fully reveal how local resonators and spatial modulation

work together to form bandgaps, we will consider two cases. The
first case will have modulation in the main cell stiffness, and the
second case will have modulation in the resonator stiffness. We
will study both infinite chains and finite chains with 60 cells.
The quasiperiodic parameter will be θ = 1/4, which will create a
pattern that repeats every four cells. The other system parameters
will be as follows: m = 1 kg, k0 = 1 N/m, mr = 0.2 kg, kr,0 = 0.3
N/m, and λ = 0.6. The phase angle, φ , will range from 0 to 2π .
For the parameters that vary in space, the subscript 0 indicates an
average value.

In this section, we will determine how the interactions be-
tween local resonance and spatial modulation impact the band
structure and mode shapes in both cases. We will first compare
the dispersion relations and band structures for both cases to re-
veal how the location of patterning causes different bandgaps to
form. From there, the mode shapes will be used to reveal unique
properties introduced through resonator modulation.

3.1 Effect of Modulated Parameter
Using the inverse method, the real and imaginary compo-

nents of the wavenumber are determined as a function of fre-
quency for both cases in Fig. 2. The frequency displayed here,
Ω, is nondimensional such that Ω = ω/ω0 where ω0 =

√
k0/m.

The real components of the wavenumber are shown on the right
side of each figure in black, and the imaginary components of
the wavenumber are shown on the left in red. The resonator’s
natural frequencies are wr,n =

√
kr,n/mr and appear in the figure

as dashed blue lines. When looking just at the real components,
the two cases yield similar dispersion curves. The eight roots of
the characteristic equation produce eight passbands separated by
seven bandgaps, regardless of which parameter is modulated.

Although changing the parameter being modulated does not
impact the number of bandgaps, it can still significantly alter
their behavior. Previously, Gao and Wang [22] reported that,
with multiple distinct resonators, it is possible to couple local
resonance and Bragg scattering within a single bandgap that dis-
plays the behavior of both. To reveal which method is being
used to open each bandgap, we use the imaginary wavenum-
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FIGURE 2: Dispersion relations for varying stiffness in the (a) main cells (case 1), and (b) resonators (case 2), at phase, φ̄ = 0.8π . The
mechanism behind each bandgap is labeled. The dashed blue lines indicate the frequencies of the resonators.

ber components and criteria outlined by Liu and Hussein [20].
Using their criteria, Bragg scattering bandgaps yield attenuation
zones with imaginary components that are nearly semi-circular
while locally resonant bandgaps display much stronger peaks
centered at the natural frequency of the resonator. Case 1, shown
in Fig. 2(a), has identical resonators and thus, a single locally res-
onant bandgap. Each of the remaining bandgaps are created via
Bragg scattering. However, for case 2, there are four locally reso-
nant frequencies, each of which create a locally resonant bandgap
centered on their frequency. It is important to note that the mag-
nitude of the imaginary component of the wavenumber is directly
tied to the strength of vibration attenuation. With this in mind,
varying the resonator stiffness provides the opportunity to signif-
icantly improve vibration attenuation performance over a wider
frequency range.

While the passbands do not display significant changes with
variations in the wavenumber, varying the phase angle, φ , may
uncover further differences. Furthermore, varying the phase an-
gle often reveals meaningful topological trends in finite struc-
tures, such as topological pumping, which will be seen in the next
section. For this reason, the band structures are plotted for finite
and infinite chains in Fig. 3 for both cases. The gray background
represents the bulk passbands of the infinite chain while the nat-
ural frequencies of the finite chain appear as black lines. Ad-
ditionally, multiple modes that span the bandgaps are indicated
in red, and the dashed blue lines again represent the resonators’
natural frequencies. As mentioned before, both cases display
eight passbands and seven bandgaps. In the first case, shown in
Fig. 3(a), six bandgaps are spanned by a topological edge mode,
while one bandgap is not. Prior work has revealed that the fourth
(locally resonant) bandgap is topologically trivial and does not

contain an edge mode. Meanwhile, each of the other bandgaps
are topologically non-trivial with edge modes present [47]. The
topologically trivial bandgap is located at the single natural fre-
quency of the resonators, and it divides the passbands equally
with four above and below.

When the modulation is moved to the resonator stiffness,
shown in Fig. 3(b), there are multiple resonator frequencies. In
this specific example, with θ = 1/4, there are four. The pres-
ence of multiple resonator frequencies here results in some ma-
jor changes to the band structure, and it is crucial to determine
how these changes impact bandgap formation. Because there is
more than one resonator frequency, we cannot only consider in-
dividual resonator frequencies. Instead. we must consider the
entire range of resonator frequencies. The effects of modulating
the resonator stiffness primarily occur within this range, which
can be visualized in Fig. 3(b) as the frequency range bounded by
the uppermost and lowest dashed blue lines.

Within this resonator frequency range, the passbands are
much more sensitive to changes in the phase angle, φ , showing
much greater fluctuation in Fig. 3(b). Even the central (fourth)
bandgap, which is constant for case 1, shows some variation in
case 2. More significantly, there exist multiple points in the band
structure at which some passbands get progressively narrower
until they disappear altogether. At these points, the two adjacent
band gaps merge into one. These points can be found at phase an-
gles where one of the resonator frequencies cross the passband.
The passband shrinks as the resonator frequency approaches it,
and, for a moment, it disappears when the frequency of the res-
onator aligns with the frequency of the passband. This can be
seen, for example, in Fig. 3(b) at phase φ̄ = 0.83π where the
fourth passband disappears as a resonator frequency moves from
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FIGURE 3: Natural frequencies of a finite chain with 60 cells with modulation in the stiffness of the (a) main cells (case 1) and (b)
resonators (case 2). The finite eigennfrequencies are shown as black lines while the bulk passbands of the infinite chain are shown as the
gray background. Edge modes and resonator frequencies are highlighted in red and blue, respectively.

the fourth bandgap up to the third, and the two bandgaps merge.
This indicates for the first time that, with modulated resonators,
it is possible to control how many passbands exist in a spatially
modulated system without directly changing the modulation pat-
tern. For example, there have always been eight passbands and
seven bandgaps in a locally resonant system with a modulation
parameter of θ = 1/4. However, now it is possible, through a
careful selection of phase variable, to produce seven passbands
and six bandgaps in the same structure.

During these critical transitions, the natural frequency of one
resonator traverses into a different bandgap, which usually hosts
a second resonator frequency already. When the resonator fre-
quency leaves one bandgap and enters another, it also changes
the nature of both bandgaps. To study this further, we will take
a closer look at the imaginary components of the wavenumber at
multiple phase angles during this transition. These are shown in
Fig. 4 for the previously mentioned crossing point at φ̄ = 0.83π .
Fig. 4(a) displays a zoomed in view of the fourth passband for
case two along with both wavenumber components at the cross-
ing point in Fig. 4(b) and the imaginary components at three
other points of interest in Fig. 4(c)-(e). At point I, in Fig. 4(c),
there are two distinct bandgaps formed by local resonance since
both resonator frequencies are in separate bandgaps. However,
at point II, in Fig. 4(b), the passband is overlapped exactly by
the resonator frequency, causing it to disappear. Looking at the
real component of the wavenumber, this passband has vanished
entirely from the dispersion relation. Furthermore, we can see
from looking at the imaginary components that the peak in atten-
uation at the resonator frequency has also vanished. The result-
ing bandgap displays both the width typical of a Bragg scattering
bandgap and the attenuation peak common in locally resonant

bandgaps. As we look further in the transition to point III, shown
in Fig. 4(d), two distinct bandgaps appear again, but the nature
of the lower bandgap has changed. Since there is no longer a res-
onator frequency within the bandgap, the lower (third) bandgap
is now formed via Bragg scattering only. Meanwhile, two atten-
uation peaks exist within the fourth bandgap at the frequencies
of the two resonators. Eventually at point IV, in Fig. 4(e), the
two peaks merge into a single resonant peak when the resonator
frequencies converge. This transition reveals that, by varying the
phase angle alone, it is possible to not only control the number
of bandgaps, but also which formation mechanisms, Bragg scat-
tering or local resonance, open each bandgap.

One further distinction to make between the cases with res-
onators that are identical or varying is the existence of one more
mode spanning the fourth bandgap. For the case with identi-
cal resonators, in Fig. 3(a), we have already determined that the
fourth bandgap is topologically trivial and hosts no edge modes.
However, when the resonator stiffness is modulated in Fig. 3(b),
there is a mode within the fourth bandgap. The presence of this
mode calls into question whether this bandgap remains topolog-
ically trivial. To address this, the Chern number will be used to
determine which bandgaps are topological or trivial. The Chern
number is a topological invariant that defines the topological na-
ture of bandgaps, and the bulk-boundary correspondence prin-
ciple relates the Chern number to the presence of edge modes
within bandgaps [51]. For each bandgap, a nonzero Chern num-
ber indicates a topological bandgap, and it ensures the presence
of an edge mode spanning the bandgap. Direct computation of
the Chern number can be arduous, so in this study, it is approxi-
mated using the Integrated Density of States (IDS) function fol-
lowing the method outlined in [37]. The IDS at a frequency, Ω,
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FIGURE 4: (a) Band structure with modulated resonators (case 2) from Fig. 3(b), showing the collapse of the fifth passband. Significant
points are marked at φ̄ = 0.8π , 0.8344π , 0.9π , and 0.995π . (b) Wavenumber components at φ̄ = 0.8344π when the fifth passband
disappears. (c)-(e) Imaginary wavenumber components at other points indicating a change in bandgap formation mechanisms. The
dashed blue lines represent frequencies of resonators.

is defined as

IDS(Ω) = lim
N→∞

∑n[ωn ≤ Ω]

N
(7)

where ωn is the nth natural frequency, and [·] are the Iverson
brackets returning a value of 1 when the enclosed statement is
true and a value of 0 if it is false. Put simply, this function counts
the number of natural frequencies at or below a frequency, Ω,
and normalizes it to the size of the chain, N. Theoretically, this
value will converge as the chain nears an infinite length, but for
practicality, we will consider here a long chain with N = 1000
masses.

The IDS function is plotted for both cases in Fig. 5 while
sweeping the modulation parameter, θ fully from 0 to 1. In
this representation, the colormap indicates the frequency, and the
lines of distinct shifts in color mark the bandgaps. The sharp
changes in color occur where there is a significant change in fre-

quency between two states in the system since all frequencies
within a bandgap have the same IDS value. The equation for
these lines can be expressed as

IDS(θ) = a+bθ (8)

with intercept, a, and slope, b. From Streda’s formula, ∂ IDS
∂θ

=
Cg, we know that the Chern number labeling each bandgap, Cg,
is equal to the slope of that bandgap’s line in the IDS plot. Some
significant bandgaps are emphasized in Fig. 5 using dashed white
lines alongside the equation for each bandgap. For both cases,
there is a single horizontal line at the frequency of the fourth
bandgap. Meanwhile, each of the other bandgaps have a nonzero
slope. This indicates that the fourth bandgap is still topologi-
cally trivial while each of the other bandgaps remain topological.
More significantly, this reveals that the parameter being modu-
lated has no impact on the topological nature of the bandgaps.
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FIGURE 5: Integrated Density of States (IDS) as a function of the quasiperiodic parameter, θ , at φ̄ = 0 for modulation in the stiffness of
the (a) main cells (case one) and (b) resonators (case two). White dashed lines and corresponding equations indicate some bandgaps.

3.2 Mode Shapes
Modulating the resonator stiffness strongly affects the band

structure, but these changes also have an impact on the mode
shapes. By observing the band structure, we see an extra mode
appearing within the trivial bandgap along with some noteworthy
alterations to a few of the pre-existing edge modes. The impact
of these changes can be determined through the mode shapes.
When exciting a finite chain at a mode within one of its topologi-
cal bandgaps, the vibration response will be localized to the edge.
This phenomena has been previously reported in multiple stud-
ies for the case with modulation in the main cells, so a thorough
discussion of these edge modes will be withheld here. Instead,
this discussion will focus on the two unique characteristics that
are brought about by modulating the resonator stiffness.

First, there is the presence of a mode within the topologi-
cally trivial (fourth) bandgap, as previously mentioned. To help
visualize how this mode traverses the bandgap, Fig. 6(a) shows
a zoomed in band structure emphasizing the fourth and fifth
bandgaps of case 2. By plotting the mode shape for the fourth
bandgap in Fig. 6(b), the existence of this edge mode is con-
firmed. Here, a 60 cell chain is excited at the frequency of the
mode within the fourth bandgap while sweeping the phase vari-
able by a full 2π cycle. The mode shape is also normalized to the
maximum displacement for better visualization. Although this
bandgap has been shown to be topologically trivial, the mode
shape is still edge-localized, and it behaves similarly to the other
edge modes. Like the other edge modes, this mode frequency be-
gins on one passband and, as φ is varied, it leaves the passband
and enters the bandgap. Eventually, it makes contact with the
other passband and crosses the gap again, returning to the orig-
inal passband. The mode shape reflects the effect of this transi-

tion in Fig. 6(b). Every time the mode frequency touches one of
the passbands, even momentarily, the localization switches to the
opposite edge.

The second significant impact is that modulating resonator
parameters can lead to multiple edge modes that make contact
with the passbands more frequently. Generally, an edge mode
will make contact with one passband, and then span the bandgap
to touch the opposite passband. Whenever the edge mode fre-
quency contacts one of the passbands, the edge localization
switches from one edge to the opposite. However, some edge
modes behave differently when the resonator stiffness is mod-
ulated. In some bandgaps, an edge mode frequency may make
contact with a single passband multiple times consecutively. Two
clear examples of this can be seen within the fourth and fifth
bandgaps, highlighted in Fig. 6(a). For the fifth bandgap, the
edge mode is in contact with the fifth passband at φ̄ = 0 and then
makes contact with the sixth passband three times at φ̄ = 0.46π ,
π , and 1.54π before returning to the fifth passband at φ̄ = 2π .
The mode shape associated with this mode is shown in Fig. 6(c).
Each time the mode frequency makes contact with a passband,
the localized mode migrates from one end of the structure to
the opposite. The additional points of contact with the sixth
passband result in more frequent edge-to-edge transitions for the
mode shape. This can be useful for topological pumping appli-
cations where the phase is being varied temporally or spatially.
Normally, a full pumping cycle would require the phase angle to
be varied by the full range of 2π , but in this case, the phase only
needs to be varied by π .
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FIGURE 6: (a) Zoomed in band structure with modulated resonators (case 2) showing the additional modes within the fourth and fifth
bandgaps. (b)-(c) Displacement mode shapes with variation in the phase angle, φ̄ , for case 2 with excitation of the fourth and fifth edge
modes, respectively.

4 CONCLUSION
In this study, we explored how the combined effects of spa-

tial modulation and local resonance formed bandgaps in a single
metamaterial. The metamaterial under consideration was mod-
eled as a 1-dimensional spring mass chain with a single local
resonator within each main cell. Two cases of modulation were
considered with spatial modulation in either the main cell stiff-
ness or resonator stiffness. Through analysis of the unit cell,
an analytical dispersion relationship was obtained for an infinite
chain. This relationship was then validated numerically through
eigenvalue analysis of a finite chain. The mode shapes of the fi-
nite chain were also determined from the eigenvectors. Further-
more, we investigated how changing the modulated parameter
impacted both how the bandgaps were formed and whether they
were topological or trivial.

The results indicated that modulating the resonator stiffness
instead of the main cell stiffness yields a more complex and
highly tunable band structure with many unique features. When
the resonator stiffness was modulated, multiple locally resonant
bandgaps were formed in the place of bandgaps that were previ-
ously formed via Bragg scattering, leading to improved vibration
attenuation performance. The presence of multiple resonator fre-
quencies also created stronger fluctuations in the passbands with
variation in the phase angle. At multiple points, some passbands
collapsed fully as the adjacent bandgaps merged into one. Dur-
ing this transition, as the passband closed and reopened, the adja-
cent bandgaps also transitioned from locally resonant bandgaps
back to Bragg scattering bandgaps. These transition points in-
dicated, for the first time, the ability to control both the num-
ber and type of bandgaps in a metamaterial without altering the
modulation parameter. Additionally, modulating the resonator
parameter produced an extra edge mode in the topologically triv-
ial bandgap that hosted no edge modes previously. Calculating
the Chern number through the integrated density of states func-

tion revealed that this bandgap remained topologically trivial and
that the parameter being modulated does not alter the topological
nature of any bandgap. Furthermore, we observed select mode
shapes that pump waves from one edge to the other over a shorter
phase cycle.

Overall, metamaterials with spatial modulation in their res-
onators have been shown to have many beneficial features over
metamaterials with modulation in their main cells. These meta-
materials possess band band structures that are more highly tun-
able via resonator and patterning parameters. Studying the mode
shapes has also confirmed the existence of one more edge mode
capable of topological pumping. Because these benefits depend
on the resonator parameters, they may be inserted into non-
resonant systems regardless of their outer patterning or structure.
Furthermore, this facilitates the possibility for highly reconfig-
urable metamaterials with a range of applications including topo-
logical pumping, wave guiding, breaking reciprocity, and energy
harvesting.
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