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Frequency lock-in control and mitigation of nonlinear
vortex-induced vibrations of an airfoil structure using
a conserved-mass linear vibration absorber
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Abstract We investigate the effectiveness of a

vibration absorber on the vortex-induced vibration

response of turbine blades during the frequency lock-

in phase. A reduced-order model of a turbine blade and

van der Pol oscillator is used to represent the fluid–

blade interaction caused by the vortex shedding. A

spring-mass-damper system is considered to model the

vibration absorber. The advantage of the vibration

absorber is demonstrated by simulating the nonlinear

coupled four-degree-of-freedom aeroelastic system

for the different sets of system parameters.We observe

the dominance of a nonlinear vibration absorber over

the linear vibration absorber only for the higher

coupling parameter values. The analytical solution of

the nonlinear coupled system is obtained through the

method of multiple scales for the case of 1:1 internal

resonance to identify the critical design parameters of

the vibration absorber. We observe the high sensitivity

of the system’s frequency response to the distance of

the vibration absorber from the elastic axis, along with

the absorber’s damping, stiffness, and mass. Finally,

we perform a parametric analysis on the lock-in of the

stability region to better understand the effect of the

vibration absorber on the instability region.

Keywords Vortex-induced vibration � Passive
vibration absorber � Fluid–structure interaction �
Frequency lock-in

1 Introduction

Fluid–structure interaction (FSI) refers to the multi-

physics coupling between the laws governing struc-

tural mechanics and fluid dynamics or between two

fluids in relative motion. FSI has received growing

interest among researchers for the past few decades

due to its numerous industrial applications. It is also

vital where mechanical systems’ safety and reliability

are concerned. A well-recognized specific instance of

FSI, which has been investigated closely, is an

aeroelastic phenomenon called the vortex-induced

vibration (VIV). If the vortex shedding frequency

matches the body’s natural frequency, the ensuing

vibration may cause the body to resonate to a

threatening level. This range is defined as the ‘lock-

in’ or ‘synchronization’ region [1–5]. Because the

lock-in happens for a small flow velocity range, the

vibration amplitude reaches high values, potentially

exhibiting Limit Cycle Oscillation (LCO). Notably,

the triggering mechanism of LCOs of an airfoil

structure due to aeroelastic instability, which was

shown to result from a cascade of resonance captures,

was studied by Lee et al. [6]. Such high amplitude

LCO causes undesirable noise, high cycle fatigue, and
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premature structural failure; hence, it should be

avoided or attenuated. This is the focus of the current

work. For other dynamic features, the reader is

referred to a comprehensive review of the wind-

induced vibrations [7]. For the current analysis, we

specifically consider the case of turbine blades at the

instant of frequency lock-in during VIV.

The VIV of structures can be analyzed using

physical experiments or numerical analyses. However,

physical experiments are very expensive to set up

when compared with numerical methods. Therefore,

numerical methods have been the focus of many

researchers in VIV problems [8–10]. Further, the

aeroelastic systems are nonlinear due to geometry,

material, and flow separations [11, 12]. Thus, numer-

ical methods are deemed to be successful due to the

advancement in computations. More specifically, two

numerical methods are widely used to determine the

hydrodynamics forces acting on the structure that

triggers the VIV. One way to predict VIV accurately

using numerical methods is solving the Navier–Stokes

equations coupled with the structural equations using a

computational fluid dynamics (CFD) method [13].

Within the same context, the advancement of data-

driven approaches to forecast bifurcations in dynam-

ical systems is worth mentioning to explore the

nonlinear dynamics of an aeroelastic system [14].

Such solution procedures, nevertheless, are computa-

tionally expensive and remarkably challenging at

sufficiently high Reynolds numbers. The second

method involves using the wake oscillator model,

which uses a nonlinear oscillator to empirically

determine the hydrodynamic forces. The apparent

advantage of the wake oscillator is its lower compu-

tational cost compared to the CFD [15]. Bishop and

Hassan [16] were the first to propose a self-exciting

and self-limiting van der Pol (VDP) equation to

simulate the lift force exerted on a structure in VIV. In

1971, Parkison [17] developed the first wake oscillator

model, where a velocity coupling between the motion

of the structure and the wake was proposed. Later, a

displacement and an acceleration coupling between

the structural equation and wake were proposed.

Nevertheless, the most remarkable finding was pro-

posed in [18], which used the acceleration coupling in

the wake oscillator model and has been deemed

successful by being verified in various works [19]. The

current analysis only considers the acceleration cou-

pling between the structure and the wake model.

The characteristics of the vortices, modeled by the

VDP oscillator, have been analyzed in various appli-

cations to predict the VIV, such as an offshore riser

[20], cylindrical structure [18], and turbine blade [21].

The LCO and frequency lock-in phenomena in a VDP

oscillator were observed by Clark et al. [22] and,

hence, laid the groundwork for modeling non-syn-

chronous vibrations (NSV) in turbomachines. Subse-

quently, many scholars have investigated the VIVs of

an airfoil extensively. For instance, Banerjee and

Kennedy [23] provided a simplified model for rotating

blades. They obtained an analytical solution of a

uniform, straight rotating beam based on the Euler–

Bernoulli theory. Pertinent to this discussion, a 3DOF

FSI model simulating the VIV of turbine blades was

proposed by Wang et al. [21]. They discussed the

internal resonance between the fluid and the turbine

blade by formulating the plunge and pitch motions of

the airfoil coupled with the VDP oscillator to model

the vortex force due to wake dynamics. Similarly,

Hoskoti et al. [24] presented airfoils’ coupled plunge-

pitch oscillation to study the frequency lock-in and

approximately calculated the vibration amplitude of

the turbomachinery blade.

Numerous suppression techniques have been pro-

posed to overcome the undesirable large amplitude

VIV [25–31]. It is common to integrate piezoelectric

materials in highly flexible airfoil structures to actuate

wind warping, which alters the wind flow. Among the

mitigation approaches, a novel active technique was

proposed by Kassem et al. [29] to suppress the flutter

of a 2DOF airfoil structure by using an active dynamic

vibration absorber (ADVA). However, the drawback

of this technique is the requirement of an auxiliary

power source for the operation. Conversely, a damper

in the form of a passive vibration absorber is a

traditional technique to attenuate vibrations and

requires no power source. In particular, damping is

an effective parameter for increasing the critical wind

speed at which vibrations in mechanical structures

could occur, and the similar concept can be extended

to VIV. Therefore, passive vibration absorbers have

been applied in various wind-induced vibrations

(WIV) research fields [32–35].

An alternative mitigation strategy involves using an

entirely passive, internal Nonlinear Energy Sink

(NES). An NES comprises a small mass coupled to

the primary structure via a nonlinear spring and a

linear viscous damper. In Vortex-Induced Vibrations
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(VIV), Blanchard et al. [35] developed a rotational

NES to harvest energy and suppress vibrations in a

fully turbulent sprung cylinder. Later, Vaurigaud et al.

[36] explored passive nonlinear energy transfer

between a two-degree-of-freedom (DOF) long-span

bridge model susceptible to coupled flutter and a

single-degree-of-freedom NES. Casalotti et al. [37]

demonstrated that hysteretic vibration absorbers out-

performed their linear counterparts in reducing vibra-

tions in long-span suspension bridges.

Additionally, Lee et al. investigated the suppression

of aeroelastic instabilities in a two-DOFNES-installed

rigid wing model analytically [38] and experimentally

[39], finding it effective for eliminating vibration

instability. It is worth noting that NES systems are

challenging to manufacture and install, particularly in

more robust structures, making them less practical for

real-world applications. Furthermore, the vibration

frequency of an NES is sensitive to amplitude changes,

unlike a linear vibration absorber [40]. If the ampli-

tude surpasses a critical level, the NES frequency can

deviate significantly from the host structure’s natural

frequency, negatively impacting energy transfer. Lin-

ear vibration absorbers, although limited in their

frequency range of suppression, can offer better

dissipation capacity near resonance frequencies when

properly optimized [41]. They have been successfully

used to mitigate limit cycle oscillations, as reported by

Habib et al. [42], and have shown effectiveness in

minimizing flutter instabilities [25, 28].

However, to the authors’ best knowledge, no work

has been done on mitigating the VIV in the 3DOF FSI

aeroelastic system, which is composed of the airfoil’s

plunge and pitch degrees of freedom along with the

VDP wake-oscillator model. Previous studies were

focused on the onset of the flutter speed

[14, 25, 29, 30, 37] rather than the synchronization

region occurring due to the inclusion of the wake

oscillator model. In this work, we investigate the

suppression of large amplitudes of VIV in the lock-in

region for a 3DOF FSI aeroelastic system using a

passive linear and nonlinear vibration absorber. The

current model consists of a turbine blade (modeled by

a 2DOF airfoil coupled with a wake oscillator)

embedded with a vibration absorber modeled as a

spring-mass-damper subsystem. The entire system’s

mass is conserved, implying that any added mass to

the absorber is taken from the mass of the host

structure itself. The new aeroelastic system’s

parameters primarily consist of the absorber’s stiff-

ness, its distance from the elastic axis, the new

coupling term, the absorber’s damping coefficient, and

the absorber’s mass ratio. It has been shown that a

proper selection of these parameters can significantly

decrease the amplitude of the response of the structure

and fluid as compared to the previously reported works

where the aeroelastic system lacks vibration absorbers

[21, 24]. This enables safe operations during the lock-

in region speeds. On the other hand, the structural

nonlinearity of the vibration absorbers is observed as

ineffective in reducing the amplitude of the limit cycle

oscillation during the synchronization region.

The remainder of the paper is organized as follows.

In Sect. 2, we present a detailed mathematical model

of the combined four-degrees-of-freedom aeroelastic

system along with the numerical frequency response.

In Sect. 3, the method of multiple scales is applied to

derive the analytical expression of the frequency

response, followed by a parametric study of the

different absorber parameters on the system dynamics

in the lock-in region in Sect. 4. Finally, some conclu-

sions are drawn in Sect. 5.

2 Mathematical modeling

To systematically present the complex coupling

between the turbine blade model and the vibration

absorber with the wake oscillator, we first present the

mathematical model of the blade with the absorber.

Later, we present the coupled model of the turbine

blade with the wake oscillator model and perform the

nondimensionalization of the governing equations of

motion to further simplify the analysis.

2.1 Lumped parameter model of the turbine blade

with the absorber

In aerodynamics, it is quite reasonable to assume the

cross-section of a blade, namely, the airfoil, as the

two-dimensional cascade model. Accordingly, the

schematic of the aeroelastic system for the analysis

is presented in Fig. 1. The model’s rigid plunging

(translation) and pitching (rotation) motions are

restrained by linear springs and a local resonator. In

engineering applications, the general trend is to

maintain low vibration levels while minimizing

weight using robust and lightweight materials. Hence,
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a conserved-mass system is considered in this work.

The conserved-mass system implies that the additional

mass of the absorber is equally cut from the host

structure, making the system’s total mass with the

absorber a constant. The absorber, in practice, com-

prises a cantilever beamwith a tip mass at a distance of

l1b from the elastic axis, as shown in Fig. 1.

It should be noted that the cantilever beam shown in

Fig. 1 only serves as a practical realization of absorber

installment in Aeroelastic system. As the classical

inextensible viscoelastic cantilever beam is suitable for

modeling a linear vibration absorber only [43], the

nonlinearity in the beam can be introduced through

geometric and material characteristics. For a nonlinear

beam, usually the dominant nonlinearity in the first

mode is geometrical and results in a hardening

nonlineaity, while a softening type is imposed in the

second or higher frequencies, through inertial nonlin-

earities [44]. Therefore, by adjusting the cantilever

beam, such as employing a highly flexible beam as

presented in [45] or incorporating an intermediate

lumped mass as demonstrated in [46], we can effec-

tively exhibit the characteristics of a nonlinear vibra-

tion absorber through a cantilever beam. In the current

study, for the ease of the analysis of system with

vibration absorber, we model the cantilever vibration

absorber as an equivalent spring-mass-damper

subsystem to access flexural rigidity and material

damping of the cantilever beam.

Next, if the plunge translation, pitch rotation angle,

and the absorber’s motions are denoted by h; a; and x1;
respectively, then the coupled governing equations of

motion for the systems’ plunge and pitch motions are

given by [12, 21]

mT
€hþmsbsc€aþch _hþcab _h� _x1� l1b _a

� �
þkh1hþkh2h

3

þ kab0ð Þ h�x1� l1bað Þþ kab2ð Þ h�x1� l1bað Þ3
¼�L;

ð1aÞ

msbsc €hþ Ia
mT

ms

� �
€aþ ca _aþ cab � l1b _x1 � _hþ l1b _a

� �

þ ka1aþ ka2a
3 þ kab0ð Þl1b x1 � hþ l1bað Þ

þ kab2ð Þl1b x1 � hþ l1bað Þ3
¼ M;

and the equation for the absorber motion is

mab €x1 þ cab _x1 � _hþ l1b _a
� �

þ kab0ð Þ x1 � hþ l1bað Þ
þ kab2ð Þ x1 � hþ l1bað Þ3 ¼ 0:

ð1bÞ

In the above equations,mT ¼ ms þ mf

� �
is the total

mass with ms as the mass of the turbine blade and its

Fig. 1 Schematic of the

cross-section model of an

isolated blade with an

absorber
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support structure, while mf is the fluid-added mass;

mab is the mass of the absorber. Note that the total mass

is conserved, which means that the additional mass of

the absorber is equally cut from the host structure to

keep the mass of the aeroelastic system constant. This

step ensures that the mitigation of vibration occurs due

to the absorber motion and not because of the addition

of mass to the system. Further, Ia is the mass moment

of inertia about the elastic axis; b is the half-chord

length, and sc, also known as static unbalance,

indicates the dimensionless distance between the

elastic axis and the center of mass; xa is the nondi-

mensional distance between the center of mass and the

elastic axis; l is the nondimensional distance between

the elastic axis and the position of the absorber. Linear

viscous dampers are considered for the analysis with

ch,ca, cab are the viscous damping coefficients for the

plunge, pitch, and absorber, respectively. The absor-

ber’s linear and nonlinear stiffness coefficients are

denoted by kab0 and kab2 respectively. Further, kh1 and

ka1 are the linear stiffness of the spring in bending and

torsion motion, respectively, while kh2 and ka2 are the

nonlinear stiffness of the spring in bending and torsion

motion, respectively. L and M denote the lift and the

aerodynamic moment about the elastic axis, respec-

tively. Moreover, we introduce the uncoupled, natural

frequencies of the plunge, pitch, and absorber motions

at zero airspeeds as.

xh ¼
ffiffiffiffiffiffi
kh1
ms

r

;xa ¼
ffiffiffiffiffiffi
ka1
Ia

r

; and xab ¼
ffiffiffiffiffiffiffiffi
kab
mab

r

;

respectively, the dimensionless time, t� ¼ xa t, the

dimensionless plunge motion h� ¼ h=b and the

dimensionless absorber motion x�1 ¼ x1=b to non-

dimensionalize Eq. (1). The nondimensional govern-

ing equations are given by

k €hþ sc€aþ 2fhxa
_hþ 2fabxb

_h� _x1 � l1 _a
� �

þ x2
ahþ �hx

2
ah

3 þ x2
b h� x1 � l1að Þ

þ �abx
2
a h� x1 � l1að Þ3 ¼ eL;

ð2Þ

sc €hþkr2a€aþ2far
2
a _aþ2fabxbl1 _x1� _hþ l1 _a

� �
þr2aa

þ�ar
2
aa

3þx2
bl1 x1�hþ l1að Þþ�abx

2
al1 x1�hþ l1að Þ3¼ eM ;

lab €x1 þ 2fabxb _x1 � _hþ l1 _a
� �

þ x2
b x1 � hþ l1að Þ

þ �abx
2
a x1 � hþ l1að Þ3 ¼ 0:

In the above equations (Eq. (2)), the nondimen-

sional quantities are defined as

k ¼ mT

ms
; lab ¼

mab

ms
; xa ¼

xh

xa
; xb ¼

xab

xa
;

ð3Þ

fh ¼
ch

2msxh
; fa ¼

ca
2Iaxa

; fab ¼
cab

2msxab
;

�h ¼
kh2b

2

kh1
; �a ¼

ka2
ka1

; �ab ¼
kab2b

2

kab0
;

ra ¼
ffiffiffiffiffiffiffiffiffiffi
Ia

msb
2

s

;

eL ¼ �L

msbx2
a

; and eM ¼ M

msb
2x2

a

:

We emphasize that ðÞ� is dropped from the notation

for the sake of simplicity in writing. In the above

equations, la is the mass ratio; xa is the ratio of

uncoupled plunge and pitch frequencies and xb is the

ratio of the uncoupled absorber and pitch frequencies;

fh, fa and fab are damping coefficients for plunge,

pitch, and absorber, respectively; �h and �a are the

coefficients for cubic nonlinearity in plunge and pitch

motion, respectively, and ra is the dimensionless

radius of gyration of the section about the elastic axis.

To include the time-varying aerodynamic lift force

and the aerodynamic moment, we use the VDP-based

wake oscillator and presented in the next section.

2.2 The van der Pol oscillator

In the current work, the van der Pol oscillator represents

the time-varying force caused by the alternate shedding

of the vortices [18, 22]. The governing equation for this

model can be expressed as follows:

€qþ bf v q2 � 1
� �

_qþ f 2vq ¼ f s; ð4Þ

where the coefficient of unsteady vortex lift is

expressed by the wake variable q. The lift in terms

of q is given by CL ¼ 1
2
qCL0, with CL0 as the reference

lift coefficient of the fluctuating lift force when a

fixed, rigid blade is subjected to VIV. f v ¼ 2pSV
b is the

angular frequency of the vortex shedding with S as the

Strouhal number and V as the free stream velocity.

Moreover, b is the nonlinear damping coefficient of

the wake-oscillator model. Using earlier mentioned
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nondimensional scales, the nondimensional form of

Eq. (4) can be written as

€qþ bxv q2 � 1
� �

_qþ x2
vq ¼ Fs; ð5Þ

where xv ¼ 2pSUr is the dimensionless wake fre-

quency in which Urð¼ V=ðbxaÞ) is the reduced

velocity. The structural and fluid coupling terms are

given by Fs ¼ f s=x
2
a.

2.3 Four-degree-of-freedom FSI model

Hodges and Pierce [10] demonstrated that the lift force

and moment in the aeroelastic model of the time-

varying vortex force from the wake dynamics near the

blade is given by

L ¼ qV2bCL; andM ¼ b sc þ
1

2

� �
L; ð6Þ

where q is the air density. Thus eL and eM in Eq. (2) will

be modified to

eL ¼ vx2
vq; and

eM ¼ sc þ 0:5ð Þvx2
vq: ð7Þ

In the above expressions, v ¼ CL0

8p2S2l
and l ¼ ms

qb2
are

the mass number (to determine the scale of the vortex

force on the blade) and the dimensionless mass ratio,

respectively [18].

Accordingly, the forcing term in the wake-oscilla-

tor, Eq. (5), is assumed to be related to accelerations as

Fs ¼ c1 €hþ c2€aþ c3 €x1; ð8Þ

where c1; c2 and c3 are the wake oscillator’s coupling
coefficients with the plunge, pitch, and absorber

motions, respectively.

Upon substituting all coupling terms, the governing

equations of motion for the coupled 4DOF FSI

aeroelastic system are given by

€hþ s1€aþ f1 _hþ fabh _h� _x1 � l1 _a
� �

þ x2
1hþ �1h

3

þ x2
bh h� x1 � l1að Þ þ �3 h� x1 � l1að Þ3 ¼ �g1x

2
vq;

ð9Þ

€aþ s2 €hþ f2 _aþ fabal1 _x1 � _hþ l1 _a
� �

þ x2
2aþ �2a

3

þ x2
bal1 x1 � hþ l1að Þ þ �3l1 x1 � hþ l1að Þ3

¼ g2x
2
vq;

€qþ bxv q2 � 1
� �

_qþ x2
vq ¼ c1 €hþ c2€aþ c3 €x1;

€x1 þ fabx _x1 � _hþ l1 _a
� �

þ x2
bx x1 � hþ l1að Þ

þ �4 x1 � hþ l1að Þ3
¼ 0:

where

f1 ¼
2fhxa

k
; f2 ¼

2fa
k

;

fabh ¼
2fabxb

k
; faba ¼

2fabxb

kr2a
; fabx ¼

2fabxb

j
;

ð10Þ

x2
1 ¼

x2
a

k
;x2

2 ¼
1

k
;x2

bh ¼
x2

b

k
;x2

ba ¼
x2

b

kr2a
;x2

bx ¼
x2

b

lab
;

s1 ¼
sc
k
; s2 ¼

sc
kr2a

;

�1 ¼
�hx2

a

k
; �2 ¼

�a
k
; �3 ¼

�abx2
a

k
; �4 ¼

�abx2
a

lab
;

g1 ¼
v

k
; and g2 ¼

v sþ 0:5ð Þ
kr2a

:

We first start with exploring the effect of the linear

absorber on the vibration attenuation of the turbine

blade to understand the frequency synchronization

phenomenon. For this, the dimensionless linear

undamped frequencies of the plunge, the pitch, the

absorber, and the wake frequencies of the coupled

system need to be determined. Accordingly, the

coupled linear undamped equations are

€hþ s1€aþ x2
1hþ x2

bh h� x1 � l1að Þ þ g1x
2
vq ¼ 0;

ð11Þ

€aþ s2 €hþ x2
2aþ x2

bal1 x1 � hþ l1að Þ � g2x
2
vq ¼ 0;

€qþ x2
vq� c1 €h� c2€a� c3 €x1 ¼ 0;

€x1 þ x2
bx x1 � hþ l1að Þ ¼ 0:

We assume the synchronous solution of Eq. (11) in

the form of

h; a; q; x1f g ¼ h0; a0; q0; x10f geiXt: ð12Þ

Substituting the assumed form of the solution in

Eq. (11), we get the characteristic equation
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1� s1s2ð ÞX8 � x2
1 þ x2

2 þ l21x
2
ba þ l1s1x

2
ba þ x2

bh

�

þl1s2x
2
bh þ x2

bx � s1s2x
2
bx þ x2

v � s1s2x
2
v

þc1g1x
2
v � s2c2g1x

2
v þ s1c1g2x

2
v

�c2g2x
2
vÞX6 þ x2

1 x2
2 þ l21x

2
ba þ x2

bx

��

þx2
v � c2g2x

2
v � þ x2

2 x2
bh þ x2

bx

�

þ 1þ c1g1ð Þx2
v � þ x2

v l21x
2
ba 1þ c1g1ð Þ

�

þx2
bh 1� c2g2ð Þ þ 1� s1s2 þ c1g1ð

�s2g2c1 þ c3g1 � c2g2 þ s1 c1 þ c3ð Þg2Þx2
bx

þl1 s1x
2
ba þ c2g1x

2
ba þ s2x

2
bh � c1g2x

2
bh

�

þs2c3g1x
2
bx þ c3g2x

2
bxÞ�ÞX4

� x2
1x

2
v l21x

2
ba þ x2

bx � c2g2x
2
bx þ l1c3g2x

2
bx

� ��

þx2
2x

2
v x2

bh þ x2
bx 1þ c1g1 þ c3g1ð Þ

�

þx2
2 x2

bx þ x2
v

� �
ÞX2 þ x2

1x
2
2x

2
vx

2
x ¼ 0:

ð13Þ

The roots of Eq. (13) are in the terms of X2 where

Xi; i ¼ 1; 2; 3 and 4 are the dimensionless frequencies

of the coupled system associated with the pitch,

plunge, wake-oscillator, and absorber motions,

respectively. Moreover, the variation of the four

natural frequencies of the coupled system with

parameter k determines the occurrence of internal

resonance and is shown in Fig. 2a. Unlike the case for

the system without absorbers, in the current case, k is

determined as a function of the absorber’s and system

parameter. It should be noted that by definition, the

term k includes the fluid-added mass in the system,

which in the current case depends on the mass of the

absorber, its location along the turbine blade, and the

other factors that could interact with the wind.

Therefore, making k as a function of internal reso-

nance for each configuration rather than being a

constant. For instance, Fig. 2a demonstrates two cases

where resonance occurs and corresponds to k ¼
0:9514 and k ¼ 1:014; respectively, for two different

absorber locations. Note that there could be several

possible internal resonance cases. However, from our

calculations, the 1 : 1 internal resonance between the

pitch and wake motion showed the lowest value of k
(i.e., fluid-added mass). Since the fluid-added mass is

relatively small in this case compared to that of the

blade in the turbomachinery [21], the internal reso-

nance case between pitch and wake motion ðX2 � X3Þ
will be the focus of the remainder of the analysis. This

case of the internal resonance (plunge lock-in region)

has been highlighted in Fig. 2. Furthermore, the heave

natural frequencies for both configurations (different

locations of the absorber represented by blue and

green colors) are the same. Therefore, we plot it as a

dotted line to distinguish it from the blue curve. The

VDP and structural parameters are fixed for both

scenarios in Fig. 2a and are adopted from [24] where

b ¼ 0:3, CL0 ¼ 0:2, sc ¼ 0:1; ra ¼ 0:5;xh ¼
73;xa ¼ 200; fh ¼ 0:016 and fa ¼ 0:021: Note that

for these variations �h ¼ �a ¼ 0. The absorber’s

parameters used in each case are (blue)

l1 ¼ 0:5;xb ¼ 0:2; lab ¼ 1:5%, c3 ¼ 2 and (green)

l1 ¼ 0:1;xb ¼ 0:2; lab ¼ 1:5%, c3 ¼ 2.

Fig. 2 a Variation of natural frequencies with the parameter k; with 1 : 1 resonance and b frequency of the coupled system with and

without absorber
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Furthermore, the coupled natural frequencies of the

system are plotted in Fig. 2b as functions of xv for the

absorber parameters l1 ¼ 0:5;xb ¼ 0:2; lab ¼ 1%,

c3 ¼ 2 and k ¼ 1:0252. Figure 2b compares the

variation of Xi with xv for two cases, viz., with and

without [24] absorber. In both cases, it is apparent that

the line X ¼ xv corresponds to the wake mode X3.

The frequency close to one is the mode associated with

the torsional motion X2 whereas the higher and lower

frequencies are associated with the absorber and

plunging motion, respectively. The figure shows the

impact of the addition of the absorber on the system’s

lock-in response. In both cases, the Strouhal Law

relates to the X3 and xv (and eventually, the reduced

velocity Ur) proportionally. However, for certain xv

values, when the wake mode is close to any of the

other frequencies, the wake mode deviates from the

Strouhal law, and the lock-in phenomena occur. A

deeper visualization of these figures can be demon-

strated with the frequency response curves plotted in

Fig. 3. In both Figs. 2b, 3, we observe that the initial

lock-in (bending) occurs for almost the same frequency

range in both cases, with and without absorbers.

Initially, Fig. 3a, c show the increase in the amplitude

of h and q within this range. However, for the given

system parameters, it has been shown that with few

alterations on the absorber parameters, the amplitude

during the initial lock-in can be mitigated. Further-

more, we can observe the noticeable shrinkage of the

plunge lock-in region (blue vs. red background) with

Fig. 3 Frequency response of the coupled system
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the addition of the absorber. Also, for the same range,

with different values of absorber parameters, not only

does the lock-in region shrink, but the amplitude of

vibrations attenuates significantly.

To demonstrate the absorber’s effect on the aeroe-

lastic system’s dynamic response, we show the time

histories of the different motions of the coupled

system at a fixed reduced air stream velocity with and

without the vibration absorbers. For this, we numer-

ically integrate the coupled system using the Runge–

Kutta method, and the time responses are shown in

Fig. 4. The absorber values are l1 ¼ 0:5;xb ¼ 0:2;

lab ¼ 1%, c3 ¼ 0:5 and fab ¼ 0:1. From Fig. 4, we

can observe that for the given values of system and

absorber parameters, the linear vibration absorber

successfully attenuates the plunge and pitch motion of

the turbine blades.

Next, we explore the effect of a nonlinear vibration

absorber on the system’s dynamics. For this, we

compare the frequency response of the system with a

linear absorber and with a nonlinear absorber; the

comparison is shown in Fig. 5. From Fig. 5, we can

observe that within the range of operation, as

suggested by the literature [24], the self-excited limit

cycle oscillations do not seem to be significantly

affected by the inclusion of nonlinearity in the

vibration absorber. Since the system’s response

remains unchanged, it is suggested that the forcing

amplitudes within this range of frequencies are not

high enough to trigger the nonlinearities in the

absorber. For the sake of theoretical investigation,

Fig. 5b compares the systemwith a high coupling term

and an intermediate coupling term, which in turn

implies a high and moderate forcing to the system,

respectively. We observe that the nonlinear vibration

absorber outperforms its linear absorber counterpart

for the smaller values of nonlinear stiffness in the

nonlinear vibration absorber. However, as the

Fig. 4 Dynamic response

(time history) of the

aeroelastic system at Ur ¼
1:16m=s (with and without

an absorber)
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nonlinear stiffness increases, higher amplitudes

appear in the system than those of the linear vibration

absorber. Figure 5b depicts that incorporating a non-

linear spring for the absorber can be effective for a

specific choice of parameters, which ends up being an

optimization problem. This is out of the scope of the

current work and is left for future study. Therefore, we

analyze the coupled system with a linear vibration

absorber in the subsequent analysis. In the next

section, we perform the method of multiple-scale to

obtain an analytical frequency response relationship.

3 The method of multiple scales

As mentioned earlier, our prime interest in this section

is to get an analytical solution for our coupled system

with the linear vibration absorber. For this purpose, we

use a perturbation technique, specifically the method

of multiple scales. We follow the procedure outlined

in [47] and introduce a small bookkeeping parameter �

in the system by rescaling the fluid force, the damping,

and the nonlinearity. This step ensures that the effect

of damping and nonlinearity appears in the same order

of �. Using these rescales, we modify our governing

equations of motion Eq. (9) as

€hþ s1€aþ x2
1hþ x2

bh h� x1 � l1að Þ
¼ � �g1x

2
vq� f1 _h� fabh _h� _x1 � l1 _a

� �
� �1h

3
	 


;

ð14Þ

€aþ s2 €hþ x2
2aþ x2

bal1 x1 � hþ l1að Þ
¼ � g2x

2
vq� f2 _a� fabal1 _x1 � _hþ l1 _a

� �
� �2a

3
	 


;

€qþ x2
vq ¼ � c1 €hþ c2€aþ c3 €x1 � bxv q2 � 1

� �
_q

	 

;

€x1 þ x2
bx x1 � hþ l1að Þ ¼ � �fabx _x1 � _hþ l1 _a

� �	 

:

Next, we introducemultiple time scales as Tj ¼ � js.
The introduction of these scales leads to the pertur-

bation in the differential operator as d=ds ¼ D0 þ
�D1 þ O �2ð Þ and d2=ds2 ¼ D2

0 þ 2�D0D1 þ O �2ð Þ,
where Dj

i ¼ o j=oT j
i .

The approximate solution of the coupled system in

multiple time scales can be expressed as

h ¼ h0 T0; T1ð Þ þ �h1 T0; T1ð Þ þ O �2
� �

;

a ¼ a0 T0; T1ð Þ þ �a1 T0; T1ð Þ þ O �2
� �

;

q ¼ q0 T0; T1ð Þ þ �q1 T0; T1ð Þ þ O �2
� �

;

x1 ¼ x10 T0; T1ð Þ þ �x11 T0; T1ð Þ þ O �2
� �

:

ð15Þ

Substituting Eq. (15) along with the perturbed

differential operator into Eq. (14) and equating coef-

ficients of like powers of �, we obtain

�0 :D2
0h0þs1D

2
0a0þx2

1h0þx2
bh h0� l1a0�x10ð Þ¼0;

ð16Þ

D2
0a0 þ s2D

2
0h0 þ x2

2a0 þ x2
bal1 l1a0 � h0 þ x10ð Þ

¼ 0;

Fig. 5 Frequency response

curves for the van der Pol

oscillation for a linear and a

nonlinear absorber: a low

coupling coefficient, b high

coupling coefficient
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D2
0q0 þ q0x

2
v ¼ 0;

D2
0x10 � x2

bx h0 � l1a0 � x10ð Þ ¼ 0:

�1 : D2
0h1 þ s1D

2
0a1 þ x2

1h1 þ x2
bh h1 � l1a1 � x11ð Þ

¼ �g1x
2
vq0 � 2s1D0D1a0 � 2D0D1h0 � f1D0h0

� fabh D0h0 � l1D0a0 � D0x10ð Þ � �1h
3
0;

ð17Þ

D2
0a1 þ s2D

2
0h1 þ x2

2a1 þ x2
bal1 l1a1 � h1 þ x11ð Þ

¼ g2x
2
vq0 � 2s2D0D1h0 � 2D0D1a0 � f2D0a0

� fabal1 l1D0a0 � D0h0 þ D0x10ð Þ � �2a
3
0;

D2
0q1 þ x2

vq1 ¼ c1D
2
0h0 þ c2D

2
0a0 þ c3D

2
0x10

� 2D0D1q0 � bxv q20 � 1
� �

D0q1;

D2
0x11 � x2

bx h1 � l1a1 � x11ð Þ
¼ �2D0D1x10 þ fabx D0h0 � l1D0a0 � D0x10ð Þ:

Equation (16) represents an undamped and

unforced linear oscillator; hence, the general solutions

of Eq. (16) can be written as:

h0 ¼ P11 A T1ð ÞeiX1T0
� �

þ P21 B T1ð ÞeiX2T0
� �

þ P31 D T1ð ÞeiX3T0
� �

þ c:c:; ð18Þ

a0 ¼ P12 A T1ð ÞeiX1T0
� �

þ P22 B T1ð ÞeiX2T0
� �

þ P32 D T1ð ÞeiX3T0
� �

þ c:c:;

q0 ¼ C T1ð ÞeixvT0 þ c:c:;

x10 ¼ P13 A T1ð ÞeiX1T0
� �

þ P23 B T1ð ÞeiX2T0
� �

þ P33 D T1ð ÞeiX3T0
� �

þ c:c:

where A T1ð Þ;B T1ð Þ;C T1ð Þ and D T1ð Þ are the com-

plex functions of time scale T1 and c:c: represents the

complex conjugate terms. Moreover,

Pj3 ¼ 1 j ¼ 1; 2; 3ð Þ, while Pi1 and Pi2 i ¼ 1; 2; 3ð Þ
are given by

Pi1¼
x2
2x

2
bh� l1s1x2

baþx2
bh

� �
X

2

i

1�s1s2ð ÞX4
i � x2

1þx2
2þ l21x

2
aþ l1s1x2

baþx2
bhþ l1s2x2

bh

� �
X2

i þx2
1 x2

2þ l21x
2
ba

� �
þx2

2x
2
bh

;

ð19Þ

Pi2 ¼
�l1x2

1x
2
ba þ l1x2

ba þ s2x2
bh

� �
X

2

i

1� s1s2ð ÞX4
i � x2

1 þ x2
2 þ l21x

2
a þ l1s1x2

ba þ x2
bh þ l1s2x2

bh

� �
X2

i þ x2
1 x2

2 þ l21x
2
ba

� �
þ x2

2x
2
bh

;

and are the modal parameters. Further, the natural

frequencies of the coupled equation can be obtained by

solving the characteristic equation

�1þ s1s2ð ÞX6 þ x2
1 þ x2

2 þ l21x
2
ba þ l1s1x

2
ba

�

þx2
bh þ l1s2x

2
bh þ x2

bx � s1s2x
2
bxÞX4

þ �x2
1x

2
2 � l21x

2
1x

2
ba � x2

2x
2
bh � x2

1x
2
bx � x2

2x
2
bx

� �
X2

þ x2
1x

2
2x

2
bx ¼ 0:

ð20Þ

Substituting for h0; a0; q0 and x10 from Eq. (18) into

the first-order problem, Eq. (17) yields

�1 : D2
0h1 þ s1D

2
0a1 þ x2

1h1 þ x2
bh h1 � l1a1 � x11ð Þ

¼ F1;

ð21Þ

D2
0a1 þ s2D

2
0h1 þ x2

2a1 þ x2
bal1 l1a1 � h1 þ x11ð Þ

¼ F2;

D2
0q1 þ x2

vq1 ¼ F3;

D2
0x11 � x2

bx h1 � l1a1 � x11ð Þ ¼ F4:

Here Fi i ¼ 1; 2; 3; 4ð Þ are lengthy expressions of

system parameters. These terms are reported in the

Appendix (A.1). We emphasize here that when xv is

equal to the natural frequency X1ð Þ, the resonance

occurs. Accordingly, we can perturb xv by a detuning

parameter and rewrite xv as

xv ¼ X1 þ �r1;

where r1 is the detuning parameter. To eliminate

secular terms in Eq. (21), the solvability condition

needs to be satisfied.

id11A
0 þ id12Aþ d13A

2Aþ d14ABBþ d15ADD
� d16Ce

irT1

¼ 0; ð22Þ

�2X2id21B
0 � iX2d22Bþ d233B

2Bþ d246ABA
þ d256BDD
¼ 0;

d31C
0 þ d32 C2C � C

� �
� d33iA

�ir1T1 ¼ 0; and

�2X3id41D
0 � iX3d42Dþ d433D

2Dþ d446BDB
þ d456ADA
¼ 0:

The dijs are provided in Appendix (A.3) for brevity.
Next, we write A;B;C; and D in the polar coordinates

as
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A ¼ 1

2
a T1ð Þeih1 T1ð Þ;B ¼ 1

2
b T1ð Þeih2 T1ð Þ;

C ¼ 1

2
c T1ð Þeih3 T1ð Þ; andD ¼ 1

2
d T1ð Þeih4 T1ð Þ:

ð23Þ

Substituting the polar notation into Eq. (22) and

separating real and imaginary parts, we obtain the

following slow-flow equations

a0 ¼ d16csin/� d12a
d11

; h01

¼ d13a2 þ d14b2 þ d15d2

4d11
� d16ccos/

ad11
; ð24Þ

b0 ¼ � d22b
2d21

;

h02 ¼
�3ð2d24a2 þ d23b2 þ 2d25d2Þ

8d21X2

;

c0 ¼ d33asin/
d31

� d32 c3 � 4cð Þ
4d31

; h03 ¼
d33acos/

d31c
;

d0 ¼ � d42d
2d41

; h04 ¼
�3ð2d45a2 þ 2d44b

2 þ d43d
2Þ

8d41X3

;

/ ¼ h3 þ rT1 � h1;

where (0Þ denotes the derivative with respect to T1.

The steady-states of the system can be obtained by

setting a
0 ¼ b

0 ¼ c
0 ¼ d

0 ¼ /
0 ¼ 0 in Eq. ð24Þ, which

leads to

sin/ ¼ d12aX1

d16c
; cos/ ¼ �acd31 3a2d13 þ 8d11rX1ð Þ

4 c2d15d31 þ 2a2d11d33X1ð Þ ;

d12d33X1

d16
a2 ¼ d32

4
c2 � 4
� �

c2:

By using the trigonometric identities, the frequency

response equation can be obtained as

r ¼ d13a2

4d11
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ac

d33
d31

a2 þ d16
d11

c2
� �� �2

� d12
d11

þ d32
4d31

c2 � 4ð Þ
� �2

s

:

ð25Þ

Equation (25) reveals the relations for amplitudes a

and c with respect to different parameters, including

the detuning parameter r and the dimensionless free-

stream velocity Ur. In the subsequent section, we

present the system’s frequency response using the

analytical results obtained in this section.

3.1 Boundary of the instability region

To determine the boundary of unstable regions of the

wake oscillator as a function of the system parameters,

the damping and nonlinear terms in the solvability

condition are ignored. This is because for i ¼ 1; 2; 3; 4,

di2; the damping terms associated with the structural

mode only affect the transient development of the

amplitude but play an insignificant role in the resulting

frequency of the coupled system. Similarly, the

nonlinear terms di3;4;5 are weak by assumption and

do not significantly affect the frequency. Accordingly,

the solvability condition becomes

d11A
0 ¼ �d16iCe

irT1 ; d21B
0 ¼ 0; ð26Þ

d31C
0 ¼ d33iAe

�rT1 ; and d21D
0 ¼ 0:

From Eq. (26), we can observe that the amplitudes

B and D decrease to the trivial solution. Thus, the

solutions of A and C of Eq. (26) can be assumed in the

forms

A ¼ a1 T1ð ÞekT1 ;C ¼ c1 T1ð Þe kþirð ÞT1 ð27Þ

Substituting Eq. (27) into Eq. (26), the character-

istic equation is obtained as

k
d16
d11

ie2irT1

� d33
d31

ie2irT1 kþ ir

�������

�������
¼ 0; ork2 þ irk� d16

d11

d33
d31

¼ 0:

ð28Þ

Solving for the real parts of the roots of Eq. (28),

the instability boundary reads

r ¼ �2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d16
d11

d33
d31

s

: ð29Þ

We observe that the boundary of the instability

region is found to be a function of the coupling

coefficients, xb; the dimensionless distance of the

absorber from the elastic axis l1 and the absorber mass

ratio lab. The effect of these parameters on the range

of instability region can be analyzed using Eq. (29).

The detailed discussion on the impact of each

parameter on the instability boundary is presented in

Sect. 4.2.
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3.2 Selection of Parameters

To this end, we emphasize that aside from the absorber

parameters, fluid and structural properties have been

sourced from references [12, 18, 24, 48], which were

determined experimentally. Additionally, the fluid

parameters in this study are held constant at b ¼ 0:03

and CL0 ¼ 0:3. A summary of the parameters used for

the absorbers is listed in Table 1, along with their

values. The discussion of the results obtained from the

analytical method is presented next.

4 The analysis of the steady-state solutions

In this section, the results obtained from the method of

multiple scales are analyzed through the frequency

response curves. For this purpose, we used the

absorber parameter values in Table 1. We emphasize

that other system parameters in our system are chosen

from the literature [12, 18, 24, 48]. The first part of this

analysis is to validate the results obtained by the

method of multiple scales (MMS). For this, we

compare the time responses of the system obtained

using MMS with the numerical simulation of the

system. For the numerical simulations, we numeri-

cally integrate Eq. (14) using the Matlab built-in

command ’ode45’, which utilizes the Runge–Kutta

method. The initial condition for the numerical

simulations corresponds to the steady states. The

comparison is shown in Fig. 6. From Fig. 6, we can

observe that for the given values of �, the analytical

solution shows a good agreement with their numerical

counterparts.

4.1 Frequency response curves

In this section, we present the effect of different

absorber parameters on the frequency response of the

coupled system. This step also provides insight into

the optimum selection of key design parameters of the

vibration absorber for effective vibration suppression.

The key design parameter of the linear vibration

absorber includes the distance from the elastic axis,

the new coupling term c3, the absorber’s stiffness,

damping of the absorber, and the absorber’s mass

ratio.

Furthermore, the effects of all the absorber param-

eters are compared to the original system [20], i.e., the

system without any absorber. Figure 7 shows the

effect of the distance of the absorber from the elastic

axis on the system response. Four sets of frequency–

response curves are presented for

l1 ¼ 0:1; 0:3; 0:5; 0:9f g, while the other parameters

are fixed, as listed in Table 1. From Fig. 7, we can

observe that the distance of the absorber from the

elastic axis can suppress the structure’s vibration

compared to the original system (black curve). This

observation can be further explained by the fact that

the absorber’s interaction with the structure at an

arbitrary location acts as a fixed-point force, and a

moment is formed if the force is not on the elastic axis.

Further, as the absorber is placed ahead of the elastic

axis (closer to the leading edge), this creates a counter

moment to the positive pitch response with the nose

up. In Fig. 7, as l1 increases, a more significant

moment arm forms, and hence, a larger suppression in

the amplitude of vibration occurs. We can further

observe that for the first three sets of l1, the system

exhibits saddle-node bifurcations at lower values of r.
However, when l1 is set to 0:9, although the response

of the system decreases significantly, the system does

not show any bifurcation.

To investigate the effects of the absorber damping

on the amplitude of the response, frequency responses

are plotted for fab ¼ 0:1, fab ¼ 0:5, and fab ¼ 0:9,

while the other parameters are fixed. The variation in

the frequency–response curves with fab is shown in

Fig. 8. From Fig. 8, we can observe a trend in the

responses similar to that seen in Fig. 7. The results

depict that increasing the absorber’s damping can

mitigate the structural amplitude vibrations signifi-

cantly. Furthermore, with a particular choice of

damping, fab ¼ 0:9, the response is stable for the

Table 1 Variation of

various parameters used in

the computation

Absorber’s properties

Parameter Value

l1 0:5

xb 0:2

c3 0:1

fab 0:1

lab 1%

k 1:0252
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entire frequency spectrum with a more than 50%

decrease in the structural amplitude compared to the

original system without absorbers.

Next, we present the effect of the absorber param-

eter xb on the system response. This variation is

shown in Fig. 9 for the four sets of parameters, viz.

xb ¼ 0:15; 0:18; 0:2; 0:25f g. For all cases, a lower

Fig. 6 Comparison

between the analytical and

numerical results for the

initial conditions h 0ð Þ ¼
0; _h 0ð Þ ¼ 0; a 0ð Þ ¼
0:1; _a 0ð Þ ¼ 0; q 0ð Þ ¼
1:9; _q 0ð Þ ¼ 0; x1 0ð Þ �
0:1; _x1 0ð Þ ¼ 0 : a the

bending vibration, b the

torsional vibration, c the van
der Pol oscillation, d the

absorber vibration

Fig. 7 Influence of the

absorber’s distance from the

elastic axis on the frequency

response curves
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Fig. 8 Influence of the

absorber’s damping

coefficient on the frequency

response curves

Fig. 9 Frequency response

curves with different values

of frequency ratio xb:

Fig. 10 Impact of different

coupling coefficients c3 on
the frequency response

curves
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amplitude of vibration in the system is observed.

Figure 9 shows a significant reduction in vibration as

xb decreases. This observation can be justified by the

definition of xb. In the current cases, we fix the value

of the mass of the absorber and varyxb. Therefore, the

variation inxb values can only be attained by lowering

the stiffness of the absorber. It is plausible to suggest

that for a specific range of stiffness values, a lower

stiffness value of the absorber implies more absorption

of vibration energy and, hence, lower amplitude

vibrations. Furthermore, for xb � 0:18; we only get a

stable branch of the frequency response with a

significant reduction in the amplitude of the system.

Next, the effect of the coupling parameter c3 on the
frequency–response is analyzed and is shown in

Fig. 10. The other parameters are listed in Table 1.

It is observed that a higher coupling value of c3 leads
to further mitigation of the amplitude of the response.

It can be deduced from the last case of c3 ¼ 2 that if all

the system parameters are kept constant, a significant

vibration suppression of the system can be achieved by

merely increasing the new coupling parameter.

Finally, the effect of the mass ratio on the system

response is presented in Fig. 11. From Fig. 11; we can

observe that the vibration absorber with a high mass

ratio can suppress the amplitudes more than their

lighter counterparts. However, in our case, as men-

tioned earlier, the mass of the absorber is accordingly

cut from the host structure. Therefore, despite the

larger suppression of vibration, the higher absorber

mass ratio is deemed to be impractical due to the huge

cut from the host structure. The result in Fig. 11 is

simply a theoretical investigation depicting the

absorber’s influence in general.

4.2 Stability diagram

It should be noted here that another variable that

represents the flow condition is the dimensionless free-

stream velocity Ur. Hence, to get a thorough under-

standing of the system dynamics, we present the

stability diagram with respect to the dimensionless

free-stream velocity Ur for different sets of

Fig. 11 Frequency

response curves for different

absorber mass ratio lab

Fig. 12 Lock-in and unlock regions for

l1 ¼ 0:5;xb ¼ 0:2; fab ¼ 0:1; c3 ¼ 0:1;lab ¼ 1%:
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parameters. This elucidates the sensitivity of different

parameters on the lock-in range.

We start with the stability diagram for the param-

eter values given in Table 1, which is shown in

Fig. 12. For the sake of completeness, we compare our

current system with the system without any absorber

[24]. In both cases, as the reduced velocity increases,

the width of the lock-in region increases as well.

However, the inclusion of a vibration absorber

decreases the lock-in region at any given speed when

compared to the system without an absorber.

In Fig. 13, the sensitivity of different absorber

parameters on the lock-in range is investigated.

Figure 13a shows the effect of xb on the lock-in

region, while the other parameters are fixed at

l1 ¼ 0:5; fab ¼ 0:1; lab ¼ 1%, and c3 ¼ 0:1. For a

fixed value of the mass ratio, the parameter xb

represents the stiffness of the absorber; therefore, a

decrease inxb leads to lower absorber stiffness values,

which further results in better suppression of the

structural vibration. We further observe that the

instability region increases with an increase in the

parameterxb. Moreover, the instability region is more

sensitive to lower values of the parameter xb as

compared to the higher values.

Next, we present the effect of the coupling term, c3
as shown in Fig. 13b. The other parameters are fixed at

l1 ¼ 0:1; fab ¼ 0:1; lab ¼ 1%, and xb ¼ 0:9. This

coupling parameter represents the action of the

absorber motion on the wake that, in turn, affects the

structural oscillation. The increase in the magnitude of

the coupling coefficient decreases the lock-in region.

This can be further explained by stating that at any

given speed, a higher absorber coupling c3 will

Fig. 13 Effect of a
frequency ratio xb b
coupling coefficient c3 c
distance from the elastic axis

l1 and d absorber mass ratio

lab on the stability curves
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increase the effect of the absorber on the wake

oscillator, which in turn decreases the lock-in region.

Figure 13c shows the effect of l1 on the variation of

the lock-in region. The other parameters are fixed at

c3 ¼ 0:1; fab ¼ 0:1; lab ¼ 1%, and xb ¼ 0:2. From

Fig. 13c, we observe that the lock-in region shrinks

with increasing distance l1. As mentioned earlier, the

reverse moment effect created by the absorber

increases with an increase in the moment arm. The

figure also demonstrates that the instability region is

sensitive to a slight increment in the distance l1.

Therefore, higher values of l1 show greater improve-

ments in the stable region.

Finally, the effect of the mass ratio of the absorber

is shown in Fig. 13d. To depict the effect of this

parameter, the other parameters were fixed at

c3 ¼ 0:1; fab ¼ 0:1; l1 ¼ 0:1, and xb ¼ 0:5. As

shown, the stable regions increase with the increase

in the mass ratio. The sensitivity is very small,

nevertheless, as we incrementally increase the mass

ratio. However, in the industry, it is favorable to keep

the structure as light as possible, if applicable, while

still being effective. In the cases shown, keeping the

absorber at 1% of the host structure is deemed to be

effective.

5 Conclusion

The effects of a vibration absorber on the vortex-

induced vibrations (VIV) of turbine blades were

investigated. This study demonstrated the capability

of the absorber to mitigate the VIV amplitudes and

decrease the lock-in frequency range. The 1:1 internal

resonance of the nonlinear system was analyzed using

the method of multiple scales, and the dynamic

response characteristics of the system were revealed

by deriving the modulation equations. The dynamic

response included a parametric study on the frequency

response and the stability regions analysis of each

solution. The stability of the response was computed

based on the nature of the Jacobian of modulation

equations. Moreover, it was computed for a range of

dimensionless free-stream velocities. Results of the

frequency response indicated that placing the absorber

close to the leading edge decreases the vibration

amplitude. Moreover, the response did not show any

bifurcation beyond a certain distance and became

stable for the same frequency range. Decreasing the

stiffness of the absorber was also very prominent in

mitigating the amplitude noticeably. It was revealed

that, for a range of stiffnesses, the lower stiffnesses

were able to greatly attenuate the vibrations, and at

certain values, the response was completely stable.

Another frequency response showed that the bifurca-

tion characteristics could also be changed by increas-

ing the new coupling coefficient between the absorber

and the fluid wake oscillator. Specific high coupling

coefficients showed stable solutions for the same

frequency range compared to the original system,

which showed saddle-node bifurcations. In addition,

the amplitude of the VIVs was mitigated. Moreover,

the amplitude was further mitigated by increasing the

damping of the absorber and its mass ratio. However,

for practical reasons, a mass ratio of 1% could be

chosen and still provide the required attenuation.

Further, the linear analysis was carried out to under-

stand the dependency of the synchronization region on

the absorber’s parameters by plotting the detuning

parameters versus the free-stream velocity and differ-

ent parameters. Results showed that the stiffness of the

absorber is more sensitive compared to the other

parameters. The present analysis results can be used to

optimize the parameters for further reduction of the

large-amplitude vibrations of blades during the fre-

quency lock-in of VIVs of the blades.
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frequencies.
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