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Broadband Electromechanical
Diode: Acoustic Non-Reciprocity
in Weakly Nonlinear
Metamaterials With
Electromechanical Resonators
Recent attention has been given to acoustic non-reciprocity in metamaterials with nonlin-
earity. However, the study of asymmetric wave propagation has been limited to mechanical
diodes only. Prior works on electromechanical rectifiers or diodes using passive mecha-
nisms are rare in the literature. This problem is investigated here by analytically and
numerically studying a combination of nonlinear and linear metamaterials coupled with
electromechanical resonators. The nonlinearity of the system stems from the chain in one
case and from the electromechanical resonator in another. The method of multiple scales
is used to obtain analytical expressions for the dispersion curves. Numerical examples
show potential for wider operation range of electromechanical diode, considerable har-
vested power, and significant frequency shift. The observed frequency shift is demonstrated
using spectro-spatial analyses and it is used to construct an electromechanical diode to
guide the wave to propagate in one direction only. This only allows signal sensing for
waves propagating in one direction and rejects signals in any other direction. The perfor-
mance of this electromechanical diode is evaluated using the transmission ratio and the
asymmetric ratio for a transient input signal. Design guidelines are provided to obtain
the best electromechanical diode performance. The presented analyses show high asymme-
try ratio for directional-biased wave propagation in the medium-wavelength limit for the
case of nonlinear chain. Indeed, the present asymmetric and transmission ratios are
higher than those reported in the literature for a mechanical diode. The operation frequen-
cies can also be broadened to the long-wavelength limit frequencies using the resonator
nonlinearity. [DOI: 10.1115/1.4054962]

Keywords: nonlinear vibration, nonlinear metamaterials, acoustics non-reciprocity,
electromechanical diode

1 Introduction
Metamaterials are artificially fabricated in special engineering

configurations and constitutions. These configurations enable inter-
esting dynamical properties that cannot be found in conventional
homogeneous materials [1,2]. These interesting unique properties
make metamaterials perform incredibly in a wide pool of engineer-
ing applications (e.g., low-frequency vibration mitigation,
directional-biased wave propagation, wave focusing, and cloaking).
Metamaterials can be arranged in periodic patterns of cells also

known as phononic crystals [3–8]. Periodicity in phononic crystals
can be represented by periodicity in material, geometry, and bound-
ary conditions. These periodic crystals can reflect waves with a
wavelength near the lattice constant due to Bragg scattering and
hence they can be employed in low-frequency vibration reduction
applications. Nevertheless, the restriction on the lattice constant
size limits this application to large structures only.
In order to extend the application of metamaterials to control

smaller structures, researchers suggested embedding local resona-
tors inside the cells [9]. This breaks the size constraint in Bragg

scattering and allows hybridizing the resonance mode with the long-
wave nondispersive modes of the underlying medium, thus reflect-
ing waves with wavelength much smaller than the lattice constant
even in the absence of periodicity [10]. Indeed, both Bragg scatter-
ing and mode hybridization can be observed in locally resonant
metamaterials; however, each effect can be dominant at certain
design parameters [11].
In addition to these unique low-frequency vibration attenuation

phenomena observed in linear metamaterials, nonlinearity in meta-
materials can show further interesting wave propagation phenom-
ena. This includes, but is not limited to, adjusted bandgap limits
[12], solitons [13,14], directional-biased wave propagation [15],
and enhanced energy harvesting and sensing [16].
These interesting nonlinear wave propagation phenomena can be

obtained through different analytical and numerical analyses. For
analytical analyses, the type and the strength of nonlinearity deter-
mine how the problem can be tackled. For instance, weakly nonlin-
ear systems can be handled using different perturbation approaches
[17,18]. The use of these techniques can be found in Ref. [19] for
nonlinear chains, in Ref. [20] for locally resonant metamaterials,
and in Ref. [21] for nonlinear chains with multiple linear and non-
linear local resonators. On the other hand, systems with strong non-
linearity should be handled using different techniques and closed
form solution can be obtained in some cases analytically [22], or
with the help of homotopy analyses [23]. However, numerical anal-
yses should be employed when the approximate analytical solution
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of the problem is not accurate or when interesting nonlinear phe-
nomena cannot be revealed by analytical analyses. These analyses
include temporal space analyses and spectro-spatial analyses
[20,21,24–26].
The bandgap size in locally resonant metamaterials depends sig-

nificantly on the added mass to the system, in that a wider bandgap
requires a larger mass. Therefore, controlling vibrations in the
structure may be limited by weight restrictions in many engineer-
ing applications. These restrictions can be overcome by adding a
stiffness to the structure through attaching piezoelectric patches
to periodic patterns of cells [27–31]. In particular, electromechan-
ical coupling can generate an electromechanical bandgap. The pie-
zoelectric can also be used for energy harvesting and sensing. This
is inspired by the flat frequency band in metamaterials and can be
realized by shunting the piezoelectric material to a load resistor
[32–36]. Consequently, metamaterials can be used for simulta-
neous energy harvesting and vibration reduction applications.
For weak electromechanical coupling, it was analytically and
experimentally shown that harvesting energy in metamaterials
has no effect on the bandgap size [37]. The study of nonlinear
systems also showed that the bandgap size is only affected by
the nonlinearity in the chain in the case of weak electromechanical
coupling.
Non-reciprocity in acoustic and elastic metamaterials can be

obtained by breaking the time reversal symmetry [38]. Several tech-
niques are presented in the literature to break the time reversal sym-
metry. For instance, kinetic media with moving parts or circulating
flows can lead to acoustic non-reciprocity [39,40]. Additionally,
varying material properties in activated media can lead to breaking
the time reversal symmetry [41,42]. The modulation frequency and
amplitude of the property variation in the time and space domains
have a significant role in the obtained non-reciprocity. Examples
in the literature discussed the low-frequency amplitude variation
(i.e., one-way Bragg mirror) [43–45], large amplitude-fast modula-
tion (i.e., Willis coupling) [46], slow modulation and topological
properties (i.e., quantum Hall effect) [47,48], and piezoelectric
metastructure shunted with one-way electric transmission lines
[49]. The aforementioned techniques are limited by their impracti-
cality and the need of applying external bias. Therefore, researchers
have drawn their attention to other passive techniques by consider-
ing nonlinear metamaterials.
The nonlinearity in metamaterials can lead to a significant wave

distortion. This wave distortion results in frequency conversion,
enabling output waves to appear at frequencies different from the
input wave frequency. Indeed, when the nonlinear metamaterial is
coupled to a linear metamaterial (i.e., the linear metamaterial has
a bandgap tuned to the frequency conversion region in the nonlinear
metamaterial), the energy content with shifted frequency can prop-
agate in the forward configuration. However, waves propagating
from the linear metamaterial side (backward configuration) will
be tuned inside the linear metamaterial’s bandgap. This is an indi-
cation that directional-biased wave propagation can be realized
[15,50–53]. This wave non-reciprocity can also be observed in non-
linear granular structures [52] or nonlinear hierarchical internal
structures [54]. Spectro-spatial analyses can be employed to
examine the frequency conversion in nonlinear metamaterials.
The spectro-spatial features can show a significant frequency shift
at the medium-wavelength limit in both nonlinear chain and nonlin-
ear local resonators metamaterials [16,20,21]. Unlike the case of
nonlinear chain, nonlinear local resonator metamaterials can also
show significant frequency shift at the long-wavelength limit in
addition to the medium-wavelength limit [21,55]. Models of acous-
tic diodes are limited to the use of local mechanical resonators
embedded within the periodic structure or simple coupling
between linear and nonlinear metamaterials. To the best of our
knowledge, there are no works in the literature investigating the
use of electromechanical resonators in nonlinear metamaterials for
designing electromechanical diodes except our preliminary work,
recently published in a conference proceeding [56]. In addition,
there is no work in the literature that employs the benefit of

frequency shift for the case of nonlinear resonator to broaden the
operation frequency of the electromechanical diode. Consequently,
the asymmetric and transmission ratios are not relatively high for
diodes reported in the literature. Furthermore, design guidelines
for broadening the operation range of mechanical/electromechani-
cal diode and increasing the asymmetry ratio are rarely found in
the literature. These knowledge gaps form the core motivation of
the current study.
In this paper, we study how a weakly nonlinear metamaterial with

electromechanical local resonators can be used to maximize the per-
formance of electromechanical diodes (i.e., increase both asymme-
try and transmission ratios). The nonlinearity stems from the chain
in one case and from the local electromechanical resonator in
another, and is of a cubic type. These sources of nonlinearities
can offer different operation frequency regions for the diode. The
former can enable the diode to operate at medium-wavelength
limit, while the latter can broaden the operation frequency range
since it can enable the diode to operate at both medium-/long-
wavelength limits. The system is simulated numerically and vali-
dated against other models in the literature. The numerical results
are used to obtain the band structures and analyzed further by
spectro-spatial analyses to demonstrate the frequency shift in the
nonlinear proposed structure. This frequency shift is then used to
design an electromechanical diode. The designed electromechanical
diode is evaluated based on its transmission ratio and the asymmet-
ric ratio for a transient input signal. The rest of the paper is as
follows. In Sec. 2, we present a mathematical model for the pro-
posed weakly nonlinear metamaterial and the linear and nonlinear
dispersion relations. In Sec. 3, we present the analytical and numer-
ical band structures for different types of nonlinearities. Then, the
significant frequency shift observed by analyzing the spectro-spatial
features is presented in Sec. 4. This significant frequency shift is
employed to design an electromechanical diode in Sec. 5. In
Sec. 6, design guidelines for best electromechanical diode perfor-
mance are provided. Finally, we summarize the main findings in
the conclusion section.

2 System Description and Mathematical Modeling
A schematic diagram for the metamaterial chain with electrome-

chanical resonators is shown in Fig. 1. The chain is constructed of s
periodic cells with a mass,M, lattice constant, a, and connected by a
linear or weakly nonlinear spring. The springs have linear coeffi-
cient, K, and nonlinear coefficient, �α. Attached to each cell, there
is a local linear or nonlinear electromechanical resonator shunted
to an external resistor R. The electromechanical resonator has effec-
tive mass, mp, effective linear stiffness, k1, effective nonlinear stiff-
ness, �αr , electromechanical coupling coefficient, θ, and capacitance
of the piezoelectric element, Cp. It is noteworthy here that the
system is reduced to a linear system when �α = 0 and �αr = 0. More-
over, we set �αr = 0 for the case of nonlinear chain only, while we set
�α = 0 for the case of nonlinear resonator.
In the absence of damping, the equation of motions for the nth

cell and its electromechanical resonator can be expressed as
follows:

M�̈un + 2K�un − K�un+1 − K�un−1 + �α(�un − �un+1)
3 + �α(�un − �un−1)

3

+ k1(�un − Yn) + �αr(�un − Yn)
3 = 0 (1)

mpŸn + k1(Yn − �un) + �αr(Yn − �un)
3 − θ�vn = 0 (2)

RCp�̇vn + �vn + Rθ(Ẏn − �̇un) = 0 (3)

where �un is the displacement of the nth cell, Yn is the absolute dis-
placement of the electromechanical resonator, �vn is the harvested
voltage in the nth electromechanical resonator, and the dots are
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the derivative with respect to time. To get compact set of equations,
we define the relative displacement of the nth electromechanical
resonator as �yn = Yn − �un. Therefore, the governing equations of
motion of the nth cell become

M�̈un + 2K�un − K�un+1 − K�un−1 + �α(�un − �un+1)
3

+ �α(�un − �un−1)
3 + mp(�̈yn + �̈un) = 0 (4)

mp�̈yn + k1�yn + �αr�y
3
n − θ�vn = −mp�̈un (5)

RCp�̇vn + �vn + Rθ�̇yn = 0 (6)

We introduce the following variables and parameters in order to
normalize Eqs. (4)–(6):

ω2
n = K/M, ω2

d = k1/mp, �k = k1/K, un = �un/U0

yn = �yn/U0, vn = �vn/V0, εα = �αU2
0/K, εαr = �αrU2

0/k1
Ω0 = ωn/ωd , α1 = θV0/k1, α2 = RCpωn

α3 = Rθωny0/V0, τ = ωnt

(7)

whereU0 and V0 are the zeroth cell displacement amplitude and har-
vested voltage amplitude, respectively.
Substituting Eq. (7) into Eqs. (4)–(6) yields the following nor-

malized equations:

ün + 2un − un+1 − un−1 + εα(un − un+1)3

+εα(un − un−1)3 + �kΩ2
0(ÿn + ün) = 0

(8)

Ω2
0ÿn + yn + εαry

3
n − α1vn = −Ω2

0ün (9)

α2v̇n + vn + α3ẏn = 0 (10)

In order to obtain an approximate analytical solution, we need to
expand the solution using the power series and separate the linear
and nonlinear problems. To handle the problem using the method
of multiple scales, we assume that the system is weakly nonlinear
(i.e., α= ɛα, and αr= ɛαr). Therefore, the first-order expansion
can be written as

un(t, ε) = un0(T0, T1) + εun1(T0, T1) + o(ε2) (11)

yn(t, ε) = yn0(T0, T1) + εyn1(T0, T1) + o(ε2) (12)

vn(t, ε) = vn0(T0, T1) + εvn1(T0, T1) + o(ε2) (13)

where T0= τ and T1= ɛτ are the fast and slow time scales, respec-
tively, while ɛ is a small dimensionless parameter.

In addition, the partial derivatives with respect to the defined time
scales can be expressed using the chain rule as

( ˙ ) = D0 + εD1 + · · · (14)

( ¨ ) = D2
0 + 2εD0D1 + · · · (15)

Substituting Eqs. (11)–(15) into Eqs. (8)–(10) and separating the
coefficients at different orders of ɛ leads to
order ε0

D2
0un0 + 2un0 − u(n−1)0 − u(n+1)0 + �kΩ2

0D
2
0(yn0 + un0) = 0 (16)

Ω2
0D

2
0yn0 + yn0 − α1vn0 = −Ω2

0D
2
0un0 (17)

α2D0vn0 + vn0 + α3D0yn0 = 0 (18)

order ε1

D2
0un1 + 2un1 − u(n−1)1 − u(n+1)1 + �kΩ2

0D
2
0(yn1 + un1)

= −2�kΩ2
0D0D1(yn0 + un0) − 2D0D1un0 − α(un0 − u(n−1)0)

3

− α(un0 − u(n+1)0)
3 (19)

Ω2
0D

2
0yn1 + yn1 − α1vn1= −Ω2

0D
2
0un1 − 2Ω2

0D0D1un0

− αry
3
n0 − 2Ω2

0D0D1yn0 (20)

α2D0vn1 + vn1 + α3D0yn1 = −α2D1vn0 − α3D1yn0 (21)

Considering the linear problem (i.e., at order ɛ0) and following
Ref. [16], the solution of the system can be expressed using the
Floquet–Bloch theory as

un = Aei(nk−ωT0) + c.c (22)

yn = Bei(nk−ωT0) + c.c (23)

vn = Cei(nk−ωT0) + c.c (24)

where i =
����
−1

√
, c.c is complex conjugate, and k= aq is the dimen-

sionless wavenumber since q is the wavenumber. Following some
algebraic manipulation [16], we obtain the dispersion relation as

−ω2 + (2 − 2 cos k) − �kΩ2
0ω

2(1 + Kω) = 0 (25)

where Kω = Ω2
0ω

2/(1 − α1Γ −Ω2
0ω

2), and Γ= iα3ω/(1− iα2ω).
Solving Eq. (25) reveals five roots. Four of them are complex

Fig. 1 A schematic diagram for the nonlinear acoustic metamaterial with electrome-
chanical resonators
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conjugate pairs, while the fifth is pure complex. Therefore, plotting
the band structure of the propagating modes requires separating the
four complex conjugate pairs only since the fifth root is always pure
complex.
For the nonlinear problem (i.e., at order ɛ), one can write the non-

linear frequency equation, following Ref. [16], as

ωnl = ω − εβ′ (26)

where β′ is the phase resulting from expressing A in the polar form
(i.e., where A= γeiβ, where γ and β are real and represent the vibra-
tion amplitude and the phase, respectively) and is defined as

β′ = c1γ
2
0 (27)

The constant c1 is defined as

c1 = −
gl + fh

h2 + g2
(28)

where g, l, h, and f are defined in Appendix for different sources of
nonlinearity. It is noteworthy that the detailed derivations of the
linear and nonlinear dispersion relations can be found in
Ref. [16], while the analytical summarized results here are pre-
sented for completeness of the current work.

3 Analytical and Numerical Bandgaps
To check our analytical dispersion relations, we plot the analyti-

cal and numerical band structure of the system with electromechan-
ical resonator in Fig. 2. To simulate the infinite periodic system, a
very long chain consisting of 500 cells was used to construct the
numerical band structure. Following Refs. [16,20,57], the parame-
ters of the metamaterial with electromechanical resonator are
chosen to be �k = 1, ωn=ωd= 1000, k1= 106N/M, Cp= 13.3 ×
10−9 F, R= 107Ω, and θ= 10−8 N/V. The mechanical parameters
of the chain are chosen to demonstrate a locally resonant bandgap
around ω= 1, while the electromechanical parameters are chosen
to represent the weak electromechanical coupling case. Numerical
band structure can be obtained by exciting the system by a transient
wave packet and integrating the system in Eqs. (8)–(10) numerically
in MATLAB. This transient wave packet consists of Ncy periods con-
fined within a slowly modulated Hann window. Therefore, the
signal represents a minimal band of frequencies centered around
the carrier frequency with quasi-monofrequency content. To limit
the propagation in one direction, we define the initial conditions as

um(0) =
1
2
(H(m − 1) − H(m − 1 − Ncy2π/k))(1

− cos (mk/Ncy)) sin (mk) (29)

u̇m(0) =
1
2
(H(m − 1) − H(m − 1 − Ncy2π/k))

(−ωnω/Ncy sin (mk/Ncy) sin (mk)

−ωnω(1 − cos (mk/Ncy)) cos (mk)) (30)

ym(0) = Kωum(0) (31)

ẏm(0) = Kωu̇m(0) (32)

vm(0) = ΓKωum(0) (33)

where H(x) is the Heaviside function, and Ncy is the number of
cycles and is chosen to be Ncy= 7 in this section.
Upon analyzing the output simulation results of the system

excited by a specific wavenumber and its associated frequency
using 2D fast Fourier transform (FFT), a point in the dispersion
curves (frequency/wavenumber) can be determined by picking the
peak of 2D FFT. Then, the complete band structure can be obtained
from sweeping the wavenumber over the first Brillouin zone at the
acoustic and optical modes.
Before presenting the analytical and numerical results, it is

worthy to define the different wavelength limits. Note that the
wavelength and wavenumber are inversely proportional to each
other. Therefore, the long-wavelength limit is defined at relatively
small value of wavenumber (i.e., k∼ π/9 in Sec.4) within the first
irreducible Brillouin zone (i.e., k∈ [0, π]). On the other hand, the
short-wavelength limit is associated with relatively large value of
wavenumber (i.e., k∼ 7π/9 in Sec. 4). At a relatively moderate
value of wavenumber, we define the medium-wavelength limit
(i.e., k∼ π/2 in Sec. 4).
Figure 2(a) depicts the linear and nonlinear analytical band struc-

tures (solid lines) and the nonlinear numerical band structure (aster-
isks) for the nonlinear chain case (i.e., the nonlinearity in the local
resonator is set to zero). The analytical results (solid lines) demon-
strate that hardening nonlinearity shifts the dispersion curves up as
compared to the linear curves. This shift is more pronounced at the
long-wavelength limit (i.e., large values of k). Moreover, the numer-
ical integration results (asterisks) also demonstrate that the analyti-
cal solution can predict the boundary of the band structure (i.e.,
cutoff and cut-on frequencies of the optical and acoustics modes),
but fail to capture the significant frequency shift, which is observed
numerically at the medium-wavelength limit (i.e., at values around
k = π/2) in the optical mode. In particular, if the system is excited by
input waves with frequencies within the medium-wavelength limits
(region inside the box in Fig. 2(a)), the output waves appear at dif-
ferent frequency/wavenumber limits (region inside the circles on
long and short-wavelength limits in Fig. 2(a)), coinciding with
the linear dispersion curves. Since the input frequency is altered
by the nonlinear metamaterial, a frequency shift is anticipated in
this region. The observed frequency shift may be attributed to
second harmonic generation due to nonlineairty in the chain [58].
Moreover, it should be noted that this frequency shift can only be
observed in the case of transient wave inputs but not for harmonic
wave inputs [20]. This region of frequency shift is referred as
pseudo gap in the literature. This frequency shift will be used to
design our electromechanical resonator and will be discussed
further using the spectro-spatial analyses in the next section.

Fig. 2 Band structure for linear and nonlinear metamaterials with electromechanical resonators obtained
analytically and numerically: (a) nonlinear chain case ɛA2α=0.06, ɛA2αr=0 and (b) nonlinear resonator case
ɛA2α=0, ɛA2αr=0.06
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After discussing the effect of nonlinearity that stems from the
nonlinear chain, we present the band structure for the nonlinear
electromechanical resonator in Fig. 2(b). Unlike the case of nonlin-
earity in the chain, the analytical results demonstrate that hardening
nonlinearity shifts the dispersion curves up not only in the medium-/
short-wavelength limits but also at the long-wavelength limit. This
shift is more significant at frequencies near the fundamental fre-
quency of the electromechanical resonator. Therefore, the effect
of nonlinearity at the long-wavelength limit in the optical mode
can be realized, unlike the case of nonlinear chain where the
effect of nonlinearity is limited to the medium-/short-wavelength
limits. For the case of resonator nonlinearity, numerical results
(asterisks) indicate that input waves with frequencies within the
medium and long-wavelength limits (regions inside the box in
Fig. 2(a)) in the optical mode appear at different regions as an
output wave. These regions are highlighted inside the circles and
coincide with the linear dispersion curves. This suggests that the
analytical solution fails to predict the band structure in these
regions due to the significant frequency shift. The observed fre-
quency shift may be attributed to second harmonic generation due
to nonlinearity in the local resonator [58]. This shift will be
further investigated in the next section. Similar frequency shift
appears at the short-wavelength limit in the acoustics mode,
where the effect of the electromechanical resonator’s nonlinearity
is maximum in this mode due to close tuning between the electro-
mechanical resonator and frequencies in this region.
In regionswhere our solution fails, higher-order perturbations [59]

and wavenumber-space band clipping [60] may need to be consid-
ered to capture the frequency/wavenumber shift in these regions
accurately. The results of band structures in Fig. 2 indicate the pos-
sibility of a significant frequency shift; however, they do not reveal
any further details on the nature of thewave distortion, the output fre-
quency content, and the spatial properties. Therefore, in the next
section, we employ different signal processing techniques to investi-
gate the spectro-spatial features and obtain further detailed
information.

4 Spectro-Spatial Analysis
To further demonstrate the significant frequency shift at the

medium-/long-wavelength limits in the optical mode for both
types (i.e., hardening and softening) and sources (i.e., chain and res-
onator) of nonlinearities, we analyze the numerical results further by
utilizing different signal processing techniques.

We plot the spatial profile of the input and output voltage signals
harvested by the electromechanical resonator at a snapshot during
the time of the simulation in Fig. 3. To avoid the appearance of
any reflective waves, the snapshot is presented before the wave
arrives at the other end of the chain. Since we are simulating a
very long chain (i.e., 500 cells), we anticipated that the qualitative
behavior at the output cell would be similar to the snapshot that
we presented. Therefore, we refer to the snapshot as the output
wave in the following discussion. At long-wavelength limit (i.e.,
k∼ π/9) with chain nonlinearity (Fig. 3(a)), the results indicate
that the chain nonlinearity has no effect on the output wave. In par-
ticular, the output wave is not distorted at all at this wavelength limit
for chain nonlinearity. On the other hand, results at medium-
wavelength limit (i.e., k∼ π/2) demonstrate that the input signal is
severely distorted and broken into several components, as shown
in Fig. 3(b). These components are (1) one localized high-amplitude
wave (solitary wave) and (2) two stretched and low-amplitude
waves (dispersive waves). This indicates that the output wave
appears at different frequencies other than the input frequency.
For nonlinear electromechanical resonator case, the results

demonstrate that severe output wave distortion can be observed at
long-wavelength limit (i.e., k∼ π/9; Fig. 3(c)) and medium-
wavelength limit (i.e., k∼ π/2; Fig. 3(d )). Unlike the case of chain
nonlinearity, severe wave distortion at long-wavelength limit
(i.e., k∼ π/9) due to resonator nonlinearity can be observed. There-
fore, the input signal at this wavelength limit can appear at frequen-
cies other than the input frequency. In addition, the wave distortion
at medium wavelength limit (i.e., k∼ π/2) due to resonator nonlin-
earity is similar to the distortion observed in the nonlinear chain
case at the same wavelength limit. Although the wave distortion
in the case of nonlinear resonator is less severe than the distortion
in the case of nonlinear chain, the case of nonlinear resonator can
offer a significant frequency shift at the long-wavelength limit
(i.e., k∼ π/9) unlike the case of nonlinear chain.
The energy content of the frequency/wavenumber components is

shown in Fig. 4. The figure presents the short-term Fourier trans-
form (STFT) of the input/output signals’ spatial components over
the spatial domain. We use a Hann window with the size of the
input signal to contain the propagating wave. For nonlinear chain
case, the results indicate that the output voltage signal is broken
into three components for hardening nonlinearity (Fig. 4(a)) and
into two components for softening nonlinearity (Fig. 4(b)). For
hardening nonlinearity, the first component appears at wavenum-
ber/frequency above the input wavenumber/frequency window

Fig. 3 Spatial profile of the input/output voltage in the optical mode: (a) k= π/9, |ɛA2α|=0.03,
|ɛA2αr|=0, (b) k= π/2, |ɛA2α|=0.03, |ɛA2αr|=0, (c) k= π/9, |ɛA2α|=0, |ɛA2αr|=0.03, and (d) k=
π/2, |ɛA2α|=0, |ɛA2αr|=0.03
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and it has the highest energy content. This is not surprising since the
band structure figures showed that hardening nonlinearity shifts the
dispersion curves up; therefore, the highest energy content compo-
nent appears above the input frequency/wavenumber window. The
second component appears inside the initial window and it has the
lowest energy content. Finally, the third component is shifted below
the initial window and its energy content is between the first and
second components. Thus, most of the energy content of the
input signal (i.e., inside the ellipses on the figure) appears at
output signal frequencies different than the input signal frequencies.
This shows a good potential for using the proposed system to design
an electromechanical diode. For softening nonlinearity, the first
component appears outside the input frequency/wavenumber
window and it has low energy content. The second component
appears below the input window range and has the highest energy
content. Although the case of softening nonlinearity shows also a
significant frequency shift (i.e., inside the ellipses on the figure), a
significant portion of the energy content appears inside the input
frequency/wavenumber window unlike the case of hardening non-
linearity. Therefore, we anticipate that hardening chain has better
performance than softening chain in terms of non-reciprocal
energy transmission.
For the case of nonlinear resonator, the results demonstrate a sig-

nificant frequency shift at the long-wavelength limit (i.e., k∼ π/9)
unlike the case of nonlinear chain. For softening nonlinearity
(Fig. 4(c)), the STFT of the output voltage wave shows the presence
of multiple frequency/wavenumber components. These components
stretch over a wide range of frequency/wavenumber. Most of those
components appear outside the input frequency/wavenumber
window (i.e., components confined inside the ellipses). For harden-
ing nonlinearity (Fig. 4(d )), the energy content also extends outside
the input frequency/wavenumber window. In particular, one of the
output component stretches inside and outside the input window,
while the other component is completely outside the input
window. Therefore, hardening nonlinearity can also result in signif-
icant frequency shift at long-wavelength limit (i.e., k∼ π/9) due to

resonator nonlinearity. However, the frequency/wavenumber
range at which the output signal stretches is narrower than that
for the softening nonlinearity case. At medium-wavelength limit
(i.e., k∼ π/2), the output signal is also broken into multiple compo-
nents due to resonator nonlinearity similar to the case of nonlinear
chain. For instance, softening nonlinearity breaks the output signal
into three components as shown in Fig. 4(e). The highest energy
content component appears below the input frequency/wavenumber
window, while the lowest energy content component appears inside
the input window. The third component has a moderate energy
content and lies outside the input window. Since most of the
output energy content appears outside the input window (i.e., com-
ponents confined inside the ellipses), the resonator nonlinearity can
also significantly shift the frequency content of the input signal at
medium-wavelength limit (i.e., k∼ π/2). Therefore, this type of non-
linearity is suitable to design an electromechanical diode at
medium- and long-wavelength limits. For hardening nonlinearity
case (Fig. 4(e)), resonator nonlinearity splits the output signal into
two components. The first one has high energy content and is
shifted up due to hardening nonlinearity, while the second has
low energy content and appears below the input window. Since
some of the energy content also appears outside the input window
(highlighted by ellipses in the figure), hardening nonlinearity can
also show a significant frequency shift. However, this shift is not
as significant as the shift in the case of softening nonlinearity for
the resonator nonlinearity case.
Further demonstration of the significant frequency shift in

the system can be obtained by plotting the contour of 2D FFT
for the output signal as shown in Fig. 5. The results also indicate
that the output signal frequency components are distributed over a
wide range of frequencies, indicating the presence of significant fre-
quency conversion. For instance, chains with hardening nonlinear-
ity (Fig. 5(a)) distribute the energy content over a wider range of
frequencies as compared to the case of softening nonlinearity
(Fig. 5(b)). Moreover, the high energy components are distributed
over wavenumbers above and below the medium-wavelength

Fig. 4 Spectrograms of the input/output voltage in the optical mode: (a) k= π/2, ɛ2Aα=0.03,
ɛ2Aαr=0, (b) k= π/2, ɛ2Aα=−0.03, ɛ2Aαr=0, (c) k= π/9, ɛ2Aα=0, ɛ2Aαr=−0.03, (d) k= π/9,
ɛ2Aα=0, ɛ2Aαr=0.03, (e) k= π/2, ɛ2Aα=0, ɛ2Aαr=−0.03, and (f) k= π/2, ɛ2Aα=0, ɛ2Aαr=0.03

021003-6 / Vol. 145, APRIL 2023 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/vibrationacoustics/article-pdf/145/2/021003/6930965/vib_145_2_021003.pdf by Virginia Polytechnic Institute and State U

niversity user on 07 January 2023



limit (i.e., wavelength of the input signal (k∼ π/2)). In particular,
most of the energy content is concentrated above the input signal
frequency for hardening chains, while it is concentrated below the
input signal frequency for softening chain. On the other hand, the
results for resonator nonlinearity (Figs. 5(c)–5( f )) indicate similar
significant frequency conversion at both long- and medium-
wavelength limits unlike the case of chain nonlinearity, which
limits the frequency conversion to the medium-wavelength limit
(i.e., k∼ π/2). For instance, hardening nonlinearity stretches the fre-
quency content over a wide range of frequencies, as shown in
Fig. 5(c). This stretch is even wider for the case of softening reso-
nator frequency, as depicted in Fig. 5(d ). Beyond the significant fre-
quency conversion obtained at long-wavelength limit (i.e., k∼ π/9),
resonator nonlinearity can also show a significant frequency shift at
medium-wavelength limit (i.e., k∼ π/2). This shift is demonstrated
by the clear stretching of the signal over wider range of frequencies
for the hardening nonlinearity in Fig. 5(e) and softening nonlinear-
ity in Fig. 5( f ).
The discussion in this section emphasizes the presence of signif-

icant frequency shift (conversion) due to the nonlinearity in the pro-
posed structure. This frequency conversion can be observed at
medium-wavelength limit (i.e., k∼ π/2) for both types of nonlinear-
ity and at long-wavelength limit (i.e., k∼ π/9) in the case of nonlin-
ear resonator only. In the following section, we will then investigate
how to design an electromechanical diode based on the observed
direction. Moreover, we will also investigate the anticipated
increase in the frequency band of the diode by the resonator nonlin-
earity since it shows a significant frequency shift at both long- and
medium-wavelength limits.

5 Electromechanical Diode
Based on the significant frequency shift observed in the previous

sections, we design an electromechanical diode for direction-biased
waveguide applications. This diode allows waves to propagate in

one direction, therefore harvesting energy and sensing waves prop-
agating in only one direction. A schematic diagram for the proposed
electromechanical diode is shown in Fig. 6. The electromechanical
diode is constructed from linear and nonlinear metamaterials. The
nonlinear metamaterial with parameters defined above has a
significant frequency shift region at medium-wavelength limit
(i.e., k∼ π/2) in the optical mode for the case of nonlinear chain,
and long-/medium-wavelength limit for the case of the nonlinear
resonator in the optical mode. The linear metamaterial is designed
to have a bandgap tuned to the medium (i.e., k∼ π/2) or long-
wavelength (i.e., k∼ π/9) limits in the optical mode. Any wave
with frequency in these regions and propagating in the nonlinear
metamaterial has some energy content with frequencies different
than the excitation frequency and outside these regions due to the
significant frequency conversion. The output signal can propagate
into the attached linear metamaterial since its bandgap is tuned to
the input frequency. Therefore, voltage can be harvested in the
forward configuration. On the other hand, a wave with the same fre-
quency band does not propagate when it excites the linear metama-
terial in the backward configuration. Therefore, voltage cannot be
harvested in this configuration.
The combination of the linear and nonlinear chains construct-

ing the electromechanical diode for forward and backward con-
figurations is shown in Fig. 7. The nonlinear metamaterial
consists of 350 cells with the same parameters defined in the pre-
vious sections and the nonlinearity stems from the chain or elec-
tromechanical resonator. The linear metamaterial consists of 150
cells. The parameters of the linear metamaterial are chosen to
tune the chain bandgap to the significant frequency shift region
in the nonlinear metamaterial. It is noteworthy here that we
chose the mass of the linear chain to be equal to the nonlinear
chain mass to reduce the impedance mismatch. The linear
chain has a stiffness, Kl, mass, Ml, local resonator stiffness, k1l,
and local resonator mass, mpl. We assume that the linear chain
has electromechanical coupling terms similar to those in the

Fig. 5 Imagesof the2DFFTcontourof theoutput voltage in theopticalmode: (a)k= π/2, ɛ2Aα=
0.03, ɛ2Aαr=0, (b) k= π/2, ɛ2Aα=−0.03, ɛ2Aαr=0, (c) k= π/9, ɛ2Aα=0, ɛ2Aαr=0.03, (d) k= π/9,
ɛ2Aα=0, ɛ2Aαr=−0.03, (e) k= π/2, ɛ2Aα=0, ɛ2Aαr=0.03, and (f) k= π/2, ɛ2Aα=0, ɛ2Aαr=−0.03
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nonlinear chain. We define the following set of dimensionless
parameters for the linear chain

�kl = Kl/K; �Ml =Ml/M; �kp = k1l/k1; �mp = mpl/mp (34)

where �mp is set to 1 for all cases to reduce the impedance mismatch,
and Ncy= 60 for all input signals.
For a narrow band frequency excitation, we excite both configu-

rations by Ncy period of burst signal defined as

Fex =
1
2
A H(t) − H t −

2πωnNcy

ωωd

( )[ ]

×
1
2
1 − cos

ωdω

ωnNcy
t

( )[ ]
sin

ωdω

ωn
t

( )
(35)

where Ncy= 60. It is noteworthy that the frequency distribution of
this signal becomes narrower with increasing the number of
periods (waves) in the input force.
To evaluate the performance of the electromechanical diode, we

need to calculate the input and output energy harvested in the 1st
and 500th cells. The power can be determined as

Pn =
V2
n

R
(36)

In each configuration, the transmission ratio can be determined as

Trf =

�τ
0P500dτ�τ
0P1dτ

(37)

Trb =

�τ
0P1dτ�τ

0P500dτ
(38)

where Trf and Trb are the transmission ratios for the forward and
backward configurations, respectively. Upon calculating the trans-
mission ratios for each configuration, the asymmetric ratio can be
calculated as

σ =
Trf
Trb

(39)

Before analyzing the proposed diode response, we show the tran-
sient input force profile in Fig. 8. The input force was generated
using Eq. (35). This force will be applied in all backward and
forward configurations. For excitation within the long-wavelength
limit (i.e., k= π/9), the input force is shown in Fig. 8 for ω= 1.5.
On the other hand, Fig. 8(b) presents the input force with ω= 2
for excitation within the medium-wavelength limit (i.e., k= π/2).
It is noteworthy that the harvested voltage in the input cell, which
is shown in Figs. 9–11, can differ from the input force profile, espe-
cially, in the case of nonlinear resonator. Indeed, the nonlinearity in
the local resonator may affect the nonlinear local resonator response
resulting in a wave distortion.
For the case of nonlinear chain, the response of the forward and

backward configurations for different types of nonlinearity is
shown in Fig. 9. At medium-wavelength limit (i.e., k∼ π/2), we
excite the system by a signal with ω= 2, tuning the bandgap of the
linear chain to the medium-wavelength limit (i.e., k∼ π/2) in
the optical mode in the nonlinear chain. For hardening chain, the

Fig. 6 A schematic diagram for the electromechanical diode

Fig. 7 A schematic diagram for the forward and backward configurations
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results indicate that the wave can propagate in the forward configu-
ration (Fig. 9(a)); therefore, voltage can be sensed on the other
end.However, the inputwave cannot propagate in the backward con-
figuration, thus no voltage can be harvested and the system acts as
direction-biased waveguide, as shown in Fig. 9(b). For forward con-
figuration, the transmission ratio is Trf = 0.99. The achieved trans-
mission ratio in the forward configuration is high as compared to
Refs. [15,52]. The transmission ratio for the backward configuration
is Trb≈ 10−7.Moreover, the asymmetric ratio for the electromechan-
ical diode is σ≈ 6.4 × 106. These results show that the proposed elec-
tromechanical diode has a higher asymmetric ratio with higher
transmission ratios than mechanical diodes reported in the literature.
For instance, the asymmetric ratio inRefs. [15,52] is σ≈ 104 and both
reported low transmission ratios. For softening chain, the wave can
also propagate in the forward configuration and voltage can be

harvested on the other end, as shown in Fig. 9(c). Moreover,
waves cannot propagate in the backward configuration for softening
nonlinearity as shown in Fig. 9(d ). This indicates that softening non-
linearity can also be used in designing electromechanical diodes.
However, the harvested voltage on the other end is lower in this
case as compared to the hardening chain case in Fig. 9(a). In
particular, the transmission ratio for the forward configuration is
Trf = 0.2457, while the asymmetric ratio for the electromechanical
diode is σ ≈ 1.9 × 106. Increasing the strength of nonlinearity in
the chain can increase the transmission ratio for the forward config-
uration. For instance, increasing hardening nonlinearity in the chain
can significantly increase the output voltage with transmission ratio
Trf ≈ 1.3582 and asymmetric ratio σ≈ 8.8 × 106, as shown in
Fig. 9(e). It is noteworthy that the transmission ratio for the voltage
can exceed 1 as the voltage wave can be amplified at some particular

Fig. 8 Normalized input force applied to the structure in both configurations: (a) ω=1.5 and
(b) ω=2

Fig. 9 Time response of electromechanical diode in forward and backward configurations
for the case of nonlinear chain: (a) forward configuration, ω=2, �kl = 1.3, �kp = 0.16,
�mp = 0.04, ɛ2Aα=0.03, ɛ2Aαr=0, (b) backward configuration of (a), (c) forward configuration,
ω=2, �kl = 1.3, �kp = 0.16, �mp = 0.04, ɛ2Aα=−0.03, ɛ2Aαr=0, (d) backward configuration of
(c), (e) forward configuration, ω=2, �kl = 1.3, �kp = 0.16, �mp = 0.04, ɛ2Aα=0.06, ɛ2Aαr=0, and
(f) forward configuration, ω=1.5, �kl = 0.78, �kp = 0.21, �mp = 0.09, ɛ2Aα=0.03, ɛ2Aαr=0
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Fig. 10 Time response of electromechanical diode in forward and backward configurations
for the case of nonlinear resonator: (a) forward configuration, ω=2, �kl = 1.3, �kp = 0.16,
�mp = 0.04, ɛ2Aα=0, ɛ2Aαr=0.03, (b) backward configuration of (a), (c) forward configuration,
ω=1.5, �kl = 0.78, �kp = 0.21, �mp = 0.09, ɛ2Aα=0, ɛ2Aαr=0.03, (d) backward configuration of
(c), (e) forward configuration, ω=2, �kl = 1.3, �kp = 0.16, �mp = 0.04, ɛ2Aα=0, ɛ2Aαr=−0.03,
and (f) forward configuration, ω=1.5, �kl = 0.78, �kp = 0.21, �mp = 0.09, ɛ2Aα=0, ɛ2Aαr=−0.03

Fig. 11 Time response of electromechanical diode in forward and backward configurations
for the case of nonlinear resonator: (a) forward configuration, ω=1.5, �kl = 1.5, �kp = 0.37,
�mp = 0.17, ɛ2Aα=0, ɛ2Aαr=0.03, (b) backward configuration, ω=1.5, �kl = 1.5, �kp = 0.37,
�mp = 0.17, ɛ2Aα=0, ɛ2Aαr=0.03, (c) forward configuration, ω=1.5, �kl = 1.5, �kp = 0.37,
�mp = 0.17, ɛ2Aα=0, ɛ2Aαr=−0.03, and (d) backward configuration, ω=1.5, �kl = 1.5,
�kp = 0.37, �mp = 0.17, ɛ2Aα=0, ɛ2Aαr=−0.03
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frequencies [16]. Finally, we excite our system with nonlinear chain
at frequency within the long-wavelength limit (i.e., ω= 1.5) with
linear chain’s bandgap tuned to this limit. The response of the
forward configuration is shown in Fig. 9( f ). The result indicates
that the wave does not propagate within the long-wavelength limit
(i.e., k∼ π/9); therefore, voltage cannot be harvested at the other
end. This is not surprising since we showed earlier that the nonline-
arity has no effect on the wave propagation at the long-wavelength
limit (i.e., k∼ π/9) in the case of nonlinear chain.
For the case of nonlinear resonator, the response of the forward

and backward configurations for different types of nonlinearity is
shown in Fig. 10. At medium-wavelength limit (i.e., k∼ π/2), we
excite the system by a signal within the medium-wavelength limit
(i.e., k∼ π/2) in the optical mode (i.e., ω= 2) by tuning the
bandgap of the linear chain to this region. For hardening nonlinear-
ity, the results indicate that the nonlinear resonator case can also
show non-reciprocity in wave propagation. For instance, the wave
can propagate in the forward propagation (Fig. 10(a)) and get
blocked in the backward configuration (Fig. 10(b)). However,
output voltage in this case is lower compared to the case of nonlin-
ear chain. For this particular case, the transmission ratio for the
forward configuration is Trf≈ 0.3467 and asymmetric ratio σ≈ 1.9
× 106. At long-wavelength limit (i.e., ω= 1.5 and the linear
bandgap is tuned to this limit), unlike the case of nonlinear chain,
the wave can propagate in the forward configuration (Fig. 10(c)),
but it cannot propagate in the backward configuration
(Fig. 10(d )). The transmission ratio for this case is Trf≈ 4 × 10−3,
and the asymmetric ratio is σ≈ 2.2 × 105. Although the performance
of the electromechanical diode in the case of nonlinear resonator at
medium-wavelength limit (i.e., k∼ π/2) is weaker than the case of
nonlinear chain due to lower transmission and asymmetric ratios,
the electromechanical diode can be operated at the long-wavelength
limit (i.e., k∼ π/9) in the case of nonlinear resonator unlike the case
of nonlinear chain where no voltage can be sensed at the other end.
This is not surprising since the spectro-spatial analysis showed the
presence of significant frequency shift at the long-wavelength limit
(i.e., k∼ π/9) for the nonlinear resonator case. It is noteworthy that
the harvested voltage in the input cell is severely distorted at the
long-wavelength limit (i.e., k∼ π/9). Since this voltage represents
the harvested voltage in the nonlinear local resonator, the wave is
significantly distorted as it interacts with the nonlinear local resona-
tor. Note that this outcome is the effect of strong nonlinearity in this
region. However, the input mechanical wave packet should be the
same for all cases, as shown in Fig. 8. The nonlinearity in the
local resonator also results in long duration oscillations to
produce output voltage, as depicted in Fig. 10(c). Yet, the system
still demonstrates non-reciprocity in its response. For softening non-
linearity, an electromechanical diode can also be operated at
medium-/long-wavelength limits in the case of nonlinear resonator.
For instance, Fig. 10(e) shows that voltage can be sensed at the
other end at medium-wavelength limit (i.e., k∼ π/2) with transmis-
sion ratio Trf≈ 0.059 and asymmetric ratio σ≈ 3.85 × 105. On the
other hand, Fig. 10( f ) shows that voltage can be sensed at the
other end at long-wavelength limit (i.e., k∼ π/9) with transmission
ratio Trf≈ 4.3 × 10−3 and asymmetric ratio σ≈ 2.4 × 105. The
results of softening nonlinearity indicate that an electromechanical
diode with softening nonlinearity outperforms diodes with harden-
ing nonlinearity at long-wavelength limit (i.e., k∼ π/9). However,
the presence of hardening nonlinearity in the resonator shows
better performance at medium-wavelength limit (i.e., k∼ π/2).
In order to obtain a linear chain’s bandgap tuned to the long-

wavelength limit (e.g., the frequencies of the bandgap for linear
chain ranges between 1.41 and 1.6), many options can be explored
within a small margin of frequency change (±0.01). We search for
linear chain’s bandgap limits within �kl = 0.5 − 1.5, �kp = 0.01 − 1,
and �mp = 0.01 − 1. Within these parameter ranges, we can obtain
several options. We used the option with the lowest value of param-
eters to investigate the performance of the electromechanical diode in
Figs. 9 and 10. The results in thesefigures demonstrate that the values
of the transmission and asymmetric ratios are low at this wavelength

as compared to results at medium-wavelength limit (i.e., k∼ π/2).
This is because the lowest values that were chosen to plot the
figures resulted in an optical mode stretching over a narrow range
of frequencies. Therefore, only a few frequency components with
low energy content from the output wave (i.e., its frequency
content is converted into frequencies other than the input frequency)
can propagate through the narrow optical mode. To increase the fre-
quency components that can propagate through the optical mode, the
range of optical mode frequencies needs to be increased by choosing
parameters with highest values among all available options. This can
result in the widest possible optical mode within the above assumed
system’s parameters ranges. For this case, we plot the responses of
the forward and backward configurations in Fig. 11. For hardening
nonlinearity in the resonator at long-wavelength limit (i.e., k∼ π/9;
Fig. 11(a)), the results indicate that the harvested voltage sensed at
the other end is significantly higher than the case in Fig. 10(c).
Yet, the wave cannot propagate in the backward configuration as
depicted in Fig. 11(b). This can also be demonstrated from the
values of transmission ratio Trf≈ 0.1251 and asymmetric ratio σ≈
1.5 × 106, which are also significantly higher. Therefore, the perfor-
mance of the nonlinear resonator electromechanical diode at the
long-wavelength limit (i.e., k∼ π/9) is comparable to the perfor-
mance of the nonlinear chain diode when the parameters of the
linear chain are chosen carefully. Softening nonlinearity in the reso-
nator with these linear chain parameters can even provide better per-
formance, and thus higher voltage can be sensed at the other end
(Fig. 11(c)), thus preventing any waves coming from the backward
configuration from propagating through the structure (Fig. 11(d )).
This observation is also confirmed by the values of transmission
ratio Trf≈ 0.49 and asymmetric ratio σ≈ 6.2 × 106, which are also
significantly higher than the case of hardening nonlinearity.
Analyses in the current study are conducted on a chain of 500 cells

(i.e., a nonlinear chainwith 350 cells and a linear chainwith 150 cells
in the case of the electromechanical diode). However, it is crucial to
shed light on the effect of the chain’s length on the electromechanical
diode performance. For an electromechanical diode consisting of a
nonlinear chain with 50 cells coupled to a linear chain with 50
cells (Fig. 12(a)), the results indicate that the electromechanical
diode can be operated in the case of shorter chains. However, for
this case, the asymmetry ratio σ= 19.63 is significantly lower as
compared to longer chains. To investigate the effect of length on
the asymmetry ratio, we plot the asymmetry ratio for electromechan-
ical diodeswith different numbers of cells in Figs. 12(b)–12(d ). First,
we study an electromechanical diode with the number of cells in the
nonlinear chain equal to the linear chain. We sweep the number of
cells in each chain from 50 to 250 cells (i.e., in other words, we
sweep the number of cells in the electromechanical diode from 100
cells to 500 cells) and plot the asymmetry ratio in Fig. 12(b). The
results reveal that the asymmetry ratio at the order of 105 can be
obtained when each linear and nonlinear chain exceeds 170 cells.
Next, we investigate the effect of the length of each chain (i.e., the
linear and nonlinear chains) on the asymmetry ratio separately.
First, we sweep the length of the nonlinear chain from 50 to 350
cells while fixing the length of the linear chain to 150 cells and
plot the asymmetry ratios in Fig. 12(c). The results demonstrate
that the asymmetry ratio is very sensitive to the length of the nonlin-
ear chain. Asymmetry ratio at the order of 105 can be obtained when
the length of the nonlinear chain is greater than 170 cells. Next, we
investigate the effect of the length of linear chain by sweeping the
length of the linear chain from 50 to 150 cells while fixing the
length of the nonlinear chain to 350 cells and plot the asymmetry
ratio in Fig. 12(d ). The results show that the length of the linear
chain does not affect the asymmetry ratio significantly, unlike the
length of the nonlinear chain. This observation further implies that
a high asymmetry ratio can be obtained regardless of the length of
the linear chain within the investigated range.
It is noteworthy that the output harvested voltage in the forward

configuration appears at frequencies different than the input excita-
tion frequency. This nonlinear frequency conversion may lead to a
loss of information in the case of mechanical computing [61,62].
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This can be demonstrated by plotting the frequency spectra of the
input and output voltage for both configurations in Fig. 13. It can
be observed that the output signal in the case of forward configuration
appears at frequencies different than the input frequency spectrum.
The output signal has a dip within the spectrum of the bandgap of
the linear chain. Instead, the significant component appears at fre-
quencies outside the linear chain’s bandgap spectra. On the other
hand, the output signal spectra have components with amplitudes
significantly lower than the input signal amplitude. This is a clear
indication that the wave cannot be propagated in the backward
configuration.

6 The Effect of Linear Chain Bandgap Size
on the Performance of the Electromechanical Diode
In the previous section, we demonstrated that the proposed elec-

tromechanical diode can be used as a direction-biased waveguide.
This direction-biased waveguide can be operated in the medium-
wavelength limit (i.e., k∼ π/2) for both nonlinear chain and nonlin-
ear resonator cases, but the operation of this diode in the long-
wavelength domain (i.e., k∼ π/9) is limited to the nonlinear resona-
tor case only. It should be noted that the parameters of the linear

chain were chosen such that the bandgap of the linear chain is
tuned to the operation frequency region to demonstrate the non-
reciprocity. However, the effect of linear chain bandgap on the
asymmetric ratio was not discussed in the previous section. There-
fore, we present the asymmetric ratio for different linear chain’s
bandgap sizes and at different excitation frequencies.
In this section, we conduct our analyses by sweeping the bandgap

size of the linear chain over either the whole frequency range of the
nonlinear chain’s optical mode frequencies or over a specific fre-
quency range within the long-/medium-wavelength limits of the
nonlinear chain’s optical mode. In order to define the linear chain
parameters that satisfy the tested bandgap size, we sweep the
chain’s parameters over the ranges defined in the previous section
and pick the largest parameters of the list that matches the
bandgap requirement.

6.1 Sweeping the Bandgap Over the Whole Optical Mode
Frequencies. For sweep over the whole optical mode, we set the
upper boundary of the bandgap to the maximum frequency in this
mode and sweep the lower boundary over other frequencies in the
optical mode in one case, and fix the lower boundary to the
minimum frequency in this mode and sweep the upper in another
case. For these two cases, we record the asymmetric ratio at differ-
ent excitation frequencies and bandgap boundaries and plot them in
Figs. 14 and 15, respectively.
For the case of lower boundary being swept over the whole range

of the optical mode (Fig. 14), the electromechanical diode has
the highest asymmetry ratio when the lower bandgap boundary is
close to frequencies near the medium-wavelength limit (i.e., k∼ π/
2) in the case of hardening chain nonlinearity as shown in
Fig. 14(a). In particular, the medium-wavelength limit (i.e., k∼ π/
2) is confined within the bandgap, and energy component associated
with the shifted frequency can propagate through the passband
below this bandgap. In addition, excitation frequencies near the
medium-wavelength (i.e., k∼ π/2) show higher symmetry ratio
where significant frequency shift can be observed as shown in the
previous sections for this type of nonlinearity. When the lower
bandgap boundary is below the medium-wavelength limit (k∼ π/
2) (i.e., in the long-wavelength limit k∼ π/9), the asymmetry ratio
is very small and the electromechanical diode cannot be operated
at all excitation frequencies within the optical mode. This is

Fig. 12 The effect of chain’s length on the asymmetry ratio; ω=2, �kl = 1.3, �kp = 0.16,
�mp = 0.04, ɛ2Aα=0.03, ɛ2Aαr=0: (a) output voltage for electromechanical diode in the
forward and backward configurations; each chain consists of 50 cells, (b) sweeping the
number of cells in each chain from 50 to 250 cells, (c) sweeping the length of the nonlinear
chain from 50 to 350 cells with fixing the length of the linear chain to 150 cells, and (d) sweep-
ing the length of the linear chain from 50 to 150 cells with fixing the length of the nonlinear
chain to 350 cells

Fig. 13 Frequency spectra of the input and output signals in
both configurations; ω=2, �kl = 1.3, �kp = 0.16, �mp = 0.04, ɛ2Aα=
0.03, ɛ2Aαr=0
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because all shifted frequencies lie within the bandgap (i.e., the band
covers most of the optical mode); therefore, no waves will propa-
gate in either the forward or backward directions. By moving the
lower bandgap boundary above the medium-wavelength limit
(i.e., k∼ π/2), the asymmetry ratio becomes lower since the fre-
quency shift becomes also less significant in the short-wavelength
limit (i.e., k∼ 7π/9). In general, only excitation frequencies within
the bandgap show directional-biased wave propagation for
medium-/short-wavelength limits, while no frequencies show
directional-biased wave propagation in the long-wavelength limit
(i.e., k∼ π/9). For softening chain nonlinearity, similar observations
can be deduced from Fig. 14(b). However, both excitation frequen-
cies and lower bandgap boundary have high symmetric ratio at fre-
quencies lower than the hardening case. This is not surprising, since
results in Fig. 4(b) showed that the higher energy component is
shifted below the medium-wavelength limit (i.e., k∼ π/2) in the
case of softening chain nonlinearity, unlike the case of hardening
nonlinearity. For hardening resonator nonlinearity (Fig. 14(c)),

the regions of high symmetry ratios are similar to those of hardening
chain; however, these regions are slightly extended to cover the
long-wavelength region (i.e., k∼ π/9). This indicates that the oper-
ation range of the electromechanical diode can be broadened using
resonator nonlinearity. The operation range of the electromechani-
cal diode can further be increased if softening nonlinearity is used
as shown in Fig. 14(d ), thus showing a good agreement with the
observations in the previous section. Yet the significance of
directional-biased wave propagation is not pronounced at this
limit since the bandgap is tuned above this region due to fixing
the higher bandgap boundary. Moreover, when the bandgap is
tuned to this region, the bandgap covers most of the optical
mode; therefore, the shifted frequency energy component cannot
propagate in the forward configuration.
To obtain a bandgap that always covers the long-wavelength

limit (i.e., k∼ π/9), we fix the lower bandgap boundary and sweep
the upper boundary over the optical mode’s frequencies. The asym-
metry ratio for this case is shown in Fig. 15. For hardening chain

Fig. 14 Asymmetry ratio for different linear chain designs with bandgap tuned within
the whole optical mode of nonlinear chain. Upper boundary of the bandgap is fixed to the
maximum frequency of optical mode of nonlinear chain and lower limit is swept over the
optical mode: (a) hardening nonlinear chain, ɛ2Aα=0.03, ɛ2Aαr=0, (b) softening nonlinear
chain, ɛ2Aα=−0.03, ɛ2Aαr=0, (c) hardening nonlinear resonator, ɛ2Aα=0, ɛ2Aαr=0.03, and
(d) softening nonlinear resonator, ɛ2Aα=0, ɛ2Aαr=−0.03.

Fig. 15 Asymmetry ratio for different linear chain designs with bandgap tuned within
the whole optical mode of nonlinear chain. Lower boundary of the bandgap is fixed to the
maximum frequency of optical mode of nonlinear chain and upper limit is swept over the
optical mode: (a) hardening nonlinear chain, ɛ2Aα=0.03, ɛ2Aαr=0, (b) softening nonlinear
chain, ɛ2Aα=−0.03, ɛ2Aαr=0, (c) hardening nonlinear resonator, ɛ2Aα=0, ɛ2Aαr=0.03, and
(d) softening nonlinear resonator, ɛ2Aα=0, ɛ2Aαr=−0.03.
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(Fig. 15(a)), the results indicate that with increasing the excitation
frequency to get closer to the medium-wavelength limit (i.e., k∼
π/2), energy contents with shifted frequency components start to
appear and directional-biased wave transmission can be observed.
Yet the asymmetry ratio is not significant in the long-wavelength
limit (i.e., k∼ π/9) and starts to increase rapidly as excitation fre-
quencies approach the medium-wavelength limit (i.e., k∼ π/2) and
the bandgap covers this wavelength limit. It is noteworthy that
the transmission ratios are higher in this case, which indicates that
the frequency conversion shifts the signal frequency to a frequency
above the bandgap and a significant energy content is associated
with these shifted high frequencies. Consequently, the upper
bandgap boundary should be restricted to below short-wavelength
(k∼ 7π/9) region (just above frequencies within medium-
wavelength limit (i.e., k∼ π/2), since a significant portion of the
energy is shifted to the long-wavelength limit (i.e., k∼ π/9)) for
higher asymmetry ratio in designing linear chains. These observa-
tions also hold for the softening chain case, as shown in
Fig. 15(b). However, the asymmetry ratio is lower at high frequen-
cies since frequency conversion tends to shift the excitation fre-
quencies to lower frequencies which lie within the bandgap, thus
the transmitted energy is lower. For hardening resonator,
Fig. 15(c) shows a significant increase in the asymmetry ratio
near the long-wavelength limit (i.e., k∼ π/9) as compared with
cases in Figs. 15(a) and 15(b). Yet high asymmetry ratios can
still be observed in the medium-wavelength limit (i.e., k∼ π/2). In
addition, the values of asymmetry ratios are significantly higher
than the case of sweeping lower bandgap limit since the bandgap
can cover the medium-/long-wavelength limits with passband for
frequencies at short-wavelength limit (i.e., k∼ 7π/9). This increase
in asymmetry ratio becomes more pronounced with softening reso-
nators, as shown in Fig. 15(d ). For the nonlinear resonator case, the
directional-biased wave propagation can even be observed at high
excitation frequencies where frequency components can also be
shifted, as seen in Figs. 15(c) and 15(d ). However, the asymmetry
ratio here is lower than other frequencies within medium-/long-
wavelengths limits. Finally, it is noteworthy that the asymmetry
ratios are higher when sweeping the upper bandgap boundary, as
compared to sweeping the lower boundary, since the short-
wavelength limit (i.e., k∼ 7π/9) is a passband in most cases where
shifted excitation frequencies can propagate.

Based on the above discussions, the bandgap of the linear chain
should not intersect with the long-/medium-wavelength frequencies
if the operation frequencies are confined within the short-
wavelength limit (i.e., k∼ 7π/9). Moreover, the bandgap of the
linear chain should not intersect with the short-wavelength frequen-
cies if the operation frequencies are confined within the long-/
medium-wavelength limits. These considerations should be consid-
ered when designing an electromechanical diode. Furthermore, it is
more beneficial to design the diode for operation range within the
long-/medium-wavelength limits since the asymmetry ratios are
much higher in these regions as compared to the short-wavelength
limit (i.e., k∼ 7π/9). After reaching a conclusion about avoiding
tuning the bandgap to the short-wavelength limit (i.e., k∼ 7π/9)
due to low asymmetry ratio, we should conduct a deeper investiga-
tion about tuning the bandgap to the long-/medium-wavelength
limits.

6.2 Sweeping the Bandgap Over the Long-Wavelength
Limit Optical Mode Frequencies. In this section, we conduct
further analyses to sweep the boundaries of the linear chain’s
bandgap over the long-wavelength (i.e., k∼ π/9) and medium-
wavelength (i.e., k∼ π/2) limits separately. This can be done by con-
ducting analyses similar to those conducted in Figs. 14 and 15. In
particular, we fix the upper boundary (of the linear chain’s
bandgap) and sweep the lower boundary in one case (Fig. 16),
while we fix the lower boundary and sweep the upper boundary
in another (Fig. 17). For analyses over the long-wavelength fre-
quencies (i.e., k∼ π/9) while fixing the bandgap’s upper boundary,
we plot the results in Fig. 16. For hardening and softening chains
(Figs. 16(a) and 16(b)), the results indicate that the asymmetry
ratio is almost zero for all lower bandgap boundaries. However,
the asymmetry ratio can be non-zero when the lower bandgap
boundary is near the medium-wavelength limit (i.e., k∼ π/2),
where the nonlinear chain shows direction-biased wave propaga-
tion. In addition, the asymmetry ratio is higher for the case of hard-
ening chain. On the other hand, the nonlinearity in the resonator
shows a high asymmetry ratio for all lower bandgap boundaries
at all excitation frequencies within this limit, as shown in Figs.
16(c) and 16(d ). Nevertheless, the lower bandgap boundary does
not need to cover frequencies (ω≤ 1.48) since the asymmetry

Fig. 16 Asymmetry ratio for different linear chain designs with bandgap tuned within the long
wavelength limit in the optical mode of nonlinear chain. Upper boundary of the bandgap is
fixed to ω=1.9 optical mode of nonlinear chain and lower limit is swept over the long-
wavelength limit in the optical mode: (a) hardening nonlinear chain, ɛ2Aα=0.03, ɛ2Aαr=0,
(b) softening nonlinear chain, ɛ2Aα=−0.03, ɛ2Aαr=0, (c) hardening nonlinear resonator,
ɛ2Aα=0, ɛ2Aαr=0.03, and (d) softening nonlinear resonator, ɛ2Aα=0, ɛ2Aαr=−0.03.
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ratio is very low in this region for the case of hardening resonator, as
shown in Fig. 16(c). However, the lower boundary can be extended
to cover this region of frequencies in the case of softening resonator,
as shown in Fig. 16(d ). For the case of the lower bandgap boundary
being fixed, the results also show approximately zero asymmetry
ratio in the cases of hardening and softening chain, as shown in
Figs. 17(a) and 17(b). In addition, sweeping the upper limit in
this case is associated with lower asymmetry ratios for frequencies
near the medium-wavelength limit (i.e., k∼ π/2) as compared to the
previous case shown in Figs. 16(a) and 16(b). For hardening and
softening resonators (Figs. 16(c) and 16(d )), high asymmetry
ratios exist in the region on and above the diagonal (i.e., excitation
frequency/upper bandgap boundary) line unlike the case of fixing
the upper bandgap boundary where higher asymmetry ratios can

be observed at wider range of excitation frequencies. This indicates
that fixing the upper bandgap boundary is more beneficial than
fixing the lower boundary. Therefore, when designing an electro-
mechanical diode that shows high asymmetry ratio in the long-
wavelength limit (i.e., k∼ π/9), the upper bandgap’s boundary
should be tuned to a frequency near the lower frequencies within
the medium-wavelength limit (i.e., k∼ π/2). On the other hand,
the lower bandgap’s boundary should be tuned to a frequency
just above the lower frequencies within the optical mode in the pres-
ence of resonator nonlinearity.

6.3 Sweeping the Bandgap Over the Medium-Wavelength
Optical Mode Frequencies. Similarly, we focus on the sweep of
the linear chain bandgap’s boundaries inside the medium-

Fig. 17 Asymmetry ratio for different linear chain designs with bandgap tuned within the long
wavelength limit in the optical mode of nonlinear chain. Lower boundary of the bandgap is
fixed to ω=1.4 optical mode of nonlinear chain and upper limit is swept over the long-
wavelength limit in the optical mode: (a) hardening nonlinear chain, ɛ2Aα=0.03, ɛ2Aαr=0,
(b) softening nonlinear chain, ɛ2Aα=−0.03, ɛ2Aαr=0, (c) hardening nonlinear resonator,
ɛ2Aα=0, ɛ2Aαr=0.03, and (d) softening nonlinear resonator, ɛ2Aα=0, ɛ2Aαr=−0.03.

Fig. 18 Asymmetry ratio for different linear chain designs with bandgap tuned within the
medium-wavelength limit (i.e., k∼ π/2) in the optical mode of nonlinear chain. Upper boundary
of the bandgap is fixed to ω=2.2 optical mode of nonlinear chain and lower limit is swept over
the medium-wavelength limit (i.e., k∼ π/2) in the optical mode: (a) hardening nonlinear chain,
ɛ2Aα=0.03, ɛ2Aαr=0, (b) softening nonlinear chain, ɛ2Aα=−0.03, ɛ2Aαr=0, (c) hardening non-
linear resonator, ɛ2Aα=0, ɛ2Aαr=0.03, and (d) softening nonlinear resonator, ɛ2Aα=0, ɛ2Aαr=
−0.03.
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wavelength limit (i.e., k∼ π/2) and plot the results in Figs. 18
and 19. For fixed upper bandgap boundary, the results indicate
that the asymmetry ratio is almost zero for hardening chain
(Fig. 18(a)) and softening resonator (Fig. 18(d )). However, the
asymmetry ratio has significant values for softening chain
(Fig. 18(c)) and hardening resonator (Fig. 18(d )). On the other
hand, fixing the lower bandgap’s boundary reveals significantly
higher asymmetry ratio, as shown in Fig. 19. In particular, in the
case of hardening chain (Fig. 19(a)), the asymmetry ratio is signifi-
cantly higher as compared to the case of sweeping the lower band-
gap’s boundary for this type of nonlinearity. Similarly, the
asymmetry ratio is higher for the case of softening chain, as
shown in Fig. 19(b). However, the results indicate that sweeping
the upper boundary shows higher asymmetry ratio at high frequen-
cies as compared to the case of sweeping the lower boundary where
high asymmetry is associated with low frequencies. For the case of
resonator nonlinearity (Figs. 19(c) and 19(d )), we observe that
fixing the lower limit results in high asymmetry ratio at higher
excitation frequencies within the medium-wavelength limit
(i.e., k ∼ π/2) as compared to fixing the upper boundary. It is note-
worthy that hardening nonlinearity provides high asymmetry ratio
when the upper bandgap’s boundary is close to the upper end of
the medium-wavelength limit’s (i.e., k∼ π/2) frequencies since
signals tend to be shifted to higher frequencies with hardening non-
linearity. The opposite is observed when we set the upper bandgap’s
boundary to a frequency below the higher frequencies of the
medium-wavelength limit (i.e., k∼ π/2). This is because signals
tend to be shifted to lower frequencies with softening nonlinearity.
The above analyses provide some guidelines for designing the

linear chain in the electromechanical diode. The design guidelines
depend on the operation frequency of the electromechanical diode
and the type of nonlinearity. General guidelines include avoiding
tuning the bandgap to short-wavelength limit to allow shifted fre-
quency components to propagate in the forward direction. In addi-
tion, the lower boundary should be fixed just above the lowest
frequency in the optical mode for best performance at frequencies
within the long-wavelength limit and resonator nonlinearity should
be used. For this operation range, the upper limit should be set
near the lower end of the medium-wavelength limit. Moreover, the
lower boundary should be tuned just below the medium-wavelength
limit for best performance at frequencies within the medium-
wavelength limit and either resonator or chain nonlinearity can be

used. The upper boundary should be placed at the end of themedium-
wavelength in the case of hardening nonlinearity and slightly below
the short-wavelength limit in the case of softening nonlinearity.
The realized electromechanical diode in the current study (har-

vesting energy only in one way) can be useful in designing mechan-
ical circuits and mechanical logic gates. These novel elastoacoustics
devices can also be employed in mechanical computing [62].
Although mechanical computing may not replace the current elec-
tronics conventional computing, it can augment electronics comput-
ing due to its ability to process information through interacting and
adapting to the environment. This can be achieved through the
study of digital logic/diodes in mechanical computing. These
mechanical logic gates/diodes can advance multibit logic circuits
[63], communication (i.e., since optical waves are quickly dissi-
pated in mediums other than air, elastic and acoustics communica-
tion can be advanced by mechanical computing) [64], thus
improving ultrasound imaging/therapy [65], non-destructive
testing [66,67], sensing [68], and signal processing [62,69].
With advances in additive manufacturing and metamaterial

designs, the investigated electromechanical diode may be verified
experimentally. In particular, studies in the literature indicated
that nonlinear locally resonant metamaterials (with resonator non-
linearity) can be fabricated based on geometric nonlinearity using
standard electrical discharge machining [70]. Coupling this nonlin-
ear metastructure to a linear metastructure and installing energy har-
vesters on the linear and nonlinear resonators can lead to the
fabrication of the proposed diode. Then, the fabricated structure
can be tested to demonstrate the observed phenomena experimen-
tally. However, this is beyond the scope of the current study and
left for future work.

7 Conclusion
In this paper, a nonlinear metamaterial with electromechanical

local resonators was investigated for the purpose of designing a
broadband electromechanical diode. The nonlinearity stemmed
from the chain in one case and from the resonator in another. The
method of multiple scales was applied to the governing equations
of motion to obtain the dispersion relations. The analytical band
structure was validated via comparison with results obtained by
direct numerical integration. The results show good agreement
except that the analytical results fail to predict some frequency

Fig. 19 Asymmetry ratio for different linear chain designs with bandgap tuned within the
medium-wavelength limit (i.e., k∼ π/2) in the optical mode of nonlinear chain. Lower boundary
of the bandgap is fixed to ω=1.9 optical mode of nonlinear chain and upper limit is swept over
the medium-wavelength limit (i.e., k∼ π/2) in the optical mode: (a) hardening nonlinear chain,
ɛ2Aα=0.03, ɛ2Aαr=0, (b) softening nonlinear chain, ɛ2Aα=−0.03, ɛ2Aαr=0, (c) hardening
nonlinear resonator, ɛ2Aα=0, ɛ2Aαr=0.03, and (d) softening nonlinear resonator, ɛ2Aα=0,
ɛ2Aαr=−0.03.
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regions within the optical mode due to significant frequency shift, in
particular the medium-wavelength limit for the case of nonlinear
chain and the long-/medium-wavelength limit for the nonlinear res-
onator. To further demonstrate the frequency shift in these regions,
we analyzed the numerical results by spectro-spatial analysis. The
spatial profiles indicated that the wave is severely distorted in
these regions and may split into localized and dispersive waves.
Moreover, the spectrograms and contour plots of 2D FFT demon-
strated that most of the energy content of the output voltage
appears at frequencies outside the initial frequency band of the
input signal. The observed significant frequency shift was utilized
to design an electromechanical direction-biased waveguide (i.e.,
electromechanical diode). The proposed electromechanical diode
was constructed by combining linear and nonlinear chains with
electromechanical local resonators. This diode showed the ability
to harvest energy and sense the wave propagating in the forward
direction only, and blocked any wave propagating in the backward
configuration. This direction-biased wave propagation can be
observed only at the medium-wavelength limit in the case of non-
linear chain. However, it can be observed at the medium-/long-
wavelength limits in the case of nonlinear resonator. Therefore,
the electromechanical diode can be operated over a wider range
of frequencies in the case of nonlinear resonator. Unlike mechanical
diodes in the literature, the proposed diode does not only have a
high asymmetry ratio, it also has a high transmission ratio for the
forward configuration. Yet the proposed electromechanical diode
can harvest energy and sense better than symmetric systems due
to the birth of localized (solitary) waves. To draw guidelines on
designing the linear chain’s bandgap, we conducted analyses by
sweeping the bandgap’s boundaries over different frequency
ranges and reported the asymmetry ratio of these simulations. The
results indicated that it is more beneficial to tune the lower band-
gap’s boundary just above the minimum frequency of the optical
mode of the nonlinear chain and fix the upper bandgap’s boundary
near the medium-wavelength limit for best performance in the long-
wavelength limit for the case of nonlinear resonator. In addition,
softening resonator should be used to realize high asymmetry
ratio at low frequencies in the optical mode. Moreover, the results
demonstrated that the lower bandgap’s boundary should be tuned
just above the long-wavelength limit to obtain high asymmetry
ratio for excitation frequencies within the medium-wavelength
limit for both types of nonlinearity. On the other hand, the results
indicated that the upper bandgap’s boundary should not go into
the short-wavelength limit’s frequencies and should be fixed

slightly lower in the case of softening nonlinearity. Finally, the
bandgap’s boundaries should be tuned around the operation fre-
quency, in general, and extending its size to the short-wavelength
region should be avoided to allow shifted frequency component
to propagate in the forward configuration.
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Appendix
In order to determine the nonlinear frequency correction coeffi-

cient b′, the solvability condition needs to be solved to eliminate
secular unbounded terms. After some algebric manipulation, the
values of g, h, l, f for the case of nonlinear chain can be expressed as

g=−
1
2
ω(α2ω(Ω2

0(�k(α1(−Im[Γ]Im[Kω]+ (α1Re[Γ]− 2)Re[Kω]− 2)

+ 2ω2)− 2)+ 2Ω2
0
�kIm[Kω]−α1α3ω(Ω2

0
�k(Re[Kω]+ 2)+ 2)))

h=
1
2
ω(Ω2

0(�k(Re[Kω](α1α2Im[Γ]ω− 2)
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3
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0 − 1) (A1)

l=
1
2
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2Ω2
0 − 1)−α1α3) (A2)

while for the case of nonlinear resonator, these values can be
expressed as
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1
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(A6)

It is noteworthy that in the presence of both nonlinearities (i.e.,
chain and resonator nonlinearities), the nonlinear frequency correc-
tion coefficient can be written as

β′ = β′ch + β′res (A7)

where β′ch is the correction coefficient for the case of nonlinear
chain case and β′res is the correction coefficient for the nonlinear
resonator case.
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