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Abstract: This paper investigates a suitable model for a power line conductor to explore its free
vibration characteristics. For this, we compare the Euler-Bernoulli beam model of the conductor
against the string model of the conductor via experimental and analytical vibration analyses.
The effects of conductor parameters such as flexural rigidity, diameter, length, and tension on
the natural frequencies of different modes are explored through parametric studies. We observe
that the Euler-Bernoulli beam model of the conductor is a more realistic approach to examining
the conductor’s free vibration characteristics as compared to a string model.
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1. INTRODUCTION

The US power grid consists of 7 million miles of transmis-
sion and distribution lines. Since power lines are one of the
essential infrastructures in our society, it is vital to avoid or
mitigate any damage to power lines. One of the phenomena
plaguing power lines is wind-induced vibrations. Wind-
induced vibrations can give rise to repetitive and enormous
damage to power lines through excessive vibrations and
hence, has to be mitigated (Barry (2014); Kakou (2021)).
To have a better understanding of the vibration charac-
teristics of power lines, it is essential to have a conductor
model which is close to the realistic scenario. Also, deciding
on the conductor model from the existing models, such as
beam and string models, for the analysis is crucial. This is
the focus of the current work.

Mechanical vibrations can cause undesirable effects on
structures, damaging the components of mechanical sys-
tems and further reducing the life of structures. Therefore,
it has been a subject of investigation for many researchers.
Aeolian vibrations are one of the phenomena which occur
in structures such as bridges, cables, and aero-elastic struc-
tures due to fluid-structure interactions. Many studies
were performed in the early 1980s to explore the response
of structures towards aeolian vibrations (Ramey and Silva
(1981); Basu et al. (1981); Roughan (1983); Nigol et al.
(1985); Tsui (1988)).

Transmission lines are one of the structures susceptible to
aeolian vibrations and have been a subject of research for
many years. Kraus and Hagedorn (1991); Barbieri et al.
(2004); Barbieri et al. (2017) investigated the dynamical
behavior of transmission lines during aeolian vibrations.
Oliveira and Freire (1994) presented a dynamical model

for aeolian vibrations of single conductors. Nigol et al.
(1985) designed the optimal aeolian vibration dampers and
discussed the optimal locations of the damper.

George H. Stockbridge were the first to develop the Stock-
bridge damper (Stockbridge (1925)) to suppress aeolian vi-
brations in power lines effectively. Further, the Stockbridge
damper characteristics were researched by Markiewicz
(1995); Vecchiarelli (1998) to optimize the damper param-
eters. Later on, Barry et al. (2013) investigated the vibra-
tion response of a conductor with an attached Stockbridge
damper and identified that the effectiveness of Stockbridge
dampers depends on their location, mass, and excitation
frequency. Wang et al. (2021) examined the sensitivity
analysis of the parameters of the Stockbridge damper and
optimized the damper location. However, the Stockbridge
damper fixed on a conductor, is practically impossible to
guarantee reasonable performance at every wind frequency
(Kakou (2021)).

One of the recent trends in suppressing the aeolian vibra-
tions is using a mobile robot equipped with a Stockbridge
damper. As shown in Fig. 1, Self-Powered Autonomous
Robot (SPAR) is being developed (Barry and Bukhari
(2017); Bukhari et al. (2018); Kakou et al. (2021); Kakou
and Barry (2021); Choi et al. (2022)). This mobile robot
works by finding an anti-node (the point of maximum
amplitude of a conductor for a given mode) and moves to
the anti-node to effectively reduce the vibration amplitude
of the conductor. Accordingly, finding an anti-node of a
conductor is one of the important processes in the research
involving SPAR. Since the vibration of a conductor de-
pends on the wind velocity (Barry (2010); Kakou (2021)),
an understanding of the aeolian vibrations of a conductor
is an essential step toward the optimum development of
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SPAR. Further, for the vibration analysis, selecting the
conductor model from the existing models (such as beam
and string models) for real-life scenarios is crucial.

Fig. 1. Conceptual design model of SPAR (Kakou (2021)).

However, to the authors’ knowledge, no studies guide the
selection of the conductor model for practical analysis with
different parameters of the conductor. In this paper, a
power line conductor is modeled as a beam and string
model and are compared with the experimental results
in low tension and low length condition. For this, the
effects of conductor design parameters such as flexural
rigidity, diameter, length, and tension on the beam and
string models are analyzed through parametric studies to
understand the conductor’s vibration characteristics.

The rest of the paper is organized as follows. Section 2
presents the theoretical background and analytical methods
for this work. A detailed discussion of the experiments is
presented in Section 3, followed by results and discussion in
Section 4. Finally, some conclusions are drawn in Section 5.

2. THEORETICAL BACKGROUND AND
METHODOLOGY

/i

I

Fig. 2. Structure of a conductor (Electrical Technology

(2020)).
Table 1. Conductor Parameters.

Parameter ‘ Value ‘
Mass per unit length | pA 0.3493 kg/m
Length L 7.32 m
Tension T 1330 N
Diameter d 14.4 x103 m
Flexural Rigidity EI 149.86 Nm?

In transmission lines, conductors are constructed with
individual wires packed tightly together in several layers,
as shown in Fig. 2. In this study, All Aluminum Conductor
(AAC) is used for analytical and experimental studies,
and the parameters of the conductor are listed in Table
1. Due to multiple layers of wires in the conductor, it is
difficult to get a governing equation of motion incorporating
the complex structure of the conductor. Therefore, in this
paper, we assume the conductor as a cylindrical body with a
homogeneous structure over the entire cross-sectional area

(Vecchiarelli (1998)). Accordingly, the governing equation
of motion for a conductor is given by (Barbieri et al. (2004))
0*w(x,t) 0%w(w,t) 0%w(w,t)
El : A - T = t) (1

where, f(x,t) is a uniformly distributed external load, w is
the transverse displacement of the conductor relative to its
equilibrium position, z is the coordinate along the length
of the conductor, T is the conductor tension, pA is the
mass per unit length, A is the cross-sectional area, E is
the modulus of elasticity, I is the moment of inertia of the
cross-section about the neutral axis, and ETI the flexural
rigidity. We emphasize that the above governing equation
of motion is based on the Euler-Bernoulli beam.

Accordingly, the boundary conditions for our system are,
w=0ax =0 w=0atz = L, %y/0x> = 0
at x = L. When considering the conductor as an Euler-
Bernoulli beam, the theoretical natural frequencies can be
obtained by (Claren and Diana (1969); Vecchiarelli (1998);
Barry (2010)).

n T nm\2 EI
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where w,, is the n*"* natural frequency in Hz, and n is an
integer denoting the mode number (n = 1,2, ...).

Furthermore, if the stiffness of the conductor is very small
and can be ignored, the flexural rigidity in Eq. 2. becomes
zero (E1 = 0). Hence, a conductor with a very small value
of flexural rigidity behaves like a string, and the natural
frequencies of a conductor can be obtained as

n T

“r =5\ pa (3)

Having obtained the analytical expressions for the natural
frequencies of the conductor as a beam and string model,
we next present a detailed discussion of the experiments.

3. EXPERIMENTS

The experiments for the modal analysis are primarily fo-
cused on defining modal parameters using two methods,
viz., non-contact by using a laser vibrometer and contact
through an accelerometer in a laboratory environment.
The experiments are performed using a vibrometer (Poly-
tec PSV-500), a signal conditioner (Bruel & Kjaer LDS
LPA100 amplifier), an accelerometer (PCB Piezotronics
YT352C34), and a modal hammer (Kistler). Also, the
internal software of Polytec PSV-500 is used to interface
with the hardware, record data, and post-process to define
modal parameters. The experimental setup is illustrated
schematically in Fig. 3, and is configured as shown in Fig.
4 in the laboratory.

The conductor is excited using the modal hammer, and the
results are averaged after three repeated measurements per
point. The four different Frequency Response Functions
(FRF) are obtained using two points, (1) midpoint and
(2) random point, as shown in Fig. 4. The two sensing
devices used in the experiment, the accelerometer, and
the vibrometer, are placed respectively at the midpoint
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and random point of the conductor. The experiments are
conducted by exciting the midpoint, H#1, (or random point
H#2), and collecting the FRF through the accelerometer
and vibrometer. This information is summarized in Table 2

. Data Logger

XJH

Modal Hammer

Laser Vibromt:ler

T,

Tension

Meter I

. Accelerometer ACC Conductor |

| Random Point (IT#2) Mlddle Poml (I1#1)

Fig. 3. Schematic illustration of the experimental setup.

Fig. 4. Experimental setup.

Table 2. FRF determination points through
experiments.

Middle Point | Random Point

(H#1) (H#2)
Accelerometer H#1/ACC H#2/ACC
Laser Vibrometer | H#1/VIB H#2/VIB

4. RESULTS AND DISCUSSION
4.1 Analytical

The analytical study is performed by using the parameters
of the conductor listed in Table 1 unless otherwise stated.
The natural frequencies of the conductor for the first tenth
mode (n = 10) are determined for the beam model and
string model using Egs. 2. and 3., respectively. Since the
expression for the natural frequency contains the param-
eters of a conductor, such as flexural rigidity, diameter,
length, and tension, these can be varied for the parametric
analysis. We emphasize that flexural rigidity is a principal
indicator of whether a conductor behaves like a string or a
beam; therefore, we first start with the variation of natural
frequencies for different values of flexural rigidity.

For flexural rigidity, EI = 1 Nm?2, the beam and the
string model of the conductor have almost the same natural
frequencies within 1% of error, as shown in Fig. 5. On the
other hand, as the number of modes increases, the difference
between the two models also increases rapidly. In particular,
the trend of difference is convex until the flexural rigidity is
10 Nm? as shown in Fig. 6. However, after EI = 100 Nm?,

the trend of difference starts becoming concave, as shown
in Fig. 7. In Fig. 8, when the flexural rigidity is 1000 Nm?,
the trend of the difference showed a perfect concave shape,
which implies rapid growth in the difference for the first
few modes followed by slow growth. Furthermore, from Fig.
8, we can observe that the difference between both models,
which is only 6% in the first mode, becomes 74% in the tenth
mode.
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Fig. 5. Natural frequencies of the analytical beam model and
analytical string model (E1 = 1 Nm?).
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Fig. 6. Natural frequencies of the analytical beam model and
analytical string model (ET = 10 Nm?).
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Fig. 7. Natural frequencies of the analytical beam model and
analytical string model (ET = 100 Nm?).
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Fig. 8. Natural frequencies of the analytical beam model and
analytical string model (ET = 1000 Nm?).
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Fig. 9. Natural frequencies of the analytical beam model and
analytical string model (ET = 149.86 Nm?).

Figure 9 shows the variation of the natural frequency and
difference with different modes for ET = 149.86 Nm? which
is the value of the conductor used in the experiment. The
beam model has a natural frequency of about 4 Hz to 26 Hz,
and the string model has a natural frequency of about 4 Hz
to 21 Hz, which further implies the maximum value of the
difference to be around 43%.

For varying diameter, length, or tension, the change of
the difference in natural frequency between the beam and
the string model is shown in Figs. 10 to 12, respectively.
For this analysis, the flexural rigidity is considered to be
ET = 149.86 Nm? (experimental value). Figure 10 shows the
difference between the natural frequencies of the two models
with the change in conductor diameter from 1 to 20 mm and
with different modes. The difference increases significantly
after 14 mm diameter. Also, the higher mode shows a more
significant difference, and the natural frequency of the tenth
mode at a diameter of 20 mm has a difference of around 66%.

The effect of the length of the conductor is shown in Fig. 11.
Unlike the case for the diameter, the difference is higher for
the shorter length of the conductor. When the conductor
length is longer than 10 m, the difference below the fifth
mode between the two models is less than 10%, but the
difference increases rapidly when the length is shorter than
10 m.
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Fig. 10. Difference between the analytical beam model and
analytical string model with diameter.
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Fig. 11. Difference between the analytical beam model and

analytical string model with length.
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Fig. 12. Difference between the analytical beam model and
analytical string model with tension.

The effect of tension on the difference between the natural
frequencies for both models is shown in Fig. 12. Similar to
the results for the length of the conductor, the difference
in natural frequency increases as the tension decreases.
Further, the difference becomes very large at T' = 2 kN, and
the maximum difference was calculated at approximately
60% for the tenth mode when the tension was 0.5 kN.
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4.2 Ezperimental

The natural frequencies obtained from the experiment are
compared with the analytical results to confirm the validity
of the analytical study with the parameter values listed in
Table 1. The natural frequencies of the first fifth modes
are obtained through the experiment, and the results are
compared against the analytical results. This comparison is
shown in Fig. 13. The natural frequencies are identified in
the range of 4 Hz to 24 Hz from the experimental results, 4
Hz to 26 Hz from the beam model, and 4 Hz to 21 Hz from
the string model. It has been shown that the beam model has
more similar natural frequencies to the experimental results
than the string model, in particular for the second and third
modes.

The natural frequencies from the analytic models (beam and
string model) and the experimental are listed in Table 3. On
comparing analytical results with the experimental results,
the errors for each mode are calculated as, respectively,
6.61%,1.87%, 1.36%, 4.11%, and 7.64% for the beam model,
and 7.57%, 5.71%, 6.96%, 6.79%, and 12.66% for the string
model. As the number of modes increases, the errors between
the analytic models and the experimental results tend to
increase. Figure 13 and Table 3 confirm that the beam model
provides values closer to the experimental results than the
string model for all natural frequencies.
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Fig. 13. Natural frequencies of the analytical models and the
experiments.

Table 3. Natural frequencies from the analytical
models and the experiments.

Mode | Beam (Hz) | String (Hz) | Experimental (Hz)
1 4.26 Hz 4.21 Hz 4.56 Hz
2 8.77 Hz 8.43 Hz 8.94 Hz
3 13.78 Hz 12.64 Hz 13.59 Hz
4 19.46 Hz 16.86 Hz 18.69 Hz
5 25.97 Hz 21.07 Hz 24.13 Hz

5. DISCUSSION

As the flexural rigidity increases, the difference between
the beam and string models becomes larger. This suggests
that if a conductor with high flexural rigidity is modeled as

string, inaccurate results could lead to misinterpretation.
Therefore, for the conductor with high flexural rigidity
( > 100 Nm?), the conductor should be modeled as a
beam to avoid any discrepancies between analytical and
experimental results.

From the parametric studies, it can be confirmed that the
difference between the beam and the string models increases
as the diameter increases and as the length and tension
decrease. Since the influence of each parameter showed a
rapid change based on a specific value, it would be necessary
to identify these points while modeling the conductor.

Furthermore, flexural rigidity, conductor diameter, conduc-
tor length, and conductor tension have a greater effect on
the natural frequency as the number of modes increases.
The influence of the parameters was relatively small up to
about the third mode with the natural frequency within 10
Hz. If the higher frequency is the range of interest, these
parameters should be treated more importantly.

From the experimental results, we can observe that the beam
model is a more appropriate choice for modeling the conduc-
tor than the string model. Especially in the case of higher
modes, such as second and third modes, the beam mode
differs from the experimental results by 1% compared to the
string model, where it differs by 6%. This observation can be
attributed to the appearance of the term EI(n7)?/pAL? in
the natural frequency of the beam. In contrast, the natural
frequency of the string does not take into account flexural
rigidity. Since the conductor considered in the experiment
has non-negligible flexural rigidity and a short span, the
term EI(nm)?/pAL? becomes significant and can not be
ignored. Furthermore, the low tension of the conductor also
increases the difference between a beam and a string model.

6. CONCLUSION

This work seeks to design an appropriate model of a power
line conductor to study aeolian vibrations. For this, the
conductor models based on the theoretical methodology of
beam and string models were examined. In the analytical
study, the influences of the parameters related to the natural
frequency of a conductor, such as flexural rigidity, conductor
diameter, conductor length, and conductor tension, were
comparatively analyzed between the beam and the string
model. We observed that as the flexural rigidity increased,
the differences between the two models also increased at the
higher modes. Furthermore, the high tension value and the
long span caused low differences. As a result, the conductor
parameters should be considered carefully while selecting
the model for the conductor.

Furthermore, the analytical results were compared with the
experimental results for the first five modes to validate
our observations. These results showed that modeling a
conductor based on a beam model is more compatible with
experimental results in low tension and short span condition
as predicted by analytical results.

This study contributes as a fundamental study to the
research of aeolian vibrations of a power line conductor
and would be helpful to analyze the effect of the mass of
the mobile robot, SPAR, on the vibration of a conductor.
Moreover, it could be a foundation for identifying the
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relationship between the wind and the anti-node point of a
conductor, which is essential for the development of SPAR.
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