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ABSTRACT

The reliability of power line conductors is essential for safety
and economic stability. Environmental factors—such as dust,
moisture, and wind-induced vibrations—accelerate degradation,
leading to reduced mechanical strength, increased electrical re-
sistivity, and corrosion. To prevent unexpected failures, timely
and systematic inspection is crucial. In this paper, we pro-
pose an autonomous inspection and classification framework for
power line conductors. We define four conductor health condi-
tions: Healthy, Minor Corrosion, Pollution-Induced Corrosion,
and Pollution-Induced Fretting. Using a modified Mobile Damp-
ing Robot, we collected real-world images of both healthy and
aged power lines on a testing structure. These images were sub-
sequently processed with segmentation models like U-Net and the
Segment Anything Model (SAM) to isolate the conductor against
the background, optimizing the dataset for analysis. We explore
two deep-learning approaches to classify the power line con-
ditions. The first is a custom-designed Convolutional Neural
Network (CNN), while the second utilizes transfer learning with
ResNet-50 as the backbone. Both models were trained to distin-
guish the four conditions based on visual features, with perfor-
mance validated on a dedicated testing set. The results demon-
strate that the proposed models effectively classify power line
conductor conditions. This approach offers a promising method
for proactive conductor maintenance and enhances long-term
grid reliability.
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ing, Image Segmentation, Classification, CNN, Robotics

*Corresponding Author (Email: obarry @vt.edu)

1 INTRODUCTION

The reliability of electric power infrastructure is critical to
modern society, as failures in power lines can lead to severe
economic and social consequences, including costly outages and
safety risks.In the United States, power outages result in annual
economic losses ranging from $25 billion to $70 billion [1-3].
Aging power line conductors, subjected to environmental and
operational stresses, are particularly vulnerable to degradation,
leading to reduced mechanical strength, increased electrical re-
sistivity, and corrosion. Studies indicate that nearly half of con-
trollable conductor failures derive from material degradation,
with corrosion and fatigue being the primary contributors [4, 5].
Naranpanawe et al. [6] reported that corrosion alone accounts for
30% of controllable conductor failures, while fatigue contributes
14%, as shown in Fig. 1. Additionally, Zhang et al. [7] found that
67% of overhead line failures occur on conductors, with 64% of
these being mechanical failures. These statistics underscore the
urgent need for early identification and proactive management
of deteriorating conductors to prevent catastrophic failures and
ensure power grid reliability.

Traditional time-based maintenance strategies are limited in their
ability to account for varying stress factors, often leading to ei-
ther premature interventions or overlooked faults [6, 8]. In con-
trast, condition-based maintenance enables timely interventions
based on actual conductor health. However, existing research on
advanced condition monitoring technologies for power line con-
ductors remains insufficient.

Current inspection methods primarily rely on manual visual as-
sessments, which are subjective, labor-intensive, and prone to hu-
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FIGURE 1: Different causes of conductor failure [6].

man error [9, 10]. Periodic inspections expose workers to safety
hazards and fail to provide continuous monitoring. Aerial in-
spection methods, such as helicopters [11], satellites [12], or un-
manned aerial vehicles (UAVs) [13], face operational constraints,
including limited proximity to power lines, making detailed dam-
age assessment challenging. While robotic systems [14, 15] such
as LineScout [16], and Expliner [17] have demonstrated potential
for automated inspection, they remain costly, bulky, complex, and
require human intervention for operation. These challenges high-
light the need for a fully autonomous, efficient, and cost-effective
solution for accurate conductor health assessment.

Furthermore, existing assessment tools lack standardized guide-
lines for the detailed classification of damage types and severity
levels. Advanced Al-driven image analysis is essential to enhance
predictive maintenance by enabling early defect detection. The
integration of autonomous robotic systems equipped with high-
resolution imaging and Al-powered classification algorithms is
crucial for improving conductor health assessment, reducing
maintenance costs, and preventing unexpected failures.

This research introduces a novel robotic approach for power
line conductor health monitoring, offering a new method for
condition-based maintenance and establishing a foundation for
future deployment in real-world environments. The proposed
system consists of three key components: (1) Robot Design and
System Architecture, where an autonomous robot is developed
to collect conductor images and a testing fixture with an unique
fixing mechanism ensures accurate image acquisition; (2) Image
pre-processing, which employs U-Net and the Segment Anything
Model (SAM) for background removal, followed by labeling im-
ages into four distinct classes: healthy, minor corrosion, pollution-
induced corrosion, and pollution-induced fretting; and (3) deep
learning-based classification framework, which compares trans-
fer learning approaches (ResNet-50) and a custom design CNN
based on performance metrics, computational efficiency, and
training time. Lastly, with the testing dataset, we demonstrate the
effectiveness of our model in improving reliability and efficiency
in conductor assessment. This research introduces a novel robotic
approach for power line conductor health monitoring, presenting
anew method in predictive maintenance.

2 ROBOT DESIGN AND SYSTEM ARCHITEC-
TURE

Most existing robotic inspection systems are complex, bulky,
and not fully autonomous [14—17]. The Mobile Damping Robot
(MDR) integrates power line health inspection with the damp-
ing properties of aeolian vibration dampers, as demonstrated in
previous research [18]. By incorporating vibration control char-
acteristics, the MDR eliminates the need for complex climbing
mechanisms over dampers while enhancing vibration mitigation
by positioning itself near the nearest anti-node and adapting to
changing wind conditions [19-21]. The prototype design of the
MDR is shown in Fig. 2.

FIGURE 2: Conceptual design model of the MDR [20].

This section details the development of the modified MDR frame-
work, which was accomplished in two phases. In the first
phase, the robot was modified to integrate essential compo-
nents—microcontrollers, cameras, and power systems—while
the design was refined to ensure a secure grip and smooth traversal
along conductors. The second phase involved designing and con-
structing a test fixture equipped with a unique conductor-fixing
mechanism, enabling the robot to attach securely to the conductor
and capture high-quality images for analysis.

2.1 Robot Design

Modifications to the previous robot design were necessary to
integrate essential sensors and enhance functionality. While re-
taining the basic structure and gripping mechanism, we incorpo-
rated additional components such as a camera, Raspberry Pi, mo-
tor controller, servo motor, battery, and Bluetooth module to en-
able health monitoring and inspection capabilities (Fig. 3). This
design forms a meaningful basis for future adaptation to field con-
ditions, even though further refinements are still needed.

Initially, the robot’s outer shell was redesigned to incorporate flat
surfaces, reducing complexity in both manufacturing and test-
ing—particularly in the 3D printing process. Since we relied on
basic-functionality 3D printers, simplifying the design was criti-
cal to ensuring consistent prints. PLA was selected as the printing
material, and the flat surfaces also eased the attachment of elec-
tronic components.
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FIGURE 3: CAD design of the modified MDR.

Another key system integration enables the robot to capture im-
ages of the power line conductor from all angles, ensuring full
visual coverage for effective inspection. To achieve this, we mod-
ified the previous senior design’s mirror plate and integrated it
into our MDR robot. Figure 3 illustrates our modified mirror plate
design, where the mirror is angled 45° from the vertical center-
line, optimizing the viewing angles for a complete image of the
power line. The camera is positioned vertically to directly capture
the conductor, while the mirror provides two additional reflected
views, as shown in Fig. 6.

To ensure accurate classification through vision-based inspection,
the camera requires relatively high resolution, as detailed images
of the conductor provide valuable data for analysis. In parallel, the
motor supports precise movements. These modifications enable
the robot to efficiently capture and process high-quality images,
supporting automated and reliable data collection for the health
inspection system.

Furthermore, the robot incorporates an adaptable gripping mech-
anism to accommodate conductors of varying diameters. This
mechanism features four support rollers arranged in a triangular
configuration at the top, with the motor base mounted at the bot-
tom of the case. Springs positioned between these components ap-
ply a constant yet flexible force, ensuring that the rollers maintain
sufficient friction against the conductor while allowing the robot
to adapt to different sizes. To maintain simplicity and focus on this
study’s primary objectives, we intentionally excluded the vibra-
tion damper from the design. Moreover, aspects such as structural
rigidity, environmental protection, and outdoor simulation were
deemed beyond the scope of this prototyping stage.

Figure 4 summarizes the robot’s software logic. The system cap-
tures two types of images: one focused on the conductor and the

other on its reflection. After saving these images, the Raspberry
Pi communicates with the motor controller to move the servo mo-
tor by a specified distance. This process repeats for a predefined
number of positions, as specified by the user.

Start Focusing Lens | | Capture & Save L Focusing Lens
a on Conductor Image on Mirror
yes
Advance
End More Positions Robot  k— Capture & Save
to Capture? (Fixed Step) Image

FIGURE 4: Image acquisition process with the MDR.

2.2 Laboratory Setup for Data Acquisition

A controlled laboratory setup was established to facilitate
structured data acquisition for evaluating the autonomous mobile
robot’s ability to capture high-quality conductor images. This
setup ensured precise image acquisition while minimizing poten-
tial interference and structural wear on the conductor.

As illustrated in Fig. 5, a testing fixture was designed to securely
hold the power line conductor while reducing abrasion between
the conductor and the wooden structure. A pulley mechanism was
integrated into the design, enabling smooth sliding of the conduc-
tor along its length. This allowed the robot to traverse the con-
ductor without obstruction, ensuring consistent image acquisi-
tion. Additionally, a friction-based clamping mechanism secured
the conductor at its base, eliminating the need for traditional ten-
sioning methods that require looping the conductor’s ends. This
design enhanced operational efficiency and maintained image in-
tegrity during testing.

FIGURE 5: Testing fixture with the MDR mounted.

Two types of conductors were used: a new conductor that had
been previously used for vibration experiments in the lab and a

Copyright © 2025 by ASME

G202 J8quia0a( G| UO 1asn AYISISAILN SJE)S PUE 8jnjisu| oluydslAlod eluiBiIA Aq 1pd-01989}-GZ0Z010P-€20EZ0I9Z0NS8E LSS .L/EZ0VZ0LEZ0N/E LZ68/520231D-0 L3 alAPd-sBuIpesooid/a10-0 L3a1/B10"awse uonos||0o|eybipaLuse;/:djy Woly papeojumod



worn-out conductor that was removed from service and retrieved
from an electric service company. The worn-out conductor ex-
hibited real-world degradation, including surface wear and cor-
rosion, making it an essential reference for testing the system’s
capability to detect damage under practical conditions.

During data acquisition, the robot is mounted onto the conductor
and moves along it in controlled increments, capturing images at
each step. Once acquisition is complete, the images are trans-
ferred to a desktop computer, where computer vision and ma-
chine learning algorithms process them. The robot’s movement
is synchronized with the motor controller, ensuring precise posi-
tioning for consistent image capture. Figure 6 presents sample
images obtained through this process. The system’s effectiveness
is evaluated using a dataset of approximately 5,000 images ac-
quired with the prototype robot.

(a) (b

FIGURE 6: Two images acquired by the MDR: (a) Lens focused
on the conductor, (b) Lens focused on the mirror reflection

3 IMAGE PRE-PROCESSING

The image preprocessing method from previous research [22]
did not include background removal, as conductor images were
captured under controlled conditions with a plain white sheet as
the background. However, in this study, background removal
was incorporated since images captured by the robot contain sur-
rounding objects that introduce noise. Without this step, the clas-
sification models’ effectiveness would be impacted [23,24]. The
finalized background removal procedure, optimized for image
analysis, is illustrated in Fig. 7.

. Conductor Extracting
Original Initial || Segmentation —» Foreground &
Image Cropping (U-Net) Background

Points
Processed Final Background
Image Cropping [ | Removal (SAM)

FIGURE 7: Background removal process.

Once the background is removed, the processed images are la-
beled for conductor health classification. Conductors are catego-
rized based on surface conditions to ensure accurate assessment.

Proper labeling enables the deep learning model to differentiate
varying levels of degradation, improving classification reliability.
By systematically organizing the dataset into meaningful health
categories, the model is trained to detect and predict conductor
conditions with greater precision and interpretability.

3.1 Background Removal Using U-Net and SAM

The testing fixture uses a friction-based clamping mechanism to
secure and tension the conductor. However, this clamping method
does not include a complete tensioning system, which results in
slight bending at the contact points due to applied pressure. This
bending affects the conductor’s position and angle in the images.
Accurate background removal requires proper selection of input
and background points, but the variations in conductor position
and angle make relying on predefined points unsuitable. To over-
come this challenge, the U-Net segmentation model is used to pre-
cisely identify the conductor’s position and angle in each image.
U-Net [25], a fully convolutional neural network designed for im-
age segmentation, features an encoder-decoder architecture that
allows for accurate localization of objects. Its skip connections
preserve spatial information, making it highly effective for seg-
menting conductors despite variations in positioning.

® Input Points ® Input Points

Background i Background
* Points i Points

(a)

FIGURE 8: Results of images processed with U-Net: (a) Seg-
mented binary mask, (b) Original image.

As shown in Fig. 8, the conductor is segmented from the back-
ground using U-Net, generating a mask that guides the selection
of input and background points. Background points are placed to
the left and right of the segmented conductor at the mid-height of
the image, with values slightly smaller than those in the segmen-
tation mask. Input points are strategically positioned diagonally
across the conductor to optimize line detection.

The binary mask derived from U-Net is used to automate the po-
sitioning of input and background points for background removal
with SAM, developed by Meta Al [26]. In this study, we applied
the ViT-L SAM model, which strikes the best balance between
processing time and segmentation quality. Figure 9 illustrates
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FIGURE 9: Result of background removal using SAM.

an example of this process, where SAM effectively removes the
background by utilizing the segmentation mask generated by U-
Net. This method ensures precise isolation of the conductor while
eliminating surrounding noise. The entire background removal
process takes less than 0.5 seconds per image, achieving an accu-
racy of around 90%. Future optimization of input and background
points could further improve accuracy.

3.2 Conductor Health Labeling

The preprocessed images are shown in Fig. 10. Following
the background removal process, the images were categorized
into four distinct classes: Healthy, Minor Corrosion, Pollution-
Induced Corrosion, and Pollution-Induced Fretting. The Healthy
class consists of images captured from a new conductor used in
vibration experiments in the lab, as it was free from any visible
degradation. In contrast, the worn-out conductor exhibited gray
discoloration and a loss of luster due to surface-wide corrosion,
which, though not critically harmful to conductor health, is cate-
gorized as Minor Corrosion [27]. Thus, in total, we obtained the
images with two conductors, healthy and worn out.

In some areas, the worn-out conductor showed black dust accu-
mulation. When dust and foreign contaminants accumulate on the
roughened, corrosion-infused surface, itincreases the temperature
of the conductor, even with the same amount of current, signifi-
cantly affecting its performance and conditions [28]. Images of
aged conductors with visible contamination and very minor abra-
sion are classified as Pollution-Induced Corrosion. Finally, the
Pollution-Induced Fretting class includes images showing distinct
signs of both major abrasion and pollution-induced corrosion, rep-
resenting the most critical condition.

4 DEEP LEARNING-BASED
FRAMEWORK

To automate the classification of power line conductor images
into four distinct categories, we implemented two neural network
approaches: a custom CNN trained from scratch and a transfer
learning model using ResNet-50 as the backbone. For both mod-

CLASSIFICATION

(a) (b) (d)

FIGURE 10: Final result of images with the background removed:
(a) Healthy, (b) Minor corrosion, (c¢) Pollution-induced corrosion,
(d) Pollution-induced fretting.

els, we employed the Adam optimizer with weight decay to mit-
igate overfitting and address dataset imbalance [29]. To enhance
generalization, we incorporated image augmentation techniques
during training [30]. Additionally, we used a learning rate sched-
uler that reduces the learning rate when training performance
plateaus, thereby improving convergence [31]. Both approaches
were optimized using multi-category cross-entropy loss, which
has consistently demonstrated robust performance for multi-class
classification tasks. The loss function is defined in the equation 1,

N C
LeE=— Z Zyi,c log(Fic), (D

i=lc=1

where y; . represents the one-hot encoded true label and y; . is the
predicted probability for class c.

4.1 Custom Convolutional Neural Networks

The rise of Convolutional Neural Networks (CNNs) has trans-
formed image analysis across numerous fields. In medicine,
for example, CNNs have been successfully integrated to auto-
mate and enhance diagnostic processes. These networks are par-
ticularly effective in classifying complex imaging data, such as
CT scans for detecting brain tumors [32], X-rays for identifying
COVID-19 [33], and skin diseases [34].

CNNss consist of multiple layers that progressively extract and re-
fine features from input images. The initial convolutional lay-
ers use learnable filters to detect low-level features such as edges
and textures. As data advances through the network, higher-level
layers capture increasingly abstract representations. Pooling lay-
ers reduce the spatial dimensions of these feature maps, decreas-
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ing the computational load and providing invariance to minor
translations. Finally, fully connected layers interpret these ab-
stract features to produce the final predictions [33]. Training a
CNN involves a feed-forward pass, where input data is propa-
gated through each layer to produce an output, followed by back-
propagation, during which the network’s weights are updated
based on the computed error. This iterative process, typically
guided by optimization algorithms over many epochs, continues
until convergence is achieved.

For our custom CNN architecture (see Fig.11), colored (RGB)
images of size 128 x 128 are processed through four convolu-
tional blocks. The first block begins with a 3 x 3 convolution that
increases the input channel count from 3 to 32, and subsequent
blocks further increase the feature map dimensions to 64, 128, and
finally 256. In each block, batch normalization is applied to stabi-
lize the distribution of layer inputs, thereby accelerating training.
This is achieved by augmenting layers that set the mean and vari-
ance of each activation’s distribution to zero and one [35]. The
ReLU activation function, defined in the equation 2,

o (x) = max{0,x} (2)

introduces the necessary non-linearity to enable the network to
capture complex patterns [36]. Following these operations, a 2 x
2 max pooling layer reduces the spatial dimensions, and dropout
is employed to mitigate overfitting. Notably, the first two blocks
use a dropout rate of 0.3, while the third and fourth blocks use
a rate of 0.4 to enhance generalization further.

After the convolutional blocks, the feature maps are flattened and
passed to a fully connected classifier with three linear layers. The
first two linear layers use ReL U activations and a dropout rate of
0.5, while the final layer outputs logits for four classes. This
structured design enables the network to efficiently learn and
generalize from the diverse features present in the dataset.

4.2 Transfer Learning

The limited generalization observed in the model is partially
attributed to the restricted dataset for training, both in terms of
total number and class imbalance. As previously mentioned, the
MDR captured conductor images. However, due to resource con-
straints—including the limited availability of aged power line con-
ductors, the time-intensive nature of the data collection, and oper-
ational limitations—the dataset comprises approximately 5,000
unique images spanning various classes. Ideally, alarger and more
balanced dataset would enhance model performance. Neverthe-
less, given these constraints, transfer learning emerges as a highly
effective strategy for training with a limited dataset.

Barman has highlighted several advantages of transfer learning
over training from scratch. Specifically, transfer learning requires
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FIGURE 11: CNN model architecture.

fewer data samples to achieve similar performance, consumes less
computational power, and accelerates model convergence. While
itdoes have certain disadvantages, such as reduced flexibility inin-
tegrating new image datasets or adapting to unique data character-
istics, itis ideally suited to our research objectives [37,38].

We selected ResNet-50 as the backbone for our image classi-
fication model due to its robustness and ability to address the
vanishing gradient problem. While various pre-trained models
(e.g., VGG, GoogLeNet, MobileNet, Xception) exist, ResNet-
50’s widespread use highlights its reliability. Deeper networks of-
ten suffer from diminishing gradients, hindering training [39], but
ResNet-50 mitigates this with skip connections that preserve gra-
dient flow, enabling deeper model training. Many object detection
systems leverage ResNet variants (e.g., ResNet-50, ResNet-101,
ResNet-152) for this reason [40]. Furthermore, ResNet-50 strikes
an excellent balance between performance, computational cost,
and ease of use when leveraging pre-trained weights in a transfer
learning setup. Given the subtle differences in texture and severity
among our images, ResNet-50 provides the necessary depth and
feature extraction capabilities to effectively distinguish between
the various classes.
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FIGURE 12: ResNet-50 model architecture.
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Figure 12 illustrates the architecture of our model, which utilizes
a pre-trained ResNet-50. In this design, we freeze the initial lay-
ers (layers 1 and 2) to retain the low-level features acquired during
pretraining, while fine-tuning the deeper layers (layers 3 and 4).
This selective approach is particularly advantageous when work-
ing with limited datasets; training all layers could lead to overfit-
ting, whereas freezing all layers might hinder the network’s abil-
ity to adapt to the new task [41]. By unfreezing only layers 3 and
4, the model can adjust higher-level, task-specific features with-
out the excessive burden of updating all parameters.Following
these adjusted layers, we replace the original fully connected (FC)
layer with a custom classifier that includes an intermediate layer.
This tailored classifier begins with a dropout layer set at a rate
of 0.4 to mitigate overfitting. It then incorporates a linear layer
that expands the feature dimensions to 512, followed by a ReLU
activation function to introduce non-linearity. Another dropout
layer precedes the final linear layer, which maps these features to
the four output classes. This structured reduction—from a 512-
dimensional feature space down to four class scores—facilitates
smoother adaptation to the target domain.

5 EXPERIMENTS

Using the MDR, we assembled a dataset of 4,725 images across
four conductor-health classes. We split these into an 80% training
set (3,780 images) and a 20% test set (945 images). The train-
ing set exhibited severe class imbalance—Healthy: 1,004; Minor
Corrosion: 387; Pollution-Induced Corrosion: 1,201; Pollution-
Induced Fretting: 1,197 images—so we applied weight decay in
our optimizer to help counteract bias during learning. To improve
generalization, we also employed standard data-augmentation
techniques: horizontal and vertical flips, rotations, random crops
and translations, and brightness/contrast adjustments. Each aug-
mentation operation was applied independently to every original
training image, yielding one new variant per operation.

For both models, the initial learning rate was set to 0.0003, with
the Adam optimizer used along with a weight decay of 0.0001 to
manage the imbalanced dataset effectively. A learning rate sched-
uler with a factor of 0.1 and a patience count of three epochs was
incorporated to reduce the learning rate when progress plateaued.
Early stopping was applied with a patience of five epochs, halting
training if the validation loss did not improve for five consecutive
epochs, optimizing resource utilization. The model state corre-
sponding to the lowest test error was saved after each epoch, en-
suring that the best-performing weights were retained.

Training was conducted in a Google Colab environment, inte-
grated with Google Drive for data storage. All evaluation and
training processes were performed on an NVIDIA A100 GPU to
ensure consistent performance metrics.

The training and test loss and accuracy plots are illustrated in

Fig.13 and Fig.14. In our experiments, the custom CNN model
completed training in 21 epochs, taking a total of 71.84 min-
utes. In contrast, the ResNet-50 model, utilizing transfer learn-
ing, required 32 epochs but completed training in 50.45 minutes.
This suggests that, although ResNet-50 required more epochs,
it achieved more efficient convergence per epoch, leading to a
shorter overall training time compared to the custom CNN model.
The final results are summarized in Table 1.

Train & Test Loss and Accuracy
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FIGURE 13: Loss and accuracy of training and test results with
CNN model.
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FIGURE 14: Loss and accuracy of training and test results with
ResNet-50 model.

6 RESULTS AND DISCUSSION

The results, presented in Table 1, indicate that ResNet-50 out-
performs the CNN model in all evaluated metrics. Not only
does ResNet-50 require less training time, but it also consis-
tently achieves superior performance. Specifically, ResNet-50 at-
tained significantly lower training and test losses, with losses more
than halved compared to the CNN. Regarding classification accu-
racy, ResNet-50 achieved 91.96% training accuracy and 91.53%
test accuracy, while the CNN reached 79.55% training accuracy
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TABLE 1: Results of experiments (CNN and ResNet-50 models).

CNN ResNet-50

Training Time [min] 72 50

Epoch [num] 21 32

Train Loss 0.49 0.20
Train Accuracy [%] 79.55 91.96
Test Loss 0.43 0.23
Test Accuracy [%] 82.12 91.53
Test Precision [ %] 78.48 91.50
Test Recall [%] 82.12 91.53
Test F1[%] 79.82 91.46

and 82.12% test accuracy. The close match between the train-
ing and test accuracies of ResNet-50 suggests that the model is
well-designed and generalizes effectively. Furthermore, ResNet-
50 exhibited higher precision (91.50%), recall (91.53%), and F1-
score (91.46%), outperforming the CNN with respective values
of 78.48%, 82.12%, and 79.82%. These findings highlight that
ResNet-50 provides a more robust and accurate classification of
conductor conditions.

Testing Confusion Matrix
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2: Pollution-induced corrosion
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FIGURE 15: Confusion Matrix of CNN model test result.

The testing confusion matrices for the CNN and ResNet-50 mod-
els are presented in Fig.15 and Fig.16. The most notable improve-
ment observed in ResNet-50 is its ability to classify the Minor cor-
rosion class. While the CNN model failed to predict this class en-
tirely, ResNet-50 correctly classified 39 out of 59 Minor corrosion
images. Both models accurately classified the Healthy class with
no misclassifications; however, they exhibited confusion among
the remaining classes. This is likely because Healthy class images

are distinctly different from those in the other classes.

Testing Confusion Matrix
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200
_ 1 0 39 17 3
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1: Minor corrosion 3: Pollution-induced fretting

FIGURE 16: Confusion Matrix of ResNet-50 model test result.

ResNet-50 demonstrated classification errors of 34% for Mi-
nor corrosion, 14% for Pollution-induced corrosion, and 8% for
Pollution-induced fretting. A primary reason for the high error
rate in the Minor corrosion class could be the limited availability
of training data. Additionally, misclassifications among the Minor
corrosion, Pollution-induced corrosion, and Pollution-induced
fretting classes suggest that certain images contain overlapping
features, making accurate differentiation challenging. Addressing
this issue will require further model improvements and potentially
expanding the dataset.

Despite these challenges, ResNet-50 achieved an overall accuracy
of about 92%, significantly outperforming the CNN model in clas-
sifying the three corrosion-related classes. These results highlight
the potential of ResNet-50 for more accurate conductor condition
classification.

7 CONCLUSION

In this paper, we present an autonomous inspection and clas-
sification framework for power line conductors. While the MDR
is not yet ready for real-world deployment, we implemented deep
learning models that achieved high accuracy in evaluating conduc-
tor health conditions. Among the models tested, ResNet-50 out-
performed a custom CNN, underscoring its superior performance
in classification tasks. Future work will explore the integration
of the Consistent Rank Logits (CORAL) method to better capture
the ordinal relationships among conductor condition categories.
This study demonstrates the potential of advanced machine learn-
ing techniques to enhance the efficiency and reliability of power
line maintenance.
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