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ABSTRACT
Electromechanical metamaterials have been the focus of many recent studies for use in simultaneous energy harvesting and vibration control.
Metamaterials with quasiperiodic patterns possess many useful topological properties that make them a good candidate for study. However, it
is currently unknown what effect electromechanical coupling may have on the topological bandgaps and localized edge modes of a quasiperi-
odic metamaterial. In this paper, we study a quasiperiodic metamaterial with electromechanical resonators to investigate the effect on its
bandgaps and localized vibration modes. We derive here the analytical dispersion surfaces of the proposed metamaterial. A semi-infinite
system is also simulated numerically to validate the analytical results and show the band structure for different quasiperiodic patterns, load
resistors, and electromechanical coupling coefficients. The topological nature of the bandgaps is detailed through an estimation of the inte-
grated density of states. Furthermore, the presence of topological edge modes is determined through numerical simulation of the energy
harvested from the system. The results indicate that quasiperiodic metamaterials with electromechanical resonators can be used for effective
energy harvesting without changes in the bandgap topology for weak electromechanical coupling.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0119914

I. INTRODUCTION

Mechanical metamaterials are a novel class of artificially struc-
tured materials with valuable dynamic properties for vibration
control and energy harvesting.1 Periodic and locally resonant meta-
materials are especially useful for their ability to produce bandgaps
in their bulk spectra at wavelengths near the lattice constant for peri-
odic structures2–6 and at wavelengths much shorter than the lattice
constant for locally resonant structures.7–10 In the frequency range
of these bandgaps, waves cannot propagate and are reflected due to
the Bragg scattering.

More recent work has focused on using these metamaterials
for simultaneous vibration control and energy harvesting through
the introduction of electromechanical elements such as piezoelectric
patches.11–14 It has been shown that the presence of weak electrome-
chanical coupling does not alter the bulk spectrum,15,16 and tuning
of a shunt circuit has proven effective in tuning bandgaps in the bulk
spectrum.17–20 Various methods have also been explored to increase
the energy harvesting performance of these metamaterials such as

using graded patterns in shunt circuits21 and physically coupling
resonators.22

Quasiperiodic metamaterials exhibit many useful topological
properties that make them worthy of consideration for greater
energy harvesting performance. Although periodic metamaterials
produce topologically trivial bandgaps, quasiperiodic metamateri-
als can produce additional bandgaps that are topological in that
they are filled with topological edge modes.23,24 When plotted, the
bulk spectrum has been shown analytically and experimentally to
map the Hofstadter butterfly spectrum.25–27 For finite structures, the
topological edge modes filling the gaps in the bulk spectrum man-
ifest through vibrations that are localized to the boundary of the
structure.25,28,29 Through the introduction of a phase variable to the
pattern function, the edge modes can be pumped from one boundary
to the other.29 These topological edge modes allow for more effec-
tive energy harvesting as only the few cells with large amplitude
vibrations will need energy harvesters embedded in them. How-
ever, the effect of the electromechanical coupling on the topological
bandgaps and edge modes of a quasiperiodic structure remains

AIP Advances 13, 015112 (2023); doi: 10.1063/5.0119914 13, 015112-1

© Author(s) 2023

https://scitation.org/journal/adv
https://doi.org/10.1063/5.0119914
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0119914
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0119914&domain=pdf&date_stamp=2023-January-9
https://doi.org/10.1063/5.0119914
https://orcid.org/0000-0001-8971-5296
https://orcid.org/0000-0002-8866-9205
https://orcid.org/0000-0002-9231-8328
mailto:obarry@vt.edu
https://doi.org/10.1063/5.0119914


AIP Advances ARTICLE scitation.org/journal/adv

elusive to date. Therefore, detailing this effect is the focus of this
study.

In this paper, we consider a 1D quasiperiodic chain of iden-
tical masses with electromechanical resonators. The quasiperiodic
pattern is present through a variation in the spring stiffness between
cells. The electromechanical resonators are shunted to an external
load resistor for harvesting the generated power. The governing
equations are presented, and the bulk spectrum is determined ana-
lytically for an infinite system and numerically for a semi-infinite
system. The topological nature of the bandgaps is confirmed through
the estimation of the integrated density of states (IDS). The effects of
electromechanical coupling parameters on the topological bandgaps
and edge modes are also observed. Furthermore, a discussion on
the application of topological edge modes for use in energy harvest-
ing is given with the power output from each cell in a semi-infinite
chain.

II. SYSTEM DESCRIPTION AND MODELING
A schematic of the quasiperiodic structure under consideration

is shown in Fig. 1(a). The structure consists of s equally spaced crys-
tals of mass m and lattice constant a. Within each cell is embedded an
electromechanical resonator shunted to an external resistor R. The
electromechanical resonator has an effective mass mp, effective stiff-
ness kp, electromechanical coupling coefficient θ, and capacitance of
the piezoelectric element Cp. Each cell is connected by springs whose
stiffness constant kn is defined by the sampling of the 2D surface
S(x, ϕ) = cos(2πQx + ϕ) at xn = na [Fig. 1(b)], which is topologi-
cally equivalent23 to the circle S1. This surface is defined by the

FIG. 1. (a) Schematic of the quasiperiodic metamaterial with electromechanical
resonators. (b) 2D surface sampled at red dots along black lines of constant
phase ϕ.

quasiperiodic parameter Q and the phase variable ϕ. As such, the
nth spring constant is defined as

kn = k0[1 + α cos(2πQn + ϕ)], (1)

with average stiffness k0 and modulation amplitude α. The govern-
ing equations of motion for the nth mass and electromechanical
resonator are

mün + (kn−1 + kn)un − kn−1un−1 − knun+1 +mp(ÿn + ün) = 0, (2)

mpÿn + kpyn − θvn = −mpün, (3)

RCpv̇n + vn + Rθẏn = 0, (4)

where yn = Yn − un is the relative displacement of the nth resonator,
Yn is the absolute displacement of the nth resonator, un is the dis-
placement of the nth cell, and vn is the harvested voltage across the
resistor.

Imposing a Bloch periodic solution of

un = Ūnej(μn−ωt) yn = Ȳnej(μn−ωt) vn = V̄nej(μn−ωt), (5)

where Ūn, Ȳn, and V̄n are the mass displacement, resonator displace-
ment, and voltage amplitudes, respectively, with non-dimensional
wavenumber μ, frequency ω, and dimensional time t, will yield the
governing equations,

(−mω2 + kn−1 + kn)Ūn − kn−1Ūn−1e−jμ − knŪn+1ejμ −mpω2Ȳn = 0,
(6)

(−mpω2 + kp)Ȳn − kpŪn − θV̄n = 0, (7)

(−jω + 1
RCp
)V̄n − jω

θ
Cp

Ȳn + jω
θ

Cp
Ūn = 0. (8)

By further imposing the condition un+N = un for a system with
N masses in its unit cell, the governing equations for the unit cell can
be expressed in matrix form as follows:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K −mpω2IN 0N

−kpIN (−mpω2 + kp)IN −θIN

jω
θ

Cp
IN −jω

θ
Cp

IN (−jω + 1
RCp
)IN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ū

Ȳ

V̄

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0, (9)

where the N ×N stiffness matrix K can be expressed as

K = −mω2IN

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

kN + ki −kiejμ 0 . . . −kN e−jμ

−ki−1e−jμ ki−1 + ki −kiejμ . . . 0

0
. . .

. . .
. . . ⋮

⋮ 0
. . .

. . . −kN−1ejμ

−kN ejμ 0 . . . −kN−1e−jμ kN−1 + kN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(10)
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with i being the row number, and IN and 0N being the N ×N identity
and zero matrices, respectively.

To obtain nontrivial solutions to Eq. (9), the coefficient matrix
must be singular. By setting the determinant of the coefficient matrix
equal to zero, the characteristic equation is obtained through which
the analytical dispersion relationship is determined. With both the
coefficient and stiffness matrices generalized for any value of N, this
relationship can be applied to any rational quasiperiodic parameter
value.

For this study, we will be giving further analytical considera-
tion to a system with quasiperiodic parameter Q = 1/3 (N = 3) with
stiffness matrix (see supplementary material for more details on
other parameters)

K =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−mω2 + k1 + k3 −k1ejμ −k3e−jμ

−k1e−jμ −mω2 + k1 + k2 −k2ejμ

−k3ejμ −k2e−jμ −mω2 + k2 + k3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (11)

Numerical simulation is used to determine the natural frequen-
cies and mode shapes for a semi-infinite system for the full range of
phase variable ϕ and quasiperiodic parameter Q.

The topological nature of the bandgaps can also be classified
through the estimation of the integrated density of states (IDS) of
the system. This can be calculated at a frequency Ω as

IDS(Ω) = lim
s→∞

∑n[ωn ≤ Ω]
s

, (12)

where ωn is the nth natural frequency and [⋅] are the Iverson
Brackets returning a value of 1 when the statement within is true
and a value of 0 otherwise.

Next, the relative power output Pn from each cell is determined
from the voltage mode shapes. The mode shape yields a relative volt-
age at each cell from which the instantaneous power can be derived
using the following relation:

Pn =
v2

n

R
. (13)

III. EFFECT ON BAND STRUCTURE
Here, we will consider a semi-infinite chain of s = 60 masses

and resonators with the following parameters: m = 1 kg, k0 = 1 N/m,
α = 0.6, mp = 0.2 kg, kp = 0.3 N/m, ϕ = 0 rad, R = 10 MΩ,
Cp = 13.3 nF, and θ = 10−10 N/V. After calculating the roots of the
characteristic equation derived from Eq. (9), we plot the dispersion
surfaces in Fig. 2(a), showing six bulk bands and five bandgaps. To
validate the analytical results, we also plot the natural frequencies of
the semi-finite chain superimposed on the bulk bands in Fig. 2(b).
The non-dimensional frequency is defined as Ω = ω/ω0, where
ω2

0 = k0/m.
The results indicate that weak electromechanical coupling has

no noticeable effect on the shape of the band structure producing an
identical band structure to the case without coupling, which is not
included here for brevity. For comparison, these results are included
in the supplementary material. The bulk spectrum is split into two
major branches separated by a bandgap centered around the res-
onant frequency of the local resonators, Ω = 1.22. Both branches
are further divided by multiple additional bandgaps determined by
the value of the quasiperiodic parameter. Each of these additional
bandgaps is spanned by a topological edge mode highlighted in red
in Fig. 2(b). These modes are a prominent feature of the semi-infinite
system. As the phase varies, these edge modes span the bandgap
from one bulk boundary to the next. As it touches the next boundary,
the localized vibration transitions from one edge to another.

To further investigate the effect of the electromechanical cou-
pling on the band structure, we plot the natural frequencies again
for the semi-infinite chain superimposed on an approximate infi-
nite chain while varying the quasiperiodic parameter in Fig. 3. Both
weak and strong electromechanical couplings show the well-known
Hofstadter butterfly image. For weak electromechanical coupling
(θ = 10−10 N/V), the band structure is obtained for a range of resis-
tance values of 10 Ω ≤ R ≤ 1010 Ω. The band structures produced
matched the structure without coupling,28 showing no impact due
to weak coupling. Further results for other values of the resistance
and coupling coefficient are included in the supplementary mate-
rial. This demonstrates that with weak electromechanical coupling,
a quasiperiodic metamaterial can be used for simultaneous energy
harvesting and vibration suppression without degrading its bandgap
boundaries.

FIG. 2. (a) Dispersion surfaces as a func-
tion of μ and ϕ. (b) Natural frequencies
for a chain of s = 60 cells (black lines)
superimposed on bulk bands (shaded
gray) with variation in the phase variable
ϕ and Q = 1/3.
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FIG. 3. Spectrum of natural frequencies
for a chain of s = 60 cells (black lines)
superimposed over a bulk spectrum of
s = 600 cells (shaded blue) with (a) weak
coupling (θ = 10−10 N/V) and (b) strong
coupling (θ = 10−3 N/V) with variation
in the quasiperiodic parameter Q and
ϕ = 0.

To test the case of stronger electromechanical coupling, the
band structure was obtained for a range of coupling coefficients of
10−10 N/V ≤θ ≤ 10−1 N/V. The band structure remains unaltered
for θ ≤ 10−5 N/V. As the coupling increases past this limit, the band
structure gradually degrades. This is seen in Fig. 3(b), where multiple
branches have merged as the bandgaps have collapsed. Indeed, this
topological change in the spectrum is worthy of further investiga-
tion; however, it is beyond the scope of the current work, and we will
consider it in the near future. It is worth noting that in most engi-
neering applications, it is uncommon for the coupling coefficient to
exceed the order of 10−10 N/V.

The topological nature of the bandgaps can be further detailed
through the IDS function of the system. The IDS is plotted in Fig. 4
as a function of Ω and Q for an infinite system approximated with
s = 600 cells with weak electromechanical coupling. The IDS is plot-
ted for stronger coupling in the supplementary material. In this
representation, the bandgaps are illustrated as lines along sharp color
changes, some of which are traced as dashed lines in the figure. These
lines can be defined as

IDS(Q) = A + BQ, (14)

FIG. 4. Integrated density of states as a function of Q with sharp changes in color
showing bandgaps. Some bandgaps are highlighted by dashed lines with their
equations given.

with intercept A and slope B. Each bandgap can be uniquely labeled
by its topological invariant, the Chern number, C. The IDS can be
utilized to determine the Chern number using Streda’s formula fol-
lowing the approach outlined by Ni et al.,25 ∂IDS

∂Q = C. From this
approach, the slope B of each line indicates the Chern number used
to define each associated bandgap and to determine the presence of
topological edge modes. In Fig. 4, the red dashed line corresponds to
the bandgap of the local resonators and has a Chern number (slope)
C = 0 (B = 0), indicating it is topologically trivial. All other bandgaps
are confirmed to be topological in that they have non-zero Chern
numbers (slopes), which further implies the presence of topological
edge modes spanning the bandgaps.

By exciting the system at the mode within the fifth bandgap and
plotting the normalized power output, the presence of edge modes
is made evident. Figure 5 shows the power output from each cell.
The majority of the power output comes from only a handful of cells
experiencing greater vibration in the localized mode. These few cells
harvest energy that is multiple orders of magnitude larger than the
majority of the remaining cells. By sweeping the phase variable, it
is possible to shift the edge mode from one boundary to the other
allowing for greater control of the location of vibration and energy
harvesting in the chain. As such, the electromechanical coupling
does not impact the ability of a quasiperiodic system to host local-
ized edge modes. Furthermore, localized edge modes pave the way

FIG. 5. Normalized power output from each cell in a chain of s = 60 cells.
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for more efficient energy harvesting. With only a small portion of
the cells participating in large relative vibration, only a few piezo-
electric resonators are needed to harvest the majority of the energy
in the system.

IV. CONCLUSION
In summary, we investigate the effect of energy harvesting

on the topological bandgaps and edge modes of a locally resonant
quasiperiodic metamaterial. The system under consideration was
represented by a semi-infinite chain of spring-mass elements with
variation in the spring constants following a quasiperiodic pattern.
Each cell is connected to an electromechanical resonator modeled
as a spring-mass system and shunted to a load resistor. Analytical
dispersion surfaces are derived for an infinite system and validated
numerically for a semi-infinite system. The bulk spectrum of the
semi-infinite system is determined for a full range of phase vari-
ables and quasiperiodic parameters. It is also tested for different
load resistors and electromechanical coupling values. The results
show that quasiperiodic metamaterials with local resonance can
be used to harvest energy without changing the topology of the
bandgaps in the case of weak electromechanical coupling. How-
ever, the very strong coupling can degrade the performance as the
band structure deforms and bandgaps collapse. The electromechan-
ical coupling also has no negative impact on the topological edge
modes spanning the bandgaps. With this consideration, it is feasible
to design quasiperiodic metastructures for greater efficiency, which
only require electromechanical energy harvesters on a small number
of the total cells.

SUPPLEMENTARY MATERIAL

See supplementary material for further band structure results
with various quasiperiodic parameters, load resistances, and elec-
tromechanical coupling as well as for discussion of vibration
localization in other bandgaps.
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