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ABSTRACT
The study of metamaterials for simultaneous vibration con-

trol and energy harvesting is a subject with considerable re-
cent interest. This paper investigates a weakly nonlinear meta-
material with electromechanical local resonators coupled to a
resistance-inductance shunt circuit, a system with no previous
examination in the literature. The nonlinear band structure of the
system is presented to demonstrate the effect of an inductor in the
shunt circuit, including the influence on softening and harden-
ing nonlinearity effects. The system is then excited by a transient
wavepacket and simulated numerically to further explore the fea-
tures of nonlinear wave propagation in the proposed structure
for multiple inductance values. Particularly, the system’s volt-
age response is studied through spatial profiles to observe the
effects of shunt inductance, nonlinearity, and any potential inter-
action between the two. Focus is given to the potential for vibra-
tion control and energy harvesting by this metamaterial, includ-
ing comparisons to previously investigated similar systems with
resistance-only shunt circuit. For certain parameters including
high electromechanical coupling, the band structure of this sys-
tem is shown to include three mode branches instead of the two-
mode band structure observed in the absence of shunted inductor.
Strong vibration attenuation is observed in the frequency range
around the central mode branch. The effects of the inductor on
wave propagation and harvested voltage are also shown.

∗Corresponding Author (Email: obarry@vt.edu)

1 Introduction
Metamaterials are artificially engineered structures that pos-

sess properties not found in naturally occurring materials [1].
The unusual features of metamaterials make them beneficial for
numerous applications including vibration and noise control, en-
ergy harvesting, non-destructive testing, and acoustic rectifiers.

Metamaterials consist of many unit cells arranged in peri-
odic or aperiodic patterns. It has been observed that periodic
structures prevent waves from propagating through the structure
at certain frequency ranges, known as band gaps [2–4]. Be-
cause these band gaps are constrained by the unit cell dimen-
sions, the application of basic metamaterials was limited to large
structures [1]. To expand the use of metamaterials to smaller
components, Liu et al. introduced local resonators, showing that
locally resonant metamaterials are able to control vibrations at
wavelengths much smaller than the lattice constant [5]. Local
resonators are also capable of widening the original band gap.
Further manipulation of the system’s band structure can also be
achieved by introducing multiple resonators [6, 7].

Band gaps can also be introduced by the incorporation of
piezoelectric materials and shunt circuits. Piezoelectric materials
have long been utilized in both active and passive methods for vi-
bration control [8–11], and more recently have been incorporated
into metamaterials [12–14]. By including piezoelectric elements
in a metamaterial, the mechanical system dynamics can be cou-
pled to an easily modifiable shunt circuit, enabling convenient
adjustment of the metamaterial’s overall properties. Incorporat-
ing piezoelectric materials and shunt circuits enables techniques
such as the use of negative capacitance [15] or resonant shunt cir-
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cuits [16] to control vibrations and create or broaden band gaps.
In addition, shunt circuits also offer an avenue for simultane-
ous energy harvesting. An important parameter in any work in-
volving piezoelectric materials is the system’s electromechanical
coupling factor. This parameter is dependent on the design and
material properties of the piezoelectric component [17]. Though
this piezoelectric coupling coefficient is usually on the order of
10−10 for engineering applications [18], signifying weak elec-
tromechanical coupling, some features may only be apparent in
the case of strong electromechanical coupling.

These two methods have also been utilized in concert,
with researchers investigating metamaterials with both local res-
onators and shunt circuits. For instance, Sugino et al. studied
a locally resonant material coupled to a shunt with piezoelectric
elements [17]. Bukhari also examined a system with local res-
onators, shunt circuits, and weakly nonlinear springs [19]. How-
ever, none of the aforementioned works examined a nonlinear
metamaterial with an inductor coupled to the energy harvester.
The focus of the current study is to determine the effects of that
added inductor on the band structure and nonlinear response of
the system. This paper investigates a nonlinear acoustic meta-
material with local resonators coupled to resistance-inductance
shunt circuits. This metamaterial is modeled through a nonlinear
system of governing equations, and excited by a transient wave
packet. Numerical methods are applied to investigate the effect
of shunt circuit parameters and nonlinearity on wave propaga-
tion and energy harvesting. Specifically, the spatial profile of the
voltage response is studied for multiple shunt inductance values
in order to explore interesting nonlinear wave propagation phe-
nomena. The primary focus of this work is to study effects of
shunt inductance on system response, as well as any potential in-
teraction with nonlinearity, focusing on the resultant applications
for simultaneous vibration control and energy harvesting.

2 Mathematical Modeling of the System

FIGURE 1: Schematic of nonlinear metamaterial with electrome-
chanical resonators.

This work focuses on a metamaterial consisting of a chain
of cells connected by nonlinear springs, depicted in Fig. 1. Each
nonlinear spring has linear spring coefficient K and nonlinear
spring coefficient ᾱ . Each cell is coupled to a local resonator,
with each resonator including a substrate covered by a piezo-
electric layer, with total effective mass mp and effective linear
stiffness kp. The piezoelectric layer is shunted to a resistance-
inductance (RL) circuit as shown in Fig. 1. This shunt circuit has
voltage difference v̄n, resistance R, and inductance L. The piezo-
electric layer has capacitance Cp and electromechanical (EM)
coupling coefficient θ . The absolute displacement of cell n is
ūn, and the absolute displacement of the attached piezoelectric
resonator is ȳn

∗.
Following [19] and [20], the governing equations of a cou-

pled cell, local resonator, and shunt circuit can be written for
infinite chain as:

M ¨̄un +2Kūn −Kūn+1 −Kūn−1 + ᾱ(ūn − ūn+1)
3

+ᾱ(ūn − ūn−1)
3 +mp( ¨̄un + ¨̄yn) = 0

(1)

mp ¨̄yn + kpȳn −θ(L ˙̄vn/R+ v̄n) =−mp ¨̄un (2)

LCp ¨̄vn +RCp ˙̄vn + v̄n +Rθ ˙̄yn = 0 (3)

where ȳn = ȳ∗n − ūn is the relative displacement of piezoelectric
local resonator n with respect to cell n.

Eq. (3) can be rewritten as:

1
ω2

e
¨̄vn +RCp ˙̄vn + v̄n +Rθ ˙̄yn = 0 (4)

where ωe = 1/
√

LCp is the electric resonance frequency.
The system of governing equations Eqs. (1), (2), and (4)

can be nondimensionalized by substituting nondimensional vari-
ables: un = ūn/U0, yn = ȳn/U0, vn = v̄n/V0, and nondimensional
time τ = ωnt, where ωn =

√
K/M is the mechanical natural fre-

quency of the main cell. This results in the system:

ün +2un −un+1 −un−1 +α(un −un+1)
3

+α(un −un−1)
3 + k̄Ω

2
1(ün + ÿn) = 0

(5)

Ω
2
1ÿn + yn −α1(α3v̇n + vn) =−Ω

2
1ün (6)

Ω
2
2v̈n +α2v̇n + vn +α4ẏn = 0 (7)

where α = ᾱU2
0 /K, Ω1 = ωn/ωp, ω2

p = kp/mp, k̄ = kp/K, α1 =
θV0/kpU0, α3 = Lωn/R, Ω2 = ωn/ωe, α2 = RCpωn, and α4 =
RθωnU0/V0.
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(a) (b) (c)

FIGURE 2: Effect of EM coupling and shunt inductance on nonlinear band structure: (a) Weak EM coupling, θ = 10−10 N/V; default
shunt inductance L = L0; (b) Strong EM coupling, θ = 10−1 N/V; L = L0; (c) Strong EM coupling, increased shunt inductance L = 2L0.

3 Band Structure Analysis
To derive dispersion relations for the nonlinear system, the

perturbation method of multiple scales (MMS) is utilized, fol-
lowing the procedure outlined by Nayfeh in [21]. First we intro-
duce a small dimensionless parameter ε (ε ≪ 1) in the governing
equations by defining multiple time scales: the fast time scale,
T0 = τ; and the slow time scale, T1 = ετ . The time derivative
operators are then perturbed and can be expressed as:

∂

∂τ
= D0 + εD1 +O(ε2) (8a)

∂ 2

∂τ2 = D2
0 +2εD0D1 +O(ε2) (8b)

where Dn = ∂/∂Tn.
Following this, the solution for main cell displacement u(T0)

can be expressed as a power series in powers of ε as

un(τ) = un,0(T0,T1)+ εun,1(T0,T1)+O(ε2) , (9)

In addition, the governing equations are converted into a
weakly nonlinear form by rescaling the parameter α = αε . After
substituting Eq. (8) into Eqs. (5)-(7), collecting terms of ε0 and
ε1 yield the linear and nonlinear problems, respectively. For the
linear system, the solution u(T0) can be expressed in polar form
as:

un,0(T0) = Aei(nk−ωT0)+ c.c. (10)

where ω and k are the linear frequency (normalized by ωn) and
wavenumber, respectively; and c.c. denotes the complex conju-
gate of the preceding term.

Substituting Eq. (10) into the linear system and solving for
A provides the linear dispersion relation:

−ω
2 +2−2cos(k)−Ω

2
1k̄ω

2(1+Γ2) = 0 (11)

Γ2 is a function of ω2 and various system parameters:

Γ2 =
Ω2

1ω2

1−Ω2
1ω2 + iα1α3Γ1ω −α1Γ1

(12)

where Γ1 is defined as:

Γ1 =
iα4ω

1−Ω2
2ω2 − iα2ω

(13)

Solving Eq. (11) reveals six roots for ω in the form of three
complex conjugate pairs. Consequently, the linear band struc-
ture may have up to three pass bands depending on the system
parameters.

The nonlinear solution is derived from the collected ε1

terms. To solve the nonlinear system, the polar form of A is
substituted:

A(T1) =
1
2

a(T1)eib(T1) (14)

Then, separating real and imaginary parts yields the slow
flow equations:

a′ = c0a3 (15)

b′ = c1a2 (16)

where ′ represents derivative with respect to T1. c0 and c1 are
functions of ω , k, and various system parameters:

The nonlinear frequency of the system is found by applying
the correction factor b′ to the linear frequency as follows:

ωNL = ω − εb′ (17)

Using the solutions for linear and nonlinear frequency in
Eqs. (11) and (17), the linear and nonlinear band structures of
the proposed metamaterial are examined in the form of disper-
sion curves. For this work, the following parameter values are
used: The mass of each main cell is M = 0.125 kg, and the
mass ratio between each piezeoelectric resonator and main cell is
mp/M = 0.1. The mechanical and electrical natural frequencies
of the resonator, ωp and ωe, are tuned to the main cell natural
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frequency ωn such that ωn = ωp = ωe = 2e5 rad/s. These values
were chosen based on the similar system studied by Abdelmoula
et al. in [20]. For these parameters, it can be assumed a′ = 0 and
thus b′ = c1a2

0, where a0 = a(0) is a constant. Nonlinearity is
varied by changing the nonlinear parameter εαa2

0, with εαa2
0 = 0

for the linear chain, 0.06 for nonlinear hardening, and −0.06 for
nonlinear softening.

As the focus of this paper is on the effect of shunt induc-
tance, the EM coupling coefficient is set to strong coupling,
θ = 10−1 N/V, and shunt resistance is set to R = 103 Ω. If the
system has weak EM coupling θ < 10−2 N/V , its band struc-
ture matches the metamaterial with resistance-only shunt studied
by Bukhari [19], with two pass bands as shown in Fig. 2(a).
In this case, shunt inductance has no significant effect on the
band structure. Raising the shunt resistance to R > 103 Ω also
results in a two-branch band structure which is not affected by
shunt inductance. However, with strong EM coupling and rel-
atively low shunt resistance as described above, the system has
a band structure with three pass bands as shown in Fig. 2(b).
Pass bands and band gaps can be tuned with shunt inductance
and other system parameters. For instance, Fig. 2(b) and (c)
show linear and nonlinear dispersion curves for the case of de-
fault shunt inductance, L = L0 = 0.2212 H; and the case of dou-
bled shunt inductance, L = 2L0; respectively. The most promi-
nent effect of the large inductance is an increase in the frequency
bandwidth of the second mode branch. The effects of nonlinear-
ity remain consistent for both values of L. Nonlinear hardening
shifts the dispersion curves up on the frequency axis, while soft-
ening shifts them down. The magnitude of the shift is negligi-
ble for small wavenumber k (long wavelength limit) as well as
low frequencies. Effects of nonlinearity are more pronounced
for the third mode branch, especially at larger wavenumbers
(short wavelength limit). Due to this, the bandwidth of the third
mode increases for hardening chain and decreases for softening
chain. In constrast, for the first and second modes, the effects of
nonlinearity are minimal at both small and large wavenumbers;
thus, the effect of nonlinearity is most significant in the medium
wavenumber region. This results in no significant change in the
bandwidth of these modes or the adjacent band gaps due to non-
linearity. Overall, the effects of nonlinearity for these cases are
consistent with the case of weak EM coupling in Fig. 2(a).

4 Wavepacket Excitation Analysis
To further study the effects of shunt inductance and nonlin-

earity on system response, the linear and nonlinear chains are
excited by a transient wavepacket. Following the similar proce-
dure described in [19], the system is simulated by numerically
integrating the governing equations using the built-in MATLAB
solver ode89. For these simulations, a semi-infinite metamaterial
system is represented by a chain with a large number of cells.
Specifically, 500 cells are used to reduce computation time. Pa-

rameters are as detailed in Section 3. The exciting wavepacket is
defined by the following set of equations:

un(0) =
A
2

(
H(n−1)−H(n−1−Ncy2π/k)

)
(

1− cos(nk/Ncy)
)

sin(nk)
(18a)

u̇n(0) =
A
2

(
H(n−1)−H(n−1−Ncy2π/k)

)
(−ω

Ncy
sin(nk/Ncy)sin(nk)−ω(1−

cos(nk/Ncy))
)

cos(nk)

(18b)

yn(0) = Γ1un(0) (18c)

ẏn(0) = Γ1u̇n(0) (18d)

vn(0) = Γ1Γ2un(0) (18e)

v̇n(0) = Γ1Γ2u̇n(0) (18f)

where n is the cell number, H() is the Heaviside function, and
Ncy is the number of cycles, set as Ncy = 7.

First, the system is simulated for 1500 seconds (nondimen-
sional time) to allow the wavepacket to propagate through the
chain. After this period, the spatial profile of the chain’s voltage
response is studied to examine the effects of nonlinearity. The
system is excited within all three modes, and multiple wavenum-
ber regions. Both the default parameter case and the increased
inductance case are examined. Selected voltage response profiles
for linear and nonlinear chains are shown in Figs. 3-5, with the
input (initial excitation) also included for reference. All voltage
values are normalized to the peak input voltage.

Fig. 3 shows the response of chains excited within the first
mode. Here, the system is excited in the long wavelength region
(k = π/9); as well as the medium wavelength region (k = π/3),
where the mode approaches the band gap. In the long wavelength
region, Fig. 3(a) and (b), both cases show similar results, with
effects of hardening and softening nonlinearity visible but not
significant. This small effect of nonlinearity is consistent with
the band structure shown in Fig. 2. All values of inductance and
nonlinearity show vibration attenuation, with the output voltage
profiles an order of magnitude less than the input. In the medium
wavelength region, the voltage response is significantly reduced
for both cases, indicating that vibration attenuation increases as
the band gap is approached. Again, effects of nonlinearity are
visible, but not significant. Comparing Fig. 3(c) and (d), the case
of increased inductance shows higher voltage amplitude, approx-
imately double of the default case. However, both are two or-
ders of magnitude smaller than the input. When compared to the
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FIGURE 3: Spatial profile of voltage response, first mode branch, for ωe = ωn, θ = 10−1 N/V , mp/M = 0.1, R = 103 Ω: (a) L = L0,
k = π/9; (b) L = 2L0, k = π/9; (c) L = L0, k = π/3; (d) L = 2L0, k = π/3.
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FIGURE 4: Spatial profile of voltage response, second mode branch, for ωe = ωn, θ = 10−1 N/V , mp/M = 0.1, R = 103 Ω: (a) L = L0,
k = π/2; (b) L = 2L0, k = π/2.

corresponding response of the metamaterial with resistance-only
shunt studied by Bukhari, there is a clear difference in the effects
of nonlinearity [19]. With resistance-only shunt, there is neg-
ligible effect of nonlinearity in the long wavelength region, but
significant effects in the medium and short wavelength regions,
as opposed to the low effects in all regions for the current system.
In addition, the resistance-only system does not show the sharp
decrease of vibration propagation as the band gap is approached.
As shown in Section 3, the presence of inductor introduces an
additional band gap, splitting the dispersion curves into three

branches. The resistance-only system includes one less band gap,
merging the dispersion curves back into two modes. However, in
the inductor system, exciting within the second mode branch can
lead to vibration attenuation.

The response of the second mode is shown in Fig. 4. For this
mode, only the medium wavelength region (k = π/2) is exam-
ined. The long and short wavelength regions both show strong
vibration attenuation and low effects of nonlinearity consistent
with the observations made for the first mode in Fig. 3(c) and
(d). At k = π/2, both the default and increased inductance cases
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(a) (b)

(c) (d)

FIGURE 5: Spatial profile of voltage response, third mode branch, for ωe = ωn, θ = 10−1 N/V , mp/M = 0.1, R = 103 Ω: (a) L = L0,
k = π/2; (b) L = 2L0, k = π/2; (c) L = L0, k = 7π/9; (d) L = 2L0, k = 7π/9.

have output two orders of magnitude less than the input. Since
the medium wavelength region is not near either edge of the pass
band, the low wave propagation is not an example of increased
attenuation near the band gaps. It can be concluded that the pass
band of the second mode branch has very low vibration ampli-
tude in the propagating signal. As in the medium wavelength re-
gion of the first mode, the increased inductance case has greater
output magnitude, double the output of the default case. Despite
the low amplitude, this mode shows significant effects of nonlin-
earity for both cases. The wave profile of the chain with nonlin-
ear hardening shows the presence of narrow solitary waves, more
localized than the linear response and with slightly greater am-
plitude. The softening chain response is more dispersive than the
linear and hardening chains, with a lower amplitude spread out
across more of the chain. Overall, in the medium wavelength re-
gion, effects of nonlinearity are similar to those observed for the
second mode in the resistance-only system [19]. However, the re-
sponse of the resistance-only system was much larger, matching
or exceeding the input amplitude. In addition, the resistance-only
system showed larger effects of nonlinearity in the short wave-
length region (k = 7π/9), in contrast to the small effects in the
current case.

In Fig. 5, spatial profiles of the response to excitation within
the third mode are shown. The response in the long wavelength

region (k = π/9) is not included, but shows low amplitude and
effects of nonlinearity near the lower bound of the pass band,
similar to Fig. 3(c) and (d). Fig. 5(a) and (b) show the response
of the two cases to excitation in the medium wavelength region.
Output amplitude is larger than the second mode, though still
not as large as the input. The increased inductance case shows
slightly smaller output. Effects of nonlinearity are similar to the
medium wavelength region of the second mode, with harden-
ing resulting in higher-amplitude solitary waves and softening
resulting in lower-amplitude dispersive components. In the short
wavelength region (k = 7π/9), the output amplitude increases,
with even the linear and softening responses having amplitude
similar to the input. In both cases, the hardening chain response
contains a solitary wave with amplitude larger than the input.
Again, the increased inductance case has smaller output than the
default parameter case. It should be noted that the previously
described vibration attenuation near the band gaps is not present
at the upper bound of the third mode. Thus, it becomes clear
that this attenuation is present near the band gaps between the
modes; i.e., the band gaps resulting from the presence of the
shunt inductor. Combined with the previously described vibra-
tion attenuation across the second mode, this results in a large
range with either band gaps or very low wave propagation, an
observation with great potential for vibration control. The wave
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profiles in the third mode are most similar to the response of
the second mode in the resistance-only system [19]. While the
medium wavelength region still shows smaller response ampli-
tude compared to the resistance-only system, the response in the
short wavelength region includes solitary waves with even larger
amplitude than the corresponding ones in the resistance-only sys-
tem.

5 Conclusions
This work contains the analysis of a nonlinear, electrome-

chanical metamaterial coupled to a shunt circuit with both resis-
tor and inductor. The system consists of a chain of cells con-
nected by nonlinear springs, with each cell coupled to an elec-
tromechanical resonator consisting of a piezoelectric element
and shunt circuit. Both the cells and resonators are modeled as
spring-mass systems, with the resonator system also coupled to
the dynamics of the shunt circuit. Analytical solutions are used
to examine the system’s band structure, showing that the effects
of adding an inductor to the coupled shunt circuit are only signif-
icant for certain parameter values. EM coupling must be strong,
θ ≥ 10−2 N/V , and shunt resistance must be relatively small,
R ≤ 103 Ω. For weak coupling or high resistance, the system
will behave as a metamaterial with resistance-only shunt. For
high coupling and low resistance, the band structure will gain
an additional band gap, resulting in a system with three mode
branches rather than two.

The behavior of the new band structure is examined through
numerical simulation of the metamaterial chain when excited by
a transient wave packet. Spatial profiles of the voltage response
are provided for multiple values of shunt inductance, illustrating
the effects of the added inductor and comparing against a similar
system with resistance-only shunt. Several differences are de-
scribed, including vibration attenuation across the second mode
as well as the nearby regions of the first and third modes. The
attenuation zones show much less wave propagation that other
regions of the first and third modes, and may even be considered
band gaps for some purposes. Including the two band gaps result-
ing from the presence of shunt inductor, this leads to a large at-
tenuation band for vibration control. Furthermore, the effects of
changing inductance are shown. Increasing inductance is shown
to slightly increase the voltage response in the first two modes,
while decreasing amplitude in the third mode. The effects of
nonlinearity are also found to differ from the resistance-only sys-
tem. For the first and second modes, effects of nonlinearity are
overall low, though more prominent in the medium wavelength
region. The response of the third mode shows prominent effects
of nonlinearity, similar to the second mode of the resistance-only
system. In the short wavelength region, the voltage response for
hardening chain includes solitary waves with amplitudes greater
than the corresponding response in the resistance-only system.
Overall, the system with inductor provides strong vibration at-

tenuation in a larger frequency range than the corresponding
resistor-only system, while increasing output voltage for energy
harvesting in other regions. These results for a metamaterial with
resistance-inductance shunt set it apart from previously studied
systems, and provide multiple options for future exploration of
the system and its applications to vibration control and energy
harvesting.
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