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ABSTRACT

Metamaterials have been shown to benefit from the addition
of local resonators, nonlinear elements, or topological proper-
ties, gaining features such as additional bandgaps and localized
vibration modes. However, there is currently no work in the lit-
erature that examines a metamaterial system including all three
elements. In this work, we model a 1-dimensional metamate-
rial lattice as a spring-mass chain with coupled local resonators.
Quasiperiodic modulation in the nonlinear connecting springs is
utilized to achieve topological features. For comparison, a sim-
ilar system without local resonators is also modeled. Both ana-
lytical and numerical methods are used to study this system. The
infinite chain response of the proposed system is solved through
the perturbation method of multiple scales. This analytical so-
lution is compared to the finite chain response, estimated using
the method of harmonic balance and solved numerically. The re-
sulting band structures and mode shapes are used to study the
effects of quasiperiodic parameters and excitation amplitude on
the system behavior both with and without the presence of local
resonators. Specifically, the impact of local resonators on topo-
logical features such as edge modes is established, demonstrat-
ing the appearance of a trivial bandgap and multiple localized
edge states for both main cells and local resonators.
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1 INTRODUCTION

Metamaterials are artificial engineered structures that are
patterned with special configurations and material constituents
[1–3]. These structures possess properties not found in naturally
occurring materials, ranging from zero or negative values of stan-
dard engineering parameters (such as density and Poisson’s ratio
[1]), to nonlinear phenomena (such as gap solitons [4] and asym-
metric wave propagation [5]). Metamaterials have a founda-
tion in optics and electromagnetics, exploiting elastic and wave
properties such as motion, deformations, stresses and mechani-
cal energy [6, 7]. These concepts were later extended for elastic
wave propagation [2] and acoustics [8]. The unusual features of
metamaterials make them beneficial for numerous applications
including vibration and noise control, energy harvesting, health
monitoring, and acoustic diodes or rectifiers. Within elastic me-
dia, metamaterials are usually patterned in periodic (phononic),
quasiperiodic, or random structural configurations [9]. It was
observed that periodic structures prevent waves from propagat-
ing through the structure at certain frequency ranges, known as
bandgaps, through a phenomenon known as Bragg scattering.
Therefore, low frequency waves can be banned from propagating
through the structure, thus achieving significant vibration attenu-
ation [2, 10]. However, since the Bragg scattering is restricted to
certain lattice constants, only large structures can be controlled.

This large structure requirement can be counteracted by in-
troducing local resonators into metamaterials [11]. Thus, appli-
cations of vibration attenuation can be extended to much smaller
structures and applications. Local resonators are also capable of
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widening the original bandgap developed by Bragg scattering,
as the bandgap is directly influenced by the resonator parame-
ters [12]. Furthermore, by introducing multiple resonators, addi-
tional bandgaps can be obtained [13, 14].

In addition, nonlinear elements can also be included in a
metamaterial [15]. On top of the potential for improved bandgap
performance, the introduction of nonlinear elements also results
in other interesting wave propagation phenomena such as gap
solitons [16], dark and enveloped solitons [17], cloaking [18–20],
and wave nonreciprocity [21–23]. These phenomena can be ap-
plied for a host of applications. One option for the addition of
nonlinearity to the metamaterial system is the use of nonlinear
springs. These springs can have a combined linear and nonlin-
ear stiffness or be essentially nonlinear, with nonlinear stiffness
only. In the literature, study of nonlinear metamaterials is often
focused on obtaining the band structure analytically or numer-
ically [24, 25]. The former uses perturbation techniques (such
as Lindstedt–Poincare [26], multiple scales [27] and homotopy
analysis [28]), while the latter applies frequency and spectro-
spatial analysis [29–32].

Quasiperiodic arrangements have also been shown to im-
prove energy harvesting and vibration control through topologi-
cally protected modes. The investigation of topological phases
of matter in metamaterials has shown the presence of robust
topologically protected modes that do not propagate inside the
bulk and are localized within lower dimensions [33]. One
passive method for manifesting these topological modes is the
breaking of spatial inversion symmetry while maintaining time-
reversal symmetry [34–36]. This can be achieved by introduc-
ing quasiperiodic modulation into a structure using patterns such
as the Aubry-André model as seen in [37–40]. This results in
a spectrum that is analogous to the Hofstadter butterfly [41]
with additional nontrivial topological bandgaps inside the bulk
of propagating waves in periodic structures. These topological
bandgaps host localized modes that can be beneficial in vibration
mitigation [42] showing high displacement in a few cells while
preventing wave propagation to other cells. Localization can also
be moved along the metamaterial by topological pumping [43].

Further investigations have been made studying the effects
of nonlinearity on topological metamaterials. The majority of
these studies generally fall into one of two paths. The first path
observes the effect of nonlinearity on a metamaterial that is topo-
logical in the linear regime. The second uses nonlinearity to
strategically design metamaterials to induce topological proper-
ties in the metamaterial. In both cases, the amplitude depen-
dence of the nonlinear response has led to studies in the fre-
quency shift [44–46] and stability [47, 48] of topological edge
states. One most common result of combining topological and
nonlinear effects is the existence of solitons that are topologi-
cally robust [49–51].

In this paper, we examine a metamaterial system with local
resonators, nonlinear springs, and quasiperiodic patterning. Pre-

vious works have examined each of these features, with a nonlin-
ear metamaterial with local resonators being studied by Bukhari
et al. [32] and a nonlinear quasiperiodic system being studied by
Rosa at al. [52]. This paper expands the latter work to include lo-
cal resonators and investigates the resulting effects on vibration
propagation in both the linear and nonlinear regimes. The system
consists of a spring-mass chain with coupled local resonators and
quasiperiodicity in the nonlinear connecting springs. The infinite
chain model is solved analytically using the method of multiple
scales, providing a closed form solution for the slow flow equa-
tions and nonlinear frequency correction factor. The method of
harmonic balance is used to numerically estimate the behavior of
a finite chain, providing insight into the natural frequencies and
mode shapes of both main cells and local resonators. Both these
methods are used to study the effects of quasiperiodic parame-
ters and excitation amplitude on the system behavior, focusing
on the potential for vibration localization and control. The sys-
tem is compared to the previously studied system lacking res-
onators, and the effect of local resonators on topological edge
states and the behavior of local resonators in the proposed non-
linear quasiperiodic system is examined.

2 MODELING AND SOLUTION METHODS

FIGURE 1: Schematic of nonlinear, quasiperiodic chain with lo-
cal resonators.

This work considers a 1-dimensional nonlinear locally reso-
nant metamaterial with stiffness modulation in the main springs
as shown in Fig. 1. The metamaterial is represented by a spring
mass chain of identical masses, m, joined by modulated springs
with linear and cubic nonlinear components. Each mass is cou-
pled to a local resonator with mass, mr and stiffness, kr. Modu-
lation in the main springs follows the Aubry-André Model such
that the stiffness constant between mass n and mass n+1 is de-
fined as

kn = k0[1+λcos(2πnθ +φ)] (1)

with average stiffness, k0, and modulation amplitude, λ . This
pattern is defined by its quasiperiodic parameter, θ , and phase
shift, φ . It should be noted that |λ |< 1 in order to avoid negative
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values of stiffness kn. Rational and irrational values of θ produce
periodic and quasiperiodic patterns, respectively. The governing
equations of motion for the nth mass and resonator are

mün + kn−1(un −un−1)+ kn(un −un+1)+ kr(un − yn)

+ εkn−1(un −un−1)
3 + εkn(un −un+1)

3 = 0 (2)

mr ÿn + kr(yn −un) = 0 (3)

where un and yn are the displacements of the nth mass and res-
onator, respectively, and ε is a small dimensionless parameter
defining the strength of the nonlinearity. These equations can be
expressed compactly in matrix form for the jth unit cell as

Mü j +K(0)u j +K(−1)u j−1 +K(1)u j+1 + εfNL = 0 (4)

where for a system with q masses in its unit cell, M, K(0), K(−1),
and K(1) are 2q×2q mass and stiffness matrices, u j is the 2q×1
vector of mass and resonator displacements, and fNL is the 2q×1
nonlinear forcing vector.

2.1 THE METHOD OF MULTIPLE SCALES
To derive the dispersion relation for an infinite chain, the

perturbation method of multiple scales (MMS) is utilized with
the fast time scale, T0 = t, and the slow time scale, T1 = εt. We
can assume expansions for the displacements in the form of

u j = u(0)
j (T0,T1)+ εu(1)

j (T0,T1)+O(ε2) (5)

and the time derivative can be expressed as

∂ 2

∂ t2 = D2
0()+2εD0D1()+O(ε2) (6)

where Dn = ∂/∂Tn.
Using these expansions, the equation of motion can be bro-

ken into linear and nonlinear components by order of ε yielding
order ε0

D2
0Mu(0)

j +K(0)u
(0)
j +K(−1)u

(0)
j−1 +K(1)u

(0)
j+1 = 0 (7)

order ε1

D2
0Mu(1)

j +K(0)u
(1)
j +K(−1)u

(1)
j−1 +K(1)u

(1)
j+1

=−2D0D1Mu(0)
j − fNL (8)

At order ε0, the problem is linear, so the solution can be ex-
pressed as

u(0)
j =

1
2

A(T1)ψei(µ j−ω0T0)+ c.c. (9)

where A is the amplitude, ψ is the mode shape, µ is the dimen-
sionless wavenumber, ω0 is the linear natural frequency, and c.c.
denotes the complex conjugate. Substituting the solution into the
linear equation yields the linear eigenvalue problem

ω
2
0 Mψ = K(µ)ψ (10)

where

K(µ) = K(0)+K(−1)e
−iµ +K(1)e

iµ (11)

the solution of which obtains the linear dispersion relation and
eigenvectors of the system.

Looking now to the nonlinear problem (i.e., the order ε prob-
lem), Eq. 8 is decoupled through the use of modal coordinates,
then non-secular terms are isolated to derive the slow flow equa-
tions. Next, we introduce the polar form of the displacement
amplitude

An = αn(T1)e−iβn(T1) (12)

For a trimer lattice with θ = 1/3, the slow flow equations
are then solved to yield

α
′
n = 0 (13)

β
′
n =

3α2
n cn(µ)

8mω0,nηn
(14)

where

cn(µ) =−2k3ψ̄1ψ3(|ψ1|2 + |ψ3|2)e−iµ + k3ψ̄
2
1 ψ

2
3 e−2iµ

+k3ψ̄
2
3 ψ

2
1 e2iµ −2k3ψ̄3ψ1(|ψ1|2 + |ψ3|2)eiµ

+(k1 + k3)|ψ1|4 +(k1 + k2)|ψ2|4 +(4k1|ψ2|2

+4k3|ψ3|2 −2k1(ψ̄1ψ2 + ψ̄2ψ1))|ψ1|2 +(k2 + k3)|ψ3|4 (15)

+(4k2|ψ3|2 −2k1ψ̄1ψ2 − (2k1ψ1 +2k2ψ3)ψ̄2

−2k2ψ2ψ̄3)|ψ2|2 −2k2(ψ̄2ψ3 + ψ̄3ψ2)|ψ3|2

+k1ψ̄
2
1 ψ

2
2 +(k1ψ

2
1 + k2ψ

2
3 )ψ̄

2
2 + k2ψ̄

2
3 ψ

2
2

and

ηn = |ψ1|2 + |ψ2|2 + |ψ3|2 +
√

m
mr

(|ψ4|2 + |ψ5|2 + |ψ6|2) (16)
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with ψn being the nth element of the eigenvector associated
with wavenumber, µ , and ψ̄n being its complex conjugate. It can
be shown that cn is a purely real quantity.

The solution further allows us to express the nonlinear fre-
quency in terms of the frequency correction factor, β ′

n as

ωn = ω0,n + εβ
′
n (17)

2.2 THE METHOD OF HARMONIC BALANCE
While the method of multiple scales provides the dispersion

relations for an infinite chain, this solution may not reflect cer-
tain important aspects, such as the presence of topological edge
modes [52]. To examine these modes, a finite chain of N = 42
cells with free boundary conditions at each end is studied using
the harmonic balance method [45, 52]. This method allows us
to estimate the mode shapes and natural frequencies of the finite
system for varying excitation amplitude.

Beginning with the equations of motions in Eqs. 2 and 3,
periodic solution forms for the displacement of the main cell and
resonator masses are assumed as

un = an cos(ωt)+bn sin(ωt) (18)

yn = cn cos(ωt)+dn sin(ωt) (19)

where an,bn,cn,dn are unknown displacement coefficients. ω =
2π/T is the unknown assumed angular frequency with period T ,
resulting in 4N +1 unknowns.

A corresponding set of 4N + 1 nonlinear equations are
obtained by substituting Eqs. 18 and 19 into the govern-
ing equations of motion, then setting the coefficient terms of
cos(ωt) and sin(ωt) to 0. The final equation is provided
by setting the L2 norm of the displacement coefficients, x =
{a1,b1,c1,d1, ...,aN ,bN ,cN ,dN}T , equal to the total chain ampli-
tude A.

∥x∥2 = A (20)

For comparison to the infinite chain in the MMS solution, chain
amplitude A is also used to define the Bloch wave amplitude, αn,
by αn =A/

√
θN. This is to ensure that when the wave solution is

extended to a finite lattice with N masses, the resulting L2 norm
is equal to A [52].

The described set of 4N + 1 algebraic nonlinear equations
are solved numerically using a trust-region algorithm through
MATLAB’s ”fsolve” function. To investigate the amplitude de-
pendant effects of nonlinearity, the amplitude is first set to a small
value, A = 10−3. The initial guess for this case is the solution to
the linear problem. Following this, A is increased in small in-
crements, with each increase using the previous solution as the
initial guess. Thus, the displacements and frequencies of the fi-
nite chain are calculated for a range of A.

3 RESULTS
Using the previously described solution methods, we ex-

amine selected variations of the proposed metamaterial. In this
study, we consider a trimer lattice (θ = 1/3) with the following
parameters: m= 1 kg, k0 = 1 N/m, λ = 0.6, mr = 0.2 kg, kr = 0.3
N/m, and ε = 0.1. Although the system is only quasiperiodic for
irrational θ values and periodic for rational θ values, the disper-
sion relations depend continuously on θ and can be accurately
represented through sampling over rational values of θ . Several
cases are studied, specifically a chain with linear springs or non-
linear springs, and with resonators or without resonators. While
the linear dispersion relation will be given for a full range of
phase variable, φ , the nonlinear dispersion relation will be given
only for φ = 0.35π as more attention is given to its amplitude de-
pendence than its phase dependence. Thus, the nonlinear disper-
sion relation is determined for varying displacement amplitudes,
A, with set φ .

3.1 BAND STRUCTURE
The dispersion relations are shown in Fig. 2 for linear and

nonlinear systems with and without resonators. The bulk bands
for an infinite chain, modeled from the unit cell and solved via
MMS, are shown in blue. The natural frequencies of a finite
chain, modeled with 42 masses and solved by harmonic balance,
are overlaid as black lines. Comparing Fig. 2(a) and (b), the
presence of the resonators in the linear chain has expected effects
on the band structure as seen in previous studies [39, 40]. The
dispersion band is split in two by a topologically trivial bandgap
centered on the resonant frequency of the resonators. Above and
below this bandgap, both bands are split into additional bands by
topologically nontrivial bandgaps, resulting in a total of 6 bands
compared to the 3 bands of the non-resonator case. The location
and number of these nontrivial bandgaps are determined by the
quasiperiodic parameter. Both with and without resonators, the
frequencies of the finite chain reveal the presence of edge states
that span the bandgaps. The frequency of these edge states is
dependant on φ for the linear chain. Observing the case with
resonators in Fig. 2(b) confirms that these edge states are present
for nontrivial bandgaps only.

To observe the amplitude dependence, the nonlinear disper-
sion is plotted with increasing amplitude for the chains with-
out and with resonators in Fig. 2(c) and (d) respectively. As
in the linear case, the presence of resonators introduces a trivial
bandgap, with nontrivial bandgaps on either side. In the nonlin-
ear regime, frequencies shift upward with increasing amplitude
for a positive nonlinearity (ε = 0.1). This effects several bandgap
boundaries; however, the upper limit of the trivial bandgap shows
no dependence on the amplitude, remaining constant as the am-
plitude increases. Edge mode frequencies also increase with am-
plitude, some approaching the neighboring bulk bands at higher
amplitudes. As they approach, edge modes eventually run tan-
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(a) (b)

(c) (d)

FIGURE 2: Effect of phase variable φ and excitation amplitude A on dispersion relations. (a) Linear chain, without resonators; (b) Linear
chain, with resonators; (c) Nonlinear chain, without resonators, φ = 0.35π; (d) Nonlinear chain, with resonators, φ = 0.35π .

gent to the band. While the majority of the finite chain modes
remain within the infinite chain bulk bands, the highest modes
in each band enter the bandgaps as amplitude increases and they
are shifted to higher frequency. Previous works have shown that
these modes, as well as the previously mentioned edge states,
may display vibration localization [52]. Thus, the behavior of
these modes is further investigated through the finite chain mode
shapes acquired through harmonic balance.

3.2 MODE SHAPES
The effect of amplitude on the mode shapes of a nonlinear

quasiperiodic chain without resonators is shown in Fig. 3. Mode
shapes are normalized to the maximum displacement value for
each amplitude, and the mode shapes for A = 0.1, 2.5, and 5 are
outlined in black for clarity.

Three selected mode branches are shown here: the two edge
states in Fig. 3(a) and (b) respectively, and the 41st mode in (c).
The former two show that the edge modes result in localization
to the ends of the chain. This localization is most pronounced at
lower displacement amplitudes, where the effects of nonlinearity

are negligible. However, as amplitude increases, the localiza-
tion is affected to varying degrees. For the 1st edge mode in (a),
increasing amplitude results in a more localized shape; while for
the 2nd edge mode in (b), higher amplitude results in a less local-
ized shape. This can be explained through the band structure in
Fig. 2(c). Here, it is clear that while the 1st edge mode frequency
increases with amplitude, it does not approach the 2nd pass band,
remaining within the band gap even at the highest value of A. On
the other hand, the 2nd edge mode does approach the 3rd pass
band, running tangent to the band at increased amplitude. Thus,
its behavior is more similar to the bulk band modes with less
prominent localization. It can be concluded that localization is
most significant when the mode frequency is within a bandgap
and not approaching the edges. The phase φ will therefore have
a significant impact on the effect of nonlinearity on mode shape
localization, as it dictates the edge mode frequencies at low am-
plitude, and thus whether or not an edge mode will approach the
next band with increasing amplitude.

Meanwhile, the 41st edge mode, shown in Fig. 3(c), be-
gins within the 3rd pass band, then increases with amplitude to
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(a) (b) (c)

FIGURE 3: Effect of excitation amplitude A on selected mode shapes of a nonlinear chain with N = 42 masses, without resonators,
φ = 0.35π . (a) 15th mode (1st edge mode); (b) 29th mode (2nd edge mode); (c) 41st mode.

enter the band gap. Thus, its mode shape become more local-
ized, similar to the 1st edge mode. This case also illustrates the
localization of modes that begin at the upper edge of the pass
bands and enter the bandgaps at higher amplitude. The resulting
mode shapes are localized to various points in the chain, form-
ing discrete breathers. Breathers, which are solutions localized
in space and periodic with time, have been established in prior
work to emerge as modes at the edge of the pass bands enter the
nonlinear regime [52–54]. This is of particular interest in the
2nd bandgap, where localized edge states and discrete breathers
are both present. Overall, these observations for the chain with-
out resonators are consistent with the previous work by Rosa et
al. [52].

With the addition of resonators, many of the previous ob-
servations are still applicable. Though the band structure is split
into 6 bands rather than 3, the behavior of the 3 bands above
and below the trivial bandgap is observed to follow similar pat-
terns, with each set of bands corresponding to the 3 bands of
the non-resonator case. However, there are some notable differ-
ences in the presence of resonators. To compare and contrast the
effect of resonators and the behavior of bands 1-3 and 4-6, the
mode shapes of selected modes with varying displacement am-
plitude are shown in Fig. 4. Displacements of the main cells are
marked with red circles, while the resonators are marked with
blue squares. All displacements are normalized to the maximum
displacement of the main cells at each amplitude.

The response for bands 1-3 with resonators is shown in Fig.
4(a)-(c). The 1st and 2nd edge modes are shown in (a) and (b),
respectively, while the 41st mode is shown in (c). In all modes,
it is clear that the resonators have larger displacement amplitude
relative to the main cells, and that the relative resonator ampli-
tude increases slightly for higher amplitude. The resonator am-
plitude can also be observed to increase as the mode frequencies
approach the trivial bandgap and thus the resonator natural fre-
quency. The 1st edge mode is very similar to the case without
resonator, with displacement localized to one end of the chain.

The 2nd edge mode, shown in Fig. 4(b), is similar to the non-
resonator case at low amplitude, however, localization does not
decrease as amplitude increases. The continued localization even
at high amplitude may be explained by the band structure in Fig.
2(d). Looking closely at the 2nd edge mode, it can be seen that
while the frequency does increase with amplitude, it remains
away from the bandgap boundary and does not reach the point
where it approaches and runs tangent to the 3rd band as in the
non-resonator case. Thus, its behavior does not shift toward the
band behavior, and remains localized. The 41st mode in Fig. 4(c)
also displays differences from the case with no resonator. While
there are two clear peaks in the displacement, localization does
not intensify as amplitude increases. This is due to the fact that,
unlike the non-resonator case, the 41st mode frequency does not
increase with amplitude, and the mode shape is similarly unaf-
fected.

For bands 4-6, the 3rd and 4th edge modes are shown in
Fig. 4(d) and (e), while the 83rd mode is shown in (f). Here,
the displacement response is extremely similar to the case with-
out resonator, including the formation of breathers in mode 83.
Unlike bands 1-3, the displacement of resonators relative to the
main cells varies. For the 3rd edge mode, resonator displace-
ment is greater than main cell displacement, while for the other
two modes, it is significantly less. This indicates that the res-
onator displacement decreases as we look at modes farther from
the trivial bandgap, matching the behavior in the lower 3 bands.
One major difference between bands 1-3 and 4-6 is that the edge
modes for the lower 3 bands have the resonators moving in phase
with the main cells, while the resonators are out of phase for the
upper 3 bands. This is illustrated by Fig. 5, which shows mode
shapes for the 1st and 3rd edge modes with low displacement
amplitude. Further exploration of the chain with resonators con-
firms that all modes below the trivial bandgap, and thus below
the resonator natural frequency, have resonators in phase with the
main cells, while above the trivial bandgap, resonators are out of
phase. This matches observations of a similar system studied by
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(a) (b) (c)

(d) (e) (f)

FIGURE 4: Effect of excitation amplitude A on selected mode shapes of a nonlinear chain with N = 42 masses, with resonators,
φ = 0.35π . (a) 15th mode (1st edge mode); (b) 29th mode (2nd edge mode); (c) 41st mode; (d) 57th mode (3rd edge mode); (e) 71th
mode (4th edge mode); (f) 83rd mode.

LeGrande et al. [55].

4 CONCLUSION
This work investigated the effect of incorporating local res-

onators into a nonlinear metamaterial with quasiperiodic stiff-
ness modulation. The proposed system was modeled as a 1-
dimensional lattice of masses connected by cubic nonlinear
springs. Linear and nonlinear stiffness of the connecting springs
was modulated following the Aubry-André Model. Each main
mass was coupled to a local resonator also modeled as a spring-
mass system. Multiple techniques were applied to study this
nonlinear system, with the response of an infinite chain model
solved analytically through the method of multiple scales and a
the response of a finite chain estimated through the method of
harmonic balance. The resulting frequency band structure and
displacement mode shapes were compared to a similar system
lacking local resonators to determine their effects.

In studying the proposed system, linear and nonlinear band
structures were examined to determine the effects of phase vari-
able and displacement amplitude. The results lacking resonator
were found to be consistent with previous works, including the
presence of nontrivial bandgaps, topological edge modes and

amplitude dependence due to nonlinearity. With the addition of
resonators, an additional trivial bandgap was observed, with non-
trivial bandgaps appearing both below and above. The resulting
bands below and above the trivial bandgap were shown to align
closely with the bands of the system without resonators. The
presence of topological edge modes in nontrivial bandgaps was
demonstrated, but as expected, no edge mode appeared within
the trivial bandgap. It was also observed that some modes near
the upper edge of the pass bands shifted into the bandgaps as they
entered the nonlinear regime.

The mode shapes of the system with and without resonator
were also studied. Both with and without resonators, edge
modes were shown to localize displacements to the ends of the
chain. This localization was shown to change as edge modes
entered the nonlinear regime. Modes that shifted deeper into
the bandgaps showed increased localization, while edge modes
that approached the edge of the pass bands showed decreased lo-
calization. Meanwhile, some non-edge modes shifted into the
bandgaps as they entered the nonlinear regime, resulting in dis-
crete breathers. Examining mode shapes also confirmed that in
the presence of resonators, the bands above the trivial bandgap
behaved almost identically to the bands of the non-resonator sys-
tem. While also similar, the behavior of modes below the trivial
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(a) (b)

FIGURE 5: Selected mode shapes of nonlinear chain (N = 42) with resonators, φ = 0.35π , A = 0.1. (a) Mode 15 (1st edge mode); (b)
Mode 57 (3rd edge mode).

bandgap showed some differences to the non-resonator system.
The displacement amplitude of resonators relative to the main
cells was found to vary, with lower modes having resonator dis-
placement greater than the main cells, while higher modes were
the opposite. The phase of the local resonators was also found
to be affected, with resonators being in phase with the main cells
when below the trivial bandgap, and out of phase when above.

In conclusion, the addition of local resonators to a nonlin-
ear, quasiperiodic metamaterial was shown to combine the ef-
fects of nonlinearity, stiffness modulation and local resonators
with little conflict. Traits such as amplitude dependence and lo-
calized topological edge modes continued to manifest, and new
bandgaps were added by the resonators. The resulting increase
in number of edge modes, pass bands, and the presence of a triv-
ial bandgap all serve to increase the versatility of the proposed
metamaterial in both the linear and nonlinear regimes.
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