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ABSTRACT
This paper investigates the nonlinear vibration behavior of

a chipping hammer to improve the understanding of how graz-
ing influences the vibrations transmitted to the hand-arm system.
The motivation for this work stems from the need to better char-
acterize how vibrations to the hand are transferred from a tool.
This is important particularly since severe exposure of vibrations
to the hand can lead to severe health effects, including permanent
disability. Predicting the nature of these vibrations offers a path-
way toward developing strategies to mitigate harmful transmis-
sion to the user. To address the understanding of the transmis-
sion of vibrations to the hand, a vibroimpact model is adopted to
capture the nonlinear dynamics typical of percussive tools. The
model, coupled with a representation of the hand-arm system, is
tuned so that its natural frequency matches experimentally ob-
served values for a chipping hammer. Using a numerical solver
and the COCO continuation toolbox, the onset and disappear-
ance of grazing in the system is systematically identified. To the
authors’ knowledge, this is the first study to apply continuation
methods to track grazing in a hybrid model that explicitly couples
tool dynamics with a hand-arm system. These grazing events are
found to vary with the excitation amplitude of the tool. Addition-
ally, a parametric study is conducted to evaluate how changes in
feed force influence grazing behavior and the resulting hand-arm
acceleration. Results show that feed force significantly shifts the
regions in the chipping hammer excitation force - frequency pa-
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rameter space where grazing occurs. Vibration levels at the hand
where also observed to alter in the different regions of the system
exbibiting various levels of grazing.

INTRODUCTION
Various studies have highlighted the impact of severe vibra-

tion exposure on the hand-arm system [1, 2]. Prolonged use
of hand-held tools can lead to hand-arm vibration syndrome
(HAVS), a disorder characterized by vascular, musculoskele-
tal, and neurological complications [3–6]. One of the primary
symptoms of HAVS is vibration white finger (VWF), which can
progress to permanent disability in extreme cases [7–10]. To as-
sess the risk posed by vibration exposure to the hand, this study
focuses on a key contributing factor—vibration intensity, as mea-
sured by acceleration—by analyzing the nonlinear dynamics that
govern the operation of a hand-held impact tool. Understanding
the mechanisms through which vibrations are transmitted to the
hand is the central aim of this paper. A deeper understanding of
these dynamics provides a foundation for selecting appropriate
vibration control strategies, thereby reducing the risk of long-
term adverse health effects among hand-tool users.

Towards addressing the problem of how vibrations are prop-
agated to the hand, various models have been proposed to accu-
rately capture the tool-hand dynamics. These models aim to as-
sess the transmission of vibrations from the tool to the hand and
include lumped parameter linear models as well as models incor-
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porating cubic and piecewise nonlinearities [11–14]. Such non-
linearities are typically introduced through the dynamics of the
tool itself. It has been shown that models with piecewise-smooth
nonlinearities more effectively capture the physics of repetitive
impacts or discontinuous contact events that occur during tool
operation [15–22]. For instance, in the modeling of rotary oil
drilling systems, the combined effects of cutting and frictional
interactions between the bit and rock were captured using a non-
smooth model based on Stribeck friction [23]. In efforts to opti-
mize the rate of drilling progression, Pavlovskaia et al. showed
that nonsmooth models could best predict the static and dynamic
forces that produced the most efficient vibroimpact drilling per-
formance [16]. Similarly, to represent the nonlinear interaction
between the bit and rock, Liao et al. compared linear and non-
linear models capturing loading and unloading force-penetration
dynamics and found that both, while piecewise-smooth, could
accurately model the dynamics at low excitation frequencies and
small amplitudes [24]. Wiercigroch et al. also used a piecewise
system to predict the material removal rate of an ultrasonic drill
under varying static loads [25]. Given the demonstrated abil-
ity of lumped parameter models with nonsmooth or vibroimpact
dynamics to capture essential features of percussive tools, this
work adopts the approach of Alabi et al. [26] to investigate how
vibrations are transmitted to the hand by modeling the tool as a
vibroimpact system. To fully analyze such a system, it is critical
to understand the conditions under which the system transitions
between different states, and what qualitative behavior emerges
during and after those transitions. In particular, we are interested
in understanding how these dynamics influence the magnitude
of acceleration transmitted to the hand. To this end, we exam-
ine grazing phenomena—a hallmark of nonsmooth systems with
impacts such as the one considered here [27–30].

Grazing is defined as a phenomenon that occurs when a
mass just makes tangential contact with an impact surface. It
has been widely recognized that grazing in nonsmooth systems
can induce abrupt transitions in the underlying dynamics. These
transitions may include the appearance or disappearance of mul-
tistable attractors, loss of stability, onset of chaotic behavior, and
emergence of vulnerable attractors [31–35]. Analyzing the post-
grazing dynamics is essential, as these changes in steady-state
behavior would not arise in the absence of the discontinuities
that characterize nonsmooth systems. For instance, in atomic
force microscopy, grazing transitions have been linked to the sud-
den termination of periodic solution branches due to hysteretic
force interactions [36]. Moreover, metrology errors have been at-
tributed to the transition from periodic to chaotic responses when
microcantilever tips experience grazing in dynamic atomic force
microscopy [37]. In the analysis of impact oscillators, grazing
has been shown to cause the disappearance of stable periodic
motion [38]. Similarly, in an aeroelastic system modeled as a
nonsmooth dynamical system, the occurrence of grazing bifurca-
tions was found to induce abrupt jumps in system response [39].

Given the dramatic transitions that grazing can trigger in system
behavior, it is imperative to study nonsmooth systems exhibit-
ing grazing using analysis methods that allow these events to be
accurately tracked. To this end, we now turn our attention to a
review of methods previously used to analyze the dynamics of
nonsmooth systems.

Several techniques have been developed to analyze non-
smooth systems, including numerical integration methods and
path-following continuation approaches. One of the more com-
mon strategies involves smoothing the nonsmooth differential
equations, which enables the use of standard numerical tools
such as numerical bifurcation analysis. In such formulations,
the state space is partitioned into subspaces, each governed by
a smooth ordinary differential equation [40, 41]. This technique
was used by Savi et al. to validate experimentally observed chaos
and period-doubling behavior in a nonsmooth system with a dis-
continuous support [42]. Similarly, smoothed approximations
have been employed to study the stability of a single-degree-
of-freedom system with a piecewise-linear force–displacement
relationship under harmonic excitation [43]. Another power-
ful method for analyzing nonsmooth dynamics is path-following
continuation, which allows for tracking critical behaviors such
as bifurcations and limit cycles in parameter space. For example,
Zhang et al. used the continuation toolbox COCO to compute
grazing periodic orbits in a hybrid dynamical system and investi-
gated the effectiveness of time-delayed feedback control in sup-
pressing undesirable dynamics near grazing [44]. Chavez et al.
also used COCO to track controller parameters that influence the
occurrence of grazing in a forced impact oscillator [45]. In this
work, due to the hybrid nature of the nonsmooth tool model un-
der investigation, we begin with direct numerical integration of
a smoothed set of ODEs using MATLAB’s ODE45 solver. We
then employ COCO to track grazing periodic orbits that arise in
the system. A novel contribution of this work lies in exploring
whether grazing affects the acceleration transmitted to the hand,
and in conducting a parametric study to examine how key vari-
ables—such as feed force—influence the onset of grazing in the
system. While continuation techniques have been used to ana-
lyze grazing in various mechanical and control systems [44, 45],
previous studies have not applied such methods to models that
include both the vibroimpact dynamics of percussive tools and
their coupling to a human hand-arm system. This work is the
first to leverage the COCO continuation framework to systemati-
cally detect and track grazing bifurcations in a nonsmooth hybrid
model of a tool-hand interface.

To carry out this study, a lumped parameter model adapted
from the work of Alabi et al. is employed to represent the percus-
sive tool as a two-degree-of-freedom (2-DOF) vibro-impact sys-
tem, while the hand-arm system is modeled as a separate 2-DOF
lumped parameter system [26]. The resulting nonsmooth hybrid
system is smoothened using Filippov’s method, enabling both
qualitative analysis via numerical bifurcation techniques and hy-
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brid orbit continuation using the COCO toolbox.
The remainder of the paper is organized as follows. Sec-

tion 1 presents the mathematical model of the vibro-impact
HAS–HHIM system, outlines the smoothing procedure applied
to the nonsmooth dynamics, and describes the continuation
scheme used to track grazing orbits. Section 2 presents the ma-
jor findings of the study, followed by a discussion of their im-
plications in Section 3. Finally, conclusions are summarized in
Section 3.

1 Model development of HHIM-HAS-NVAI system
In this section, we present the reduced-order vibro-impact

model of the coupled HAS-HHIM system adapted from [26].
The schematic of the system is shown in Fig.1. In the schematic,
the bit of the HHIM is modeled as a lumped mass, mp, whereas
the housing of the HHIM is modeled as a lumped mass mH . The
buffer between the HHIM bit and casing is modeled as a visco-
elastic connection with parameters kH and cH . In this model, we
also account for the feed force to press the machine against the
material being worked on.

To capture the HHIM dynamics associated with the percus-
sive action of the HHIM piston on the HHIM bit, a nonlinear
interaction is specified between the HHIM bit and the ground
material. To do so, the ground material is modeled as a linear
spring–damper as presented in [25, 46, 47] with the initial sepa-
ration of g from the HHIM bit. In this model, the ground material
is restored before each successive impact, and the process of pen-
etration of material is not taken into consideration. In this work,
we consider concrete as the ground material with the stiffness
and loss factors adopted from [46].

It is acknowledged that the present model may not capture
all aspects of the physical dynamics due to the absence of ad-
vanced tool-tip representations such as viscoelastic connections
with drift. Drift mechanisms can represent the net penetration of
the tool bit into the material over time—an effect not accounted
for in this formulation. Future studies could incorporate such
features to examine whether the inclusion of drift provides ad-
ditional insight beyond that offered by the simple viscoelastic
contact model employed here.

Similarly, the hand-arm system is modeled as a 2-DOF
lumped parameter system, which has been shown to provide
an accurate representation of hand-transmitted vibrations at fre-
quencies below 100 Hz [48]. As the operating frequency of the
system in this study is approximately 45 Hz, the 2-DOF model is
deemed sufficient for capturing the relevant dynamic response.

1.1 Non-smooth model
As similarly performed by Alabi et al. [26], the nonsmooth

system is smoothened via the procedure below. In the schematic,
xH , xa, xp, and y represent the motion of the HHIM casing, HAS,

HHIM bit, and massless support, respectively.
Due to the discontinuous nature of the HAS-HHIM system,

the governing equations of motion are defined by two sets of dif-
ferential equations: one for the contact phase and another for the
non-contact phase. Defining fm as the contact force between mp
and the material, the transition logic is given by:

{
xp < g, fm = 0 : without contact,
xp ≥ g, fm =−(kmy+ cmẏ)< 0 : with contact.

(1)

Following Leine [41], we assume that the support relaxes
rapidly between contact events, and thus its free motion is ne-
glected. The resulting governing equations of motion become:

(mH +ms)ẍH = ẋacs + xaks + ẋpcH + xpkH

− ẋH(cH + cs)− xH(kH + ks)+Ff eed , (2a)
maẍa =−ẋa(ca + cs)− xa(ka + ks)+ ẋHcs + xHks, (2b)

mpẍp =


−ẋp(cH + cm)− (xp −g)km − xpkH

+ẋHcH + xHkH +Fw, with contact,
−ẋpcH − xpkH + ẋHcH + xHkH +Fw, without contact.

(2c)

Here, Ff eed is the operator-applied feed force and Fw is the
piston-induced excitation, defined as:

Fw = Fre f

(
ω

ωre f

)2

sin(ωt). (3)

To simulate the nonsmooth dynamics, the system is convexified
using Filippov’s theory [49]. The state space is split into:

V− = {x ∈ Rn | h(x)< 0},
Σ = {x ∈ Rn | h(x) = 0},

V+ = {x ∈ Rn | h(x)> 0}.

The resulting inclusion is:

ẋ(t) ∈ F(t,x) =


f−, x ∈ V−,

co{ f−, f+}, x ∈ Σ,

f+, x ∈ V+,

(4)

where the convex combination is:

co
{

f−, f+
}
= {(1−q) f−+q f+, q ∈ [0,1]}.

3 Copyright © 2025 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/ID

ETC
-C

IE/proceedings-pdf/ID
ETC

-C
IE2025/89268/V006T10A009/7558524/v006t10a009-detc2025-169745.pdf by Virginia Polytechnic Institute and State U

niversity user on 15 D
ecem

ber 2025



FIGURE 1: Schematic of the combined system of HHIM-HAS system

Switching boundaries are defined by:

hα(xp, ẋp) = xp −g, (5)
hβ (xp, ẋp) = km(xp −g)+ cmẋp. (6)

The transitions are:

V− = {x | hα < 0 or hβ < 0},
V+ = {x | hα > 0 and hβ > 0},
Σα = {x | hα = 0, hβ ≥ 0},
Σβ = {x | hβ = 0, hα ≥ 0}.

1.2 Continuation segments for COCO
To facilitate the detection and tracking of grazing in the hy-

brid nonsmooth system using COCO, a periodic orbit is con-
structed by partitioning the trajectory into two segments, denoted
by I1 and I2, each governed by a distinct vector field and transi-
tion logic. These segments represent two phases of the system’s
hybrid dynamics.

The angle variable θ is defined as θ = ωt, where ω is the
angular frequency appearing in the excitation term:

Fw = Fre f

(
ω

ωre f

)2

sin(ωt). (7)

The transition between segments is implemented using
COCO’s multi-segment continuation structure. The following
defines the event and reset functions used in each segment:

Segment I1: No-contact dynamics with phase-based reset

Event function: h1(x) = π −θ = π −ωt,

Reset map: x+ =
[
xH , ẋH , xa, ẋa, xp, ẋp, θ −2π

]⊤
.

This phase reset ensures continuity in the periodic orbit by
wrapping the angular phase variable θ .
Segment I2: No-contact dynamics with impact reset

Event function: h2(x) = xp −g,

Reset map: x+ = x.

This reset corresponds to the event of bit contact with the
ground. The reset is the identity map, as no discrete jump in
the event of grazing.

For direct numerical integration, the differential equation is
integrated using the smoothing switch model introduced by
Leine [50], with smoothing thickness 2η applied around the
switching surface. While for the continuation of the solutions
of the system, the hspo toolbox COCO is used [51].

2 RESULTS
In this section, we begin by validating the chipping hammer

model using its frequency response characteristics. Specifically,
system parameters are tuned so that the model reproduces natu-
ral frequency peaks observed experimentally in the hand acceler-
ation frequency response function (FRF). Following validation,
we use bifurcation diagrams to identify the presence of grazing
phenomena in the system. A two-parameter continuation study is
then performed using COCO to examine how variations in oper-
ating parameters—namely the excitation amplitude Fref and fre-
quency ω—influence the onset of grazing. Finally, we conduct
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TABLE 1: Parameter values of the HHIM-HAS-NLTVA system used for simulations.

Parameter Value Unit Parameter Value Unit Parameter Value Unit

mH 8 kg kH 4×106 N/m cH 500 Ns/m

ma 1.55 kg ka 4279 N/m ca 76 Ns/m

ms 0.049 kg ks 62804 N/m cs 193 Ns/m

Fre f 80 N ωre f 30 Hz g 0.02 m

mp 0.35 kg Ff eed 40 N km 3×106 N/m

cm 50 Ns/m − − − − − −

a parametric study to investigate how changes in the tool’s feed
force affect the emergence and progression of grazing bifurca-
tions. We also investigate the behavior of the hand-arm in differ-
ent grazing regimes.

2.1 Validation of Chipping Hammer Dynamics

The validation of the chipping hammer model is done by
tuning the system parameters so that the resulting hand-arm ac-
celeration frequency response function (FRF), obtained via bifur-
cation diagrams, exhibits certain natural frequency peaks. These
peaks are selected to match those observed experimentally in the
FRF of a chipping hammer measured at the tool handle. Vali-
dation based on natural frequencies is essential, as it ensures the
model accurately captures the frequencies at which vibration in-
tensity at the hand is amplified. Experimental studies have shown
that the hand acceleration FRF of a chipping hammer typically
exhibits distinct peaks near the dominant operating frequency of
the tool [52] and near the natural frequency of the chipping ham-
mer handle [53]. Accordingly, the model parameters presented
in Table 1 are selected so that the tool exhibits dominant fre-
quency peaks near 45 Hz—corresponding to the tool’s operating
frequency—and around 600 Hz, which aligns with the resonance
of the hammer handle. The resulting hand acceleration FRF,
showing these characteristic peaks, is obtained using MATLAB’s
ode45 solver with tight relative and absolute tolerances (10−11)
to integrate the system’s first-order ODEs. The excitation fre-
quency was swept across a defined range, and for each value, the
system was numerically evolved to steady-state through repeated
simulations. From the steady-state response, the peak hand-arm
acceleration was extracted and plotted against frequency to cap-
ture the system’s resonance behavior and validate the dynamic
model as shown in Fig. 2.

2.2 Grazing Detection and Orbit Initialization for Con-
tinuation

Having selected the system parameters, the excitation ampli-
tude of the chipping hammer is varied to generate a frequency re-
sponse function (FRF) that exhibits grazing behavior. This FRF
is constructed by plotting the amplitude of the tool tip in order to
identify the points where the tool tip grazes the ground, defined
at xp = g = 0.02m. As shown in Fig. 3a, the system exhibits
grazing at two distinct points, labeled G1 and G2.

To investigate how the system’s grazing behavior evolves,
we construct an initial solution guess in the form of a periodic
orbit corresponding to the grazing point G2. The resulting orbit
is shown in the phase portrait in Fig. 3b. This trajectory consists
of two segments, I1 and I2, corresponding to distinct phases of
the hybrid system dynamics, as previously described. The orbit
is obtained via direct numerical integration of the smooth vector
fields, with event and reset conditions applied at each segment
boundary. This trajectory serves as the initial guess for hybrid
orbit continuation in COCO.

To enable grazing continuation, a grazing event constraint is
appended to the problem. Specifically, grazing is detected when
the tool tip reaches the ground with zero normal velocity. This is
enforced by monitoring the impact condition h(x) = xp − g = 0
along with the tangency condition ẋp = 0 at the point of contact.
A pairwise parameter continuation is then carried out, allowing
the chipping hammer’s operating parameters to vary while con-
straining the orbit to remain at the grazing condition.

The resulting continuation curve in the chipping hammer’s
operating parameter space (ω,Fref) is shown in Fig. 4. The con-
tinuation begins at the grazing point labeled G1 and identifies a
second grazing point G2, as previously shown in Fig. 3a. The
study reveals that for lower values of Fref, the system does not
exhibit grazing (labeled region A in the diagram). However, at
higher values of Fref, two distinct grazing points emerge (labeled
region B). As the excitation amplitude is further increased, one
of these grazing points disappears, indicating a boundary in the
grazing region (labeled region C). To explore how the system
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dynamics vary with model parameters, we perform a parametric
study by varying the feed force (Ff eed). This enables us to evalu-
ate the resulting changes in the grazing curve within the (ω,Fref)
space, as well as the corresponding effect on the hand-arm sys-
tem response.

2.3 Effect of Feed Force on Grazing Behavior
From Fig. 4b, we observe that an increase in Ffeed leads to

a decrease in the excitation amplitude at which grazing first oc-
curs in the system; that is, Region A in Fig. 4a becomes wider.
The study also reveals that with increasing feed force, the range
of frequency values ω at which grazing occurs becomes more
spread out. This behavior can be observed by comparing the
grazing curves for Ffeed = 20 N and Ffeed = 40 N at Fref = 85 N,
where the lower and upper bounds of grazing shift apart — the
lower grazing frequency decreases while the upper one increases
as feed force increases. In addition to this widening of the graz-
ing frequency interval, we also observe a transition in the number
of grazing points. At Fref = 80 N for Ffeed = 40 N, grazing oc-
curs at two distinct frequencies, whereas at Ffeed = 60 N , only
one grazing point is observed.

Based on these observations, it can be concluded that feed
force affects both the onset and nature of grazing in the system.
Variations in feed force shift the excitation amplitude at which
grazing begins and alter the frequency values at which grazing
occurs for a given excitation amplitude level. Additionally, feed
force influences the number of grazing points observed. In some
cases, the system transitions from exhibiting two grazing points
to just one as feed force increases.

2.4 Effect of grazing regimes on hand-arm accelera-
tion Frequency Response

To assess how different grazing regimes influence vibrations
at the hand-arm interface, we present acceleration frequency re-
sponse functions (FRFs) at the hand. As shown in Fig. 5, three
FRFs are obtained by keeping the feed force constant while vary-
ing the excitation force amplitude Fref to position the system in
grazing regimes A, B, and C, as defined in Fig. 4.

Initial observations indicate that as the excitation ampli-
tude increases—from Region A (no grazing) to Region C (sin-
gle grazing)—the overall amplitude of the hand-arm acceleration
increases accordingly. A closer examination of Fig. 5 reveals
that at both ω = 550 Hz and the system’s operating frequency of
45 Hz, a transition from Region A to B results in a 150% increase
in acceleration at the hand, while the transition from Region B to
C yields a 20% increase. However, the presence or absence of
grazing does not appear to significantly affect the damping ratio
or shift the natural frequencies observed in the FRF.

Although the current study, as shown through the FRF in
Fig. 5, does not explicitly observe bifurcations or chaotic dy-
namics within Regions B or C with the onset of grazing, it is

important to recognize that grazing events often act as precur-
sors to qualitative transitions in nonsmooth systems. Specifically,
grazing can lead to the onset of chaotic motion, multistability, or
the sudden disappearance of stable periodic orbits [28, 35]. Re-
gion B, characterized by two grazing events per cycle, may be
particularly susceptible to such transitions under perturbations in
the system’s parameters. Region C, with a single grazing point,
similarly represents a regime near the boundary of qualitative
change. While a detailed investigation of these behaviors lies be-
yond the scope of the present work, future studies could employ
tools such as Lyapunov exponent analysis or Poincaré mapping
to explore the potential for quasiperiodic or chaotic dynamics
in these regimes. Such behaviors, if present, may also corre-
late with increased variability or amplification in the acceleration
transmitted to the hand, further emphasizing the need to charac-
terize grazing-induced transitions.

These results suggest that the observed rise in hand-arm ac-
celeration is likely driven primarily by the increase in excitation
force, rather than by grazing phenomena themselves. This raises
an important question: does grazing meaningfully influence the
hand-arm response, or is its effect negligible compared to exci-
tation amplitude? A more detailed investigation may be required
to isolate the role of grazing and determine whether it contributes
independently to the vibration intensity perceived at the hand.

3 DISCUSSION
The results of the parametric study suggest that the onset of

grazing in the tool is significantly influenced by the level of feed
force applied. Specifically, the findings show that increasing or
decreasing the applied feed force can either eliminate or induce
grazing behavior within the system. This sensitivity of grazing
to feed force reinforces prior experimental observations that feed
force plays a critical role in determining the acceleration output
at the handle [52].

However, analysis of the hand-arm acceleration across dif-
ferent grazing regimes—including regions of no grazing, single
grazing, and dual grazing—revealed that the presence or absence
of grazing does not substantially alter the shape or structure of
the hand-arm acceleration FRF. Instead, increases in acceleration
amplitude appear to be primarily driven by changes in excitation
force. This finding challenges the original hypothesis that graz-
ing significantly affects the vibrations transmitted to the hand.

These observations highlight the need for experimental val-
idation to determine whether the emergence or disappearance of
grazing meaningfully influences hand-arm acceleration in prac-
tice. They also motivate further refinement of the vibroimpact
model to enhance its predictive fidelity for vibration transmis-
sion to the user. In particular, improving how the model captures
contact dynamics and coupling with the hand-arm system could
offer better alignment between simulated and experimentally ob-
served behavior.
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FIGURE 2: Frequency response function (FRF) of hand acceleration ¨̇xa versus excitation frequency, showing resonance
peaks at approximately 45 Hz and 600 Hz. These peaks correspond to the natural frequencies of the modeled system and
reflect trends typical of the chipping hammer handle experimental vibration data.
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FIGURE 3: a) Bifurcation diagram showing two points where the system grazes as reflected by the tooltip displacement
at xp =0.02. b) The phase portrait which is used as the initial multisegment solution to be fed into COCO’s hspo toolbox.
Both diagrams are generated using the parameters in Table 1.

Conclusion

This study explored the nonlinear dynamics of a chipping
hammer system to better understand how grazing behavior in-
fluences vibrations transmitted to the hand-arm interface. A vi-
broimpact model was developed to represent the percussive na-
ture of the tool and was coupled to a hand-arm system. The
model parameters were tuned to match experimentally observed
natural frequencies of a chipping hammer.

Using numerical continuation via the COCO toolbox, graz-
ing bifurcations were systematically identified in the (ω,Fref)
parametric space. The results revealed that grazing events ap-
pear and disappear based on changes in excitation amplitude. At
low excitation levels, the system exhibits no grazing; at higher
amplitudes, two grazing points emerge, which eventually merge
into a single grazing point as excitation increases further.

A parametric study was conducted to examine how varying
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FIGURE 4: a) Continuation of grazing points in the (ω,Fref) parametric space. The previously identified grazing points
G1 and G2 from Fig. 3a are marked along the grazing curve. Region A corresponds to parameter values where no grazing
occurs, Region B indicates the presence of two distinct grazing points, and Region C marks the boundary beyond which
one grazing point disappears. b) Comparison of grazing curves in the (ω,Fref) space for three different feed force values.
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FIGURE 5: Comparison of hand-arm acceleration across different grazing regimes for Ff eed = 40N. At Fref = 40 N, the
system operates in Region A where no grazing occurs, as seen in Fig. 4. At Fref = 100 N, the system grazes at two
frequencies (Region B), while at Fref = 120 N, grazing occurs at only one frequency (Region C). This figure highlights
how transitions between grazing regimes influence the vibration response at the hand-arm interface.

the feed force affects grazing behavior. The results show that in-
creasing the feed force lowers the excitation amplitude at which
grazing begins and broadens the frequency interval over which
grazing occurs. In some cases, feed force was also found to
change the number of grazing points from two to one, indicat-
ing a shift in the underlying system dynamics. However, despite

these shifts in grazing characteristics, their effect on hand-arm
acceleration was relatively modest.

These findings suggest that while feed force is a useful pa-
rameter for modulating the onset and structure of grazing in the
system, the resulting changes in vibration at the hand may not be
strongly tied to grazing behavior alone. This highlights the need
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for further experimental validation and points to the potential
for improving the vibroimpact model to more accurately capture
the complex interaction between tool dynamics and hand-arm re-
sponse.

REFERENCES
[1] Harada, N., and Mahbub, M., 2008. “Diagnosis of vascu-

lar injuries caused by hand-transmitted vibration”. Interna-
tional archives of occupational and environmental health,
81(5), pp. 507–518.

[2] De Silva, G. S., and Wijewardana, T., 2021. “Preliminary
results of hand arm vibration (hav) exposures of chipping
hammer operators in tropical weather: Analysis of expo-
sures and protective gloves”. International Journal of In-
dustrial Ergonomics, 86, p. 103197.

[3] Griffin, M. J., 2012. Handbook of human vibration. Aca-
demic press.

[4] Bernard, B. P., and Putz-Anderson, V., 1997. “Muscu-
loskeletal disorders and workplace factors; a critical review
of epidemiologic evidence for work-related musculoskele-
tal disorders of the neck, upper extremity, and low back”.

[5] ISO, I., 2001. “5349-1: Mechanical vibra-
tion—measurement and evaluation of human exposure to
hand-transmitted vibration—part 1: general requirements”.
Geneva, Switzerland: International Organization for
Standardization.

[6] Vihlborg, P., Bryngelsson, L., Lindgren, B., Gunnarsson,
L. G., and Graff, P., 2017. “Association between vibration
exposure and hand-arm vibration symptoms in a swedish
mechanical industry”. International Journal of Industrial
Ergonomics, 62, pp. 77–81.

[7] Griffin, M., Bovenzi, M., and Nelson, C., 2003. “Dose-
response patterns for vibration-induced white finger”. Oc-
cupational and Environmental Medicine, 60(1), pp. 16–26.

[8] Dong, R. G., Wu, J. Z., and Welcome, D. E., 2005. “Re-
cent advances in biodynamics of human hand-arm system”.
Industrial health, 43(3), pp. 449–471.

[9] Barregard, L., Ehrenström, L., and Marcus, K., 2003.
“Hand-arm vibration syndrome in swedish car mechanics”.
Occupational and environmental medicine, 60(4), pp. 287–
294.

[10] Institute, A. N. S., 1986. Guide for the Measurement and
Evaluation of Human Exposure to Vibration Transmitted to
the Hand.

[11] Moschioni, G., Saggin, B., and Tarabini, M., 2011. “Pre-
diction of data variability in hand-arm vibration measure-
ments”. Measurement, 44(9), pp. 1679–1690.

[12] Saggin, B., Scaccabarozzi, D., and Tarabini, M., 2012.
“Optimized design of suspension systems for hand–arm
transmitted vibration reduction”. Journal of sound and vi-
bration, 331(11), pp. 2671–2684.

[13] Jahn, R., and Hesse, M., 1986. “Applications of hand-arm
models in the investigation of the interaction between man
and machine”. Scandinavian journal of work, environment
& health, pp. 343–346.
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