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Nonlinear Vibrations Analysis of
Overhead Power Lines: A Beam
With Mass–Spring–Damper–Mass
Systems
This paper examines the nonlinear vibration of a single conductor with Stockbridge
dampers. The conductor is modeled as a simply supported beam and the Stockbridge
damper is reduced to a mass–spring–damper–mass system. The nonlinearity of the system
stems from the midplane stretching of the conductor and the cubic equivalent stiffness of
the Stockbridge damper. The derived nonlinear equations of motion are solved by the
method of multiple scales. Explicit expressions are presented for the nonlinear frequency,
solvability conditions, and detuning parameter. The present results are validated via
comparisons with those in the literature. Parametric studies are conducted to investigate
the effect of variable control parameters on the nonlinear frequency and the frequency
response curves. The findings are promising and open a horizon for future opportunities
to optimize the design of nonlinear absorbers. [DOI: 10.1115/1.4038807]
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1 Introduction

Aeolian vibrations of overhead transmission lines have been a
subject of study for many years. This type of vibration is caused
by wind speed ranging between 1–7 m/s and is characterized to be
a low-amplitude and high-frequency vibration. The frequency of
vibration, depending on the conductor diameter and the wind
speed, ranges from 3 to 150 Hz [1–3]. This vibration must be sup-
pressed in order to avoid fatigue failure of the conductor. The
vibration suppression can be achieved by installing stockbridge
dampers on the conductor or reducing the cable tension [4].

Aeolian vibration of transmission lines have been investigated
using the energy balance method in [4–7] and the method of
impedance in Refs. [8–10]. More recent works on this topic are
examined in Refs. [11] and [12]. In Ref. [11], both conductor and
stockbridge damper are modeled as Euler–Bernoulli beams. In
Ref. [12], however, the damper is replaced by an equivalent
mass–spring–damper–mass system. It should be noted that the
nonlinearity is neglected in both Refs. [11] and [12].

When the end conditions of the conductor (beam) are immov-
able, the vibration nonlinearity arises from midplane stretching.
Therefore, linear equations are not sufficient to describe the vibra-
tion adequately. This type of nonlinearity which leads to weakly
nonlinear differential equations has been reviewed by Nayfeh and
Mook [13]. Nayfeh also reviewed perturbation techniques, which
are used to solve weakly nonlinear problems [14].

The earlier consideration of a nonlinear beam with a mass-
spring system is introduced by Dowell [15]. Pakdemirli and
Nayfeh extended this work by including the effect of nonlinear
stretching [16]. Furthermore, Barry et al. extended this work by
considering axial tension and multi attached systems [17].

More recent works on nonlinear vibration of a beam with
attached masses can be found in Refs. [18–22]. The study on lin-
ear vibration of a beam with suspended spring–mass systems is
examined in Refs. [23–32]. The nonlinear vibration of beam with
suspended spring–mass systems has been examined in Ref. [33].
However, the nonlinearity in this problem is only due to the spring
stiffness (i.e., no midplane stretching).

In the present study, a single conductor with stockbridge damp-
ers is modeled as an Euler–Bernoulli beam coupled with a
mass–spring–damper–mass systems. The conductor is subjected
to a pretension and wind force. The nonlinearity is due to mid-
plane stretching, damping, and spring stiffness. Considering the
case of external primary resonance, the method of multiple scales
is used to obtain an approximate analytical solution for the weakly
nonlinear differential equations. Parametric studies are conducted
to examine the effect of variable control parameters on the nonlin-
ear frequency and frequency response curves.

2 Mathematical Model

Figure 1 depicts a schematic diagram for a single conductor
with a stockbridge damper. Usually, two dampers are attached to
the conductor near each end. The stockbridge damper can be
reduced to an equivalent in-span mass–spring–damper–mass sys-
tem as shown in Fig. 2. The conductor has a length L, a mass per
unit length m, an axial rigidity EA, and a flexural rigidity EI. The
equivalent damper has a clamped mass Mci, an equivalent sus-
pended mass Mdi, a linear stiffness Ki, a cubic nonlinear stiffness
qi, and a dashpot damping coefficient Cdi. For the left damper, the
subscript i is equal to 1 and the damper is located at Xs1. The sub-
script i¼ 2 is for the right damper located at Xs2 from the refer-
ence frame. The conductor is subjected to a pretension, T.

When neglecting the nonconservative forces, the Lagrangian
for the combined system can be expressed, as

L ¼
Xn

i¼0
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xsi
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where Wi is the beam transverse displacement, ui is the beam axial
displacement, Vi is the absolute displacement of Mdi, x is the axial
coordinate, and n is the number of attached dampers. The dots
and primes represent the temporal and spatial derivatives,
respectively.

Introducing the Lagrangian into Hamilton’s principle and add-
ing the damping terms for the dampers yield the following nonlin-
ear equations of motion and boundary conditions:

m €Wiþ1 þ EIWiv
iþ1 � TW00iþ1 ¼

EA� T

2L

Xn

r¼0

ðxrþ1

xr

W02r dx

" #
W00iþ1

(2)

W1ð0; tÞ ¼ W001 ð0; tÞ ¼ 0 (3)

Wðnþ1Þð0; tÞ ¼ W00ðnþ1Þð0; tÞ ¼ 0 (4)

Wpðxp; tÞ ¼ Wpþ1ðxp; tÞ (5)

W0pðxp; tÞ ¼ W0pþ1ðxp; tÞ (6)

W00p ðxp; tÞ ¼ W00pþ1ðxp; tÞ (7)

EI½W000p ðxp; tÞ �W000pþ1ðxp; tÞ�
¼ Mcp

€Wpðxp; tÞ þ KpðWpðxp; tÞ � VpÞ
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where i ¼ 0; 1;…; n and p ¼ 1; 2;…; n. It is more convenient to
introduce the following dimensionless variables:
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where r is the radius of gyration of the beam. Applying the dimen-
sionless parameters into Eqs. (2)–(9) yields

€wiþ1 þ wiv
iþ1 � 2s2w00iþ1 ¼

k
2

Xn

r¼0

ðnrþ1

nr

w02r dn

" #
w00iþ1 (11)

w1ð0; sÞ ¼ w001ð0; sÞ ¼ 0 (12)

wðnþ1Þð0; sÞ ¼ w00ðnþ1Þð0; sÞ ¼ 0 (13)

wpðnp; sÞ ¼ wpþ1ðnp; sÞ (14)

w0pðnp; sÞ ¼ w0pþ1ðnp; sÞ (15)

w00pðnp; sÞ ¼ w00pþ1ðnp; sÞ (16)

w000p ðnp; sÞ � w000pþ1ðnp; sÞ
¼ a1p €wpðnp; sÞ þ kpðwpðnp; sÞ � vpÞþ cpðwpðnp; sÞ � vpÞ3

þ cdpð _wpðnp; sÞ � _vpÞ (17)

a2p€vp ¼ kpðwpðnp; sÞ � vpÞ þ cpðwpðnp; sÞ � vpÞ3

þ cdpð _wpðnp; sÞ � _vpÞ (18)

Fig. 1 Schematic of a single conductor with a stockbridge dampers

Fig. 2 Schematic of a simply supported beam with an in-span mass-spring-
damper-mass systems
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Adding the internal damping and the external forcing terms to
Eq. (10) yields

€wiþ1 þ wiv
iþ1 � 2s2w00iþ1

¼ k
2

Xn

r¼0

ðnrþ1

nr

w02r dn

" #
w00iþ1 � 2�l _wi þ �Fi cos Xt (19)

where �l; �Fi , and X are, the dimensionless damping coefficient,
the dimensionless drag force amplitude, and the dimensionless
excitation frequency, respectively. Solution of Eqs. (12)–(19) is
obtained using perturbation techniques. The method of multiple
scale is applied directly to the partial differential equations and
boundary conditions. Since the type of nonlinearity is cubic, one
can assume the expansions of the displacements as

wiþ1ðn; s; �Þ ¼ �wðiþ1Þ1ðn; T0;T2Þ þ �3wðiþ1Þ3ðn; T0;T2Þ þ � � �
(20)

vpðs; �Þ ¼ �vp1ðT0;T2Þ þ �3vp2ðT0;T2Þ þ � � � (21)

where � is a small dimensionless book-keeping parameter. T0 ¼ s
and T2 ¼ �2s are the fast and slow time scales, respectively. The
term T1 does not appear in the expansions, because the quadratic
nonlinearity is missing in governing equations, so the effect of

nonlinearity appears at Oð�3Þ. Since only the primary resonance
case is considered in the current study, one can order the damping

and excitation force as �l ¼ �2l and �F ¼ �2Fi.
The dimensionless time derivatives in terms of partial deriva-

tives with respect to each time scale Tn can be written as

ð�Þ ¼ D0 þ �2D2 (22)

ð��Þ ¼ D2
0 þ 2�2D0D2 (23)

where Dn ¼ ð@=@TnÞ. Introducing the expansions of the displace-
ments into Eqs. (12)–(19) and separating the coefficient of � and
�3 lead to
order �

D2
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w00p1ðnp; sÞ ¼ w00ðpþ1Þ1ðnp; sÞ (29)

w000p1ðnp;sÞ�w000ðpþ1Þ1ðnp;sÞ ¼ kpðwp1ðnp;sÞ� vp1Þþa1pD2
0wp1ðnp;sÞ

(30)

a2pD2
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þ cdpD0ðwp1ðnp; sÞ � vp1Þ (39)

3 Linear Problem

The problem is linear at order � Eqs. (24)–(31). The total linear
system models are free harmonic vibrations, based on that, one
can express the solution as [31]

wðiþ1Þ1 ¼ ½A1ðT2ÞejxT0 þ cc�Yðiþ1ÞðnÞ (40)

vp1 ¼ A2pðT2ÞejxT0 þ cc (41)

where cc denotes to the complex conjugate of the preceding terms.
Substituting Eqs. (40) and (41) into the linear model equations at
order � yields

Yiv
iþ1 � x2Yiþ1 ¼ 0 (42)

Y1ð0Þ ¼ Y001 ð0Þ ¼ 0 (43)

Ynþ1ð0Þ ¼ Y00nþ1ð0Þ ¼ 0 (44)

YpðnpÞ ¼ Ypþ1ðnpÞ (45)

Y0pðnpÞ ¼ Y0pþ1ðnpÞ (46)

Y00p ðnpÞ ¼ Y00pþ1ðnpÞ (47)

Y000p np

� �
� Y000pþ1 np

� �
¼ kp Yp np

� �
� A2p

A1

� �
� x2a1pYp np

� �
(48)

�a2px
2A2p ¼ kpðA1YpðnpÞ � A2pÞ (49)

From Eq. (49), the function A2p can be expressed in terms of A1

as

A2p ¼ WpYpðnpÞA1 (50)

where Wp is given by

Wp ¼
kp

kp � a2px2
(51)

The mode shapes of each portion from the beam can be repre-
sented as

Yp ¼ c1p sin anþ c2p cos anþ c3p sinh bnþ c4p cosh bn (52)
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where c1p; c2p; c3p; c4p are arbitrary constants, and a, b were
defined in Eq. (10) as functions of the system’s frequency. The
values of the arbitrary constants and the natural frequencies of the
system can be evaluated by applying the boundary conditions in
Eqs. (43)–(49).

4 Nonlinear Problem

In contrary with the linear problem at order �, the problem is
nonlinear at order �3. In order to obtain a solution for the nonho-
mogeneous Eqs. (32)–(39), the solvability condition must be satis-
fied [14]. To derive this condition, the solution should be assumed
as

wðiþ1Þ3 ¼ /ðiþ1Þðn; T2ÞejxT0 þ ccþW�iþ1ðn;T0;T2Þ (53)

vp3 ¼ A3pðT2ÞejxT0 þ ccþ V�p (54)

where W�iþ1ðn;T0;T2Þ and V�p are unique, free of secular terms,
and small divisor terms. Moreover, they can be determined by
solving Eqs. (32)–(39) and deleting the terms accompanying
e6jxT0 .

Since we are attacking the primary resonance case, we consider
that the excitation frequency is detuning from one of the natural
frequencies by �2r (r is a detuning parameter), therefore, the exci-
tation frequency can be represented by

X ¼ xþ �2r (55)

Introducing Eqs. (53) and (54) into Eqs. (32)–(39) and separating
the terms that are coefficient of ejxT0 on both sides leads to

/iv
iþ1 � x2/iþ1 � 2s2/00iþ1

¼ 3

2
k �A1 A2

1

Xn

r¼0

ðnrþ1

nr

Y02rþ1 nrð Þdn

" #
Y00iþ1 nð Þ
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2
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/pðnp;T2Þ ¼ /pþ1ðnp;T2Þ (59)

/0pðnp;T2Þ ¼ /0pþ1ðnp;T2Þ (60)

/00pðnp; T2Þ ¼ /00pþ1ðnp;T2Þ (61)

/000p ðnp; T2Þ � /000pþ1ðnp; T2Þ
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1
�A1 Y3

pðnpÞ
þ jxcdpðA1YpðnpÞ � Ap2Þ þ a1p½�x2/pðnp; T2Þ
þ 2jxA01YpðnpÞ� (62)

�a2px
2Ap3 þ 2jxa2pA02p

¼ kPð/pðnp;T2Þ � Ap3Þþ3cpW1pA2
1

�A1 Y3
pðnpÞ

þ jxcdpðA1YpðnpÞ � Ap2Þ (63)

where W1p is given by

W1p ¼ �3W3
p þ 9W2

p � 9Wp þ 1 (64)

The term Ap3 can be eliminated from Eq. (62) by rearranging
Eq. (63), such that

Ap3 ¼
Kp/p np;T2

� �
þ 3A2

1
�A1W1pcpY3

p np

� �
� 2jxa2pWpYp np

� �
A01

Kp � a2px2

þ
jxcdpA1Yp np

� �
1�Wpð Þ

Kp � a2px2
(65)

Substituting Eqs. (50), (51), and (65) into Eq. (62) results in

/000p ðnp;T2Þ�/000pþ1ðnp;T2Þ
¼ kpð/pðnp;T2Þð1�WpÞþ 3cpW1pA2

1
�A1 Y3

pðnpÞ
� 3kpW2pA2

1
�A1 þ jxkpW3pA01þ jxkpW4pA1ð1�WpÞ

þ jwcdpYpðnpÞA1ð1�WpÞþ a1p½�x2/pðnp;sÞþ 2jxA01YpðnpÞ�
(66)

where W2p;W3p, and W4p are defined as

W2p ¼
cpW1pY3

p np

� �
kp � a2px2

(67)

W3p ¼
2a2pWpYp np

� �
kp � a2px2

(68)

W4p ¼
cdpYp np

� �
kp � a2px2

(69)

Manipulating Eqs. (56)–(61), and (66) algebraically leads to the
following solvability condition:

3

2
k �A1 A2

1b2b3 � 2jx A01 þ lA1

� �
b1 þ

1

2
ejrT2 f

¼
X2

p¼1

Yp np

� �
�3kpW2pA2

1
�A1þjxkpw3pA01

h
þ jxkpw4pA1 1� wp

� �
þ 3cpW1pA2

1
�A1 Y3

p np

� �
þ jxcdpYp np

� �
A1 1�Wpð Þ þ 2jxa1pA01Yp np

� �i
(70)

where the constants b1; b2; b3, and f are

b1 ¼
Xn

r¼0

ðnrþ1

nr

Y2
rþ1dn (71)

b2 ¼
Xn

r¼0

ðnrþ1

nr

Y02rþ1dn (72)

b3 ¼
Xn

r¼0

ðnrþ1

nr

Y00rþ1Yrþ1dn (73)

f ¼
Xn

r¼0

ðnrþ1

nr

Frþ1Yrþ1dn (74)

After integrating b3, it is found that b3¼�b2.
We express A1 in the polar form

A1 T2ð Þ ¼
1

2
a T2ð Þeh T2ð Þ (75)

Moreover, in order to reach an autonomous system, we assume
that

cc1 ¼ rT2 � h (76)
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Substituting Eqs. (75) and (76) into the solvability condition and
separating the real and imaginary parts on both sides yields

xa0b4 ¼
1

2
f sin cc1 � xb6a (77)

xa r� cc01
� �

b4 ¼ �
1

2
f cos cc1 þ a3b5 (78)

where b4, b5, and b6 are defined as

b4 ¼ b1 þ
Xn

p¼1

Yp np

� � 1

2
kpW3p þ a1pYp np

� �� �
(79)

b5 ¼
3

16
kb2

2 þ
Xn

p¼1

� 3

8
kpW2pYp np

� �
þ 3

8
cpW1pY4

p np

� �� �
(80)

b6 ¼ lb1 þ
Xn

p¼1

Yp np

� � 1

2
kpW4p 1�Wpð Þ þ

1

2
cdpYp np

� �
1� wp

� �� �

(81)

The nonlinear frequencies can be determined by assuming
free undamped vibrations, such that r ¼ f ¼ l ¼ cdp ¼ 0, then
Eqs. (77) and (78) become

a0 ¼ 0) a ¼ constant (82)

xab4cc
0
1 ¼ �b5a3 (83)

Therefore, the nonlinear frequency can be expressed as

xnl ¼ wþ h0 (84)

where h0 is the detuning from natural linear frequency and it can
be defined as

h0 ¼ b5a2

xb4

(85)

It can be demonstrated that the motion type is periodic because a
is a constant. This leads to a0 ¼ cc01 ¼ 0. The detuning parameter,
therefore, can be written, after eliminating cc1 from Eqs. (77) and
(78), as

r ¼ a2b5

xb4

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f �2

4a2x2
� b2

6

b2
4

s
(86)

where

f � ¼ f

b4

(87)

The loci of the second saddle-node bifurcation point (i.e., where
the tangent at this point from frequency response curve is vertical
and the solution between this point and the first saddle-node bifur-
cation point is unstable) can be determined by solving the follow-
ing equation:

r2 þ 3
a4b2

5

x2b2
4

� 4
ra2b5

xb4

þ b2
6

b2
4

¼ 0 (88)

Following Ref. [34], the nonlinear component of the equivalent
stiffness can be expressed as:

cp ¼ kp=6 (89)

5 Numerical Simulation

In order to check the current model, we compare the obtained
natural frequencies for a conductor with one damper and for a
beam with two masses with those obtained in the literature. The
frequencies are tabulated in Tables 1 and 2 and show very good
agreement. Moreover, the present results of nonlinear frequency
response curve for a beam with one attached mass–spring system
(i.e., no suspended mass) corroborate those in Ref. [17], as shown
in Fig. 3.

Figures 4–9 depict the effect of various parameters on the non-
linear frequency with vibration amplitude a. The influence of
changing the position of damper is shown in Fig. 4. It is demon-
strated that the effect of nonlinearity increases as the number of
dampers and np increase. It should be noted that stockbridge
dampers are usually positioned near the end of the conductor
because field investigations have shown that dampers placed fur-
ther from the suspension clamps have increased tendency to suffer
early fatigue failure due to galloping [35] and [36].

In Figs. 5 and 6, the nonlinear frequency–amplitude curves are
plotted for different values of in-span mass and suspended mass,
respectively. It is observed that the linear, nonlinear frequencies,
and the nonlinearity of the curves decrease with increasing both
masses. These results corroborate those obtained in Ref. [22]. For
the case of the in-span mass shown in Fig. 5, it can be seen that
the nonlinear frequency curve for a1p¼ 0.01 does not significantly

Table 1 Validating the natural frequencies (Hz) of a conductor
with one damper for n150:05; a1150:0045; a2150:1088; k15
17139:7, and s 5 80.33

Data
First
mode

Second
mode

Third
mode

Fourth
mode

Fifth
mode

Present 2.3634 2.6366 4.8244 7.2402 9.6696
FEM [12] 2.3845 2.6387 4.8164 7.2337 9.6663

Table 2 Validating the nondimensional natural frequencies
(Hz) of a beam with two masses for n150:1; n250:3; a1151; a1251,
and s 5 k1 5 k25 0

Data
First
mode

Second
mode

Third
mode

Fourth
mode

Fifth
mode

Present 6.119 27.546 55.412 99.098 196.79
FEM [17] 6.1182 27.5061 55.4118 99.1006 196.8213

Fig. 3 Validating the current results: s 5 0, a11 5 a12 5 0.5,
a21 5 a22 5 0, kp 5 cp 5 2p4, l 5 0.2, v 5 0
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differ from the bare beam curve (i.e., a1p¼ 0). However, for the
suspended mass case depicted in Fig. 6, the difference is
significant.

The effect of axial tension on the nonlinear frequency–
amplitude curves is shown in Fig. 7. As expected, increasing the
tension increases the linear and nonlinear frequencies. However,
this increase in tension decreases the effect of nonlinearity in the
curves which is reasonable since the term that includes nonlinear
stretching in Eq. (2) becomes smaller.

Figures 8 and 9 illustrate the influence of varying the spring
stiffness on the nonlinear frequency–amplitude curves. It is
demonstrated that reducing the spring stiffness increases the fre-
quencies and reduces the nonlinearity in the curves. Moreover,
this effect becomes more pronounced as the suspended mass
increases.

The frequency–response curves for variable parameters are
plotted in Figs. 10–17, where the solid branches indicate stable
solutions. while the dotted branch refers to unstable solutions. The
effect of changing the axial tension is shown in Fig. 10. It is
observed that increasing the tension reduces the hardening

Fig. 4 Nonlinear frequency versus vibration amplitude for
different dampers location: s 5 2; a11 5 a12 5 0:01; a21 5 a22 5 0:1;
kp 5 2p4; cp 5 kp /6

Fig. 5 Nonlinear frequency versus vibration amplitude for
different in-span mass values: s 5 2; n1 5 0:1; n2 5 0:9; a21 5 a22

5 0:1; kp 5 2p4; cp 5 kp /6

Fig. 6 Nonlinear frequency versus vibration amplitude for dif-
ferent suspended mass values: s 5 2; n1 5 0:1; n2 5 0:9; a11 5 a12

5 0:01;kp 5 2p4; cp 5 kp /6

Fig. 7 Detuning from the linear natural frequency versus vibra-
tion amplitude for different values of tension: n1 5 0:1; n2 5 0:9;
a11 5 a12 5 0:01; a21 5 a22 5 0:1; kp 5 2p4; cp 5 kp /6

Fig. 8 Detuning from the linear natural frequency versus
vibration amplitude for different values of spring stiffness:
s 5 2; n1 5 0:1; n2 5 0:9; a11 5 a12 5 0:01; a21 5 a22 5 0:1; cp 5 kp /6
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Fig. 9 Detuning from the linear natural frequency versus
vibration amplitude for different values of spring stiffness:
s 5 2; n1 5 0:1; n2 5 0:9; a11 5 a12 5 0:01; a21 5 a22 5 0:5; cp 5 kp /6

Fig. 10 Frequency–response curves for variables values
of tension: n1 5 0:1; n2 5 0:9; a11 5 a12 5 0:01; a21 5 a22 5 0:5;
kp 5 2p4; cp 5 kp /6; f 5 5; l 5 0:2

Fig. 11 Frequency–response curves for different values of
in-span mass: s 5 2; n1 5 0:1; n2 5 0:9; a21 5 a22 5 0:1; kp 5 2p4;
cp 5 kp /6; f 5 5; l 5 0:2

Fig. 12 Frequency–response curves for different values of
suspended mass: s52; n1 50:1; n2 50:9; a11 5a12 50:01; kp 52p4;
cp 5kp /6; f 55;l50:2

Fig. 13 Frequency–response curves for different values of
spring stiffness: s 5 2; n1 5 0:1; n2 5 0:9; a11 5 a12 5 0:01; a21

5 a22 5 0:1; cp 5 kp /6; f 5 5; l 5 0:2

Fig. 14 Frequency–response curves for different values of
damping: s 5 2; n1 5 0:1; n2 5 0:9; a11 5 a12 5 0:01; a21 5 a22 5 0:1;
kp 5 2p4; cp 5 kp /6; f 5 5; l 5 0:2
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nonlinearity. In comparison to the linear case, the midplane
stretching shifts the resonance peak to the right; however, this
shift to the right reduces with increasing tension.

Figures 11 and 12 depict the frequency response curves for
variable values of in-span mass and suspended mass, respectively.
The results reveal that raising any of these masses increases the
maximum amplitude of the vibration for both linear and nonlinear
absorbers. The results in Fig. 11 indicate a slightly higher vibra-
tion amplitude for the nonlinear absorber than the linear absorber,
whereas the results in Fig. 12 show opposite trends. This is an
indication that the nonlinear absorber performs better with
increasing the suspended mass than increasing the in-span mass.
Increasing the stiffness of the damper also increases the maximum
amplitude as shown in Fig. 13. The effect of increasing damping
on the maximum amplitude is plotted in Fig. 14. The results show
that higher damping decreases the vibration amplitude. In terms
of reducing vibration amplitudes, both Figs. 13 and 14 show that
the nonlinear absorber performs better than the linear absorber.

A comparison between a conductor with one damper and two
dampers along with different parameters are shown in

Figs. 15–17. For an absorber with zero damping coefficient, it is
observed that the maximum amplitude of a conductor with one
damper is slightly lower than that for a conductor with two damp-
ers as depicted in Fig. 15. However, it is demonstrated from
Fig. 16 that the maximum displacement becomes lower as the num-
ber of absorber increases for nonzero damping coefficient. These
findings agree with those in Ref. [36] for linear absorbers. More-
over, it is revealed that increasing the suspended mass also lowers
the maximum displacement for a conductor with more than one
damper even for a lower value of damping as shown in Fig. 17.

6 Conclusion

In this paper, the nonlinear vibration of an overhead transmis-
sion line consisting of a single conductor with stockbridge
dampers is investigated. The conductor is modeled as simply
supported beam and the stockbridge damper is represented as a
mass–spring–damper–mass system. The nonlinearity is due to
midplane stretching of the beam and cubic nonlinearity of the
spring stiffness. The nonlinear differential equations of motion,
boundary, and continuity conditions are derived using Hamilton’s
principle. The system of weakly nonlinear differential equations is
solved using the method of multiple scales. Explicit expressions
are presented for the nonlinear frequency, solvability conditions,
and detuning parameter. The validation of the present results is
demonstrated via comparison of the results in the literature. The
numerical simulation demonstrates that the nonlinearity increases
with increasing number of absorbers and moving them toward the
midpoint of the beam. It is observed that both linear and nonlinear
frequencies decrease with increasing inspan mass and suspended
mass, and decreasing tension. The nonlinearity in the frequency
curves becomes more noticeable with decreasing tension and
spring stiffness.

As for the frequency–response curves, the results indicate that
the effect of nonlinearity vanishes with increasing tension.
Moreover, it is shown that increasing the masses increases the
maximum vibration amplitude, while increasing the damping and
the stiffness of the absorbers reduces the vibration amplitude.
The numerical results also reveal that the maximum vibration
amplitude decreases with increasing suspended mass, damping
coefficient, and the number of absorbers. The results also demon-
strate that nonlinear absorbers perform better than linear absorb-
ers. The findings in this paper provide fundamental insights about
nonlinear absorbers and pave the way for future research to opti-
mize their performance. It is also anticipated that the findings will

Fig. 17 Frequency–response curves for a conductor with one
and two dampers (with damping cdp 5 10): s 5 2; n1 5 0:1;
n2 5 0:9; a11 5 a12 5 0:01; a21 5 a22 5 0:5; kp 5 2p4; cp 5 kp /6;
l 5 0:2; f 5 5

Fig. 15 Frequency–response curves for a conductor with one
and two dampers (no damping): s 5 2; n1 5 0:1; n2 5 0:9;
a11 5 a12 5 0:01; a21 5 a22 5 0:1;kp 5 2p4; cp 5 kp /6; l 5 0:2; f 5 5

Fig. 16 Frequency–response curves for a conductor with one
and two dampers (with damping cdp 5 50): s 5 2; n1 5 0:1;
n2 5 0:9; a11 5 a12 5 0:01; a21 5 a22 5 0:1; kp 5 2p4; cp 5 kp /6;
l 5 0:2; f 5 5
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be very appealing to power lines engineers and manufacturers of
stockbridge dampers.

Nomenclature

a ¼ dimensionless first Eigen value
a1p ¼ dimensionless in span mass for the pth absorber
a2p ¼ dimensionless suspended mass for the pth absorber

b ¼ dimensionless second Eigen value
� ¼ book-keeping parameter
h ¼ dimensionless vibration phase
k ¼ dimensionless coefficient of nonlinear terms
�l ¼ dimensionless internal damping coefficient of the beam
l ¼ dimensionless ordered internal damping coefficient of the

beam
r ¼ detuning parameter
n ¼ dimensionless horizontal coordinate
ni ¼ dimensionless position for the ith absorber
X ¼ dimensionless forcing frequency
x ¼ dimensionless natural frequency of the system
a ¼ dimensionless vibration amplitude

A1 ¼ unknown complex function at first-order
A2p ¼ unknown complex function at first-order
cdp ¼ dimensionless damping coefficient for the pth abdorber
cc ¼ complex conjugate

Cdp ¼ damping coefficient for the ith absorber ((N s)/m)
Dn ¼ first derivative with respect to nth scale
EA ¼ axial rigidity (N)
EI ¼ flexural rigidity (N m2)
Fi ¼ dimensionless ordered force amplitude for the ith beam
�Fi ¼ dimensionless force amplitude for the ith beam
kp ¼ dimensionless linear stiffness for the pth absorber
Ki ¼ linear stiffness for the ith absorber (N/m)
L ¼ Lagrangian of the combined system
L ¼ length of the beam (m)
m ¼ mass per unit length of the beam (kg/m)

Mci ¼ in span mass for the ith absorber (kg)
Mdi ¼ suspended mass for the ith absorber (kg)

n ¼ number of attached systems
qi ¼ nonlinear stiffness for the ith absorber (N/m3)
s ¼ dimensionless time
r ¼ radius of gyration (m)
s ¼ dimensionless axial tension
T ¼ axial tension (N)

T0 ¼ fast-time scale
T1 ¼ slow-time scale
ui ¼ axial displacement for the ith beam (m)
vp ¼ dimensionless absolute displacement for the pth abdorber

vp1 ¼ dimensionless first-order solution for the displacement of
pth absorber

vp3 ¼ dimensionless third-order solution for the displacement of
pth absorber

Vi ¼ absolute displacement for the ith absorber (m)
V�p ¼ unique terms at third-order
wi1 ¼ dimensionless first-order solution for the displacement of

ith beam
wi3 ¼ dimensionless third-order solution for the displacement of

ith beam
Wi ¼ transverse displacement of the ith beam (m)
W�i ¼ unique terms at third-order
xsi ¼ position of ith absorber on the beam (m)
Yi ¼ linear mode shape for the ith beam
cp ¼ dimensionless nonlinear stiffness for the pth absorber

cc1 ¼ autonomous transfer parameter
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