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ABSTRACT
This paper presents the nonlinear vibration of a simply sup-

ported Euler-Bernoulli beam with a mass-spring system sub-
jected to a primary resonance excitation. The nonlinearity is
due to the mid-plane stretching and cubic spring stiffness. The
equations of motion and the boundary conditions are derived us-
ing Hamiltons principle. The nonlinear system of equations are
solved using the method of multiple scales. Explicit expressions
are obtained for the mode shapes, natural frequencies, nonlin-
ear frequencies, and frequency response curves. The validity of
the results is demonstrated via comparison with results in the
literature. Exact natural frequencies are obtained for different
locations, rotational inertias, and masses.

INTRODUCTION
Since beams are used in many engineering models, study-

ing the nonlinear vibration of beams has received a considerable
attention. This nonlinearity may be attributable to geometric, in-
ertial, or material in nature. When the beam has immovable end
conditions, we encounter geometric nonlinearity in the modeling
called streching nonlinerarity.

Studying the nonlinear vibrations of beams has been reviewed
up to 1979 by Nayfeh and Mook [1]. Approximate analytical
solutions for these types of problems can be obtained using per-
turbation methods. These perturbation techniques have been re-
viewed by Nayfeh [2]. Following that, the nonlinear free vi-
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brations of a beam with spring-mass system have been investi-
gated by Dowell [3]. The nonlinearity in Dowell’s study was
due to cubic nonlinearity stemming from spring constant. How-
ever, nonlinearity due to the mid-plane stretching was not ex-
amined . Dowell’s work has been extended by Pakdemirli and
Nayfeh [4] by including the effect of stretching, damping, and
primary resonance excitation. Furthermore, Barry et al. [5] have
extended Pakdemirli and Nayfeh work by considering the effect
of axial tension, attached system damping, and multi attached
systems. More works on the nonlinear vibrations of beam with
mass or multi-masses and different boundary conditions can be
found in [6]- [9].

Numerous studies have been reported in the literature about
the nonlinear vibrations of beams; however, no work has been
reported about the effect of rotational inertia of the attached sys-
tem. In the current study, we extend Pakdemirli and Nayfeh work
by considering the rotational inertia. The multiple scales method,
a perturbation technique, is used to obtain an approximate analyt-
ical solutions for the nonlinear equations of motion and bound-
ary conditions. Parametric studies are conducted to examine the
effect of rotational inertia on the linear frequencies, nonlinear
frequencies, and frequency response curves.

MATHEMATICAL MODEL
A schematic diagram for the system is shown in Fig.1. The

considered system is a simply supported Euler-Bernoulli beam
with a spring-mass system located at x = xs1 from the left ref-
erence frame. Following [1], the equations of motion and the
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FIGURE 1. A schematic diagram for the system.

boundary conditions for the system can be obtained as

mẄi +EIW iv
i =

EA
2L

[
2

∑
r=1

∫ xsr

0
W ′2r dxr]W ′′i

f or i = 1,2

(1)

Wi(0, t) =W ′′i (0, t) = 0 (2)

W1(xs1, t) =W2(xs2, t) (3)

W ′1(xs1, t) =−W ′2(xs2, t) (4)

W ′′1 (xs1, t) =W ′′2 (xs2, t)− JẄ ′1(xs1, t) (5)

EI[W ′′′1 (xs1, t)+W ′′′2 (xs2, t)] = KW1(xs1, t)+qW 3
1 (xs1, t)

+Mẅp(xs1, t)
(6)

where L is the length of the beam, m represents the mass per
unit length of the beam, EI and EA are the flexural and the axial
rigidity, respectively, M is the total mass of spring mass system,
K and q are the linear and nonlinear spring constant, respectively,
W is the transverse displacement, xi is the axial coordinate, and t
is the time. The primes represents the derivative with respect to
axial coordinate and the dots denotes the derivative with respect
to time. The subscript 1 and 2 refers to the left and right beam
respectively.

Next, we introduce the following dimensionless parameters

ξi =
x
L

;ξsi =
xsi

L
;wi =

Wi

r
;τ =

t
l2

√
EI
m

;α =
M
mL

;k =
KL3

EI
;

γ =
qL3r2

EI
;η =

J
mL3 ;

(7)
where r is the radius of gyration.

Introducing these parameters in Eqs. (1) - (6) leads to

ẅi +wiv
i =

1
2
[

2

∑
r=1

∫
ξsr

0
w′2r dζr]w′′i (8)

wi(0,τ) = w′′i (0,τ) = 0 (9)

w1(ξs1,τ) = w2(ξs2,τ) (10)

w′1(ξs1,τ) =−w′2(ξs2,τ) (11)

w′′1(ξs1,τ) = w′′2(ξs2,τ)−ηẅ′1(ξs2,τ) (12)

w′′′1 (ξs1,τ)+w′′′2 (ξs2,τ) = kw1(ξs1,τ)+ γw3
1(ξs1,τ)

+αẅ1(ξs1,τ)
(13)

Adding damping and forcing terms to Eq. (8) yields

ẅi +wiv
i =

1
2
[

2

∑
r=1

∫
ξsr

0
w′2r dζr]w′′i −2µ̄ẇi + F̄i cosΩt (14)

where µ̄ , F̄i, and Ω are the dimensionless internal damping co-
efficient, the dimensionless excitation amplitude, and the dimen-
sionless excitation frequency, respectively.

By employing the method of multiple scales, the expansion of
beam’s displacement can be represented as

wi(ξi,τ,ε) = εwi1(ξi,T0,T2)+ ε
3wi3(ξi,T0,T2)+ ... (15)
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where T0 = τ and T2 = ε2τ . Since ε is a small dimensionless
parameter, T0 is a fast time scale and T2 is a slow time scale.
The scale T1 is missing because the type of nonlinearity here is
cubic. In order to get the effect of force and damping in the same
perturbation equation, we assume µ̄ = ε2µ , v̄= ε2v and F̄ = ε2Fi
for primary resonance case.

The derivatives with respect to nondimentional time become
expansions in terms of the partial derivative with respect to Tn as

(·) = D0 + ε
2D2 (16)

(··) = D2
0 +2ε

2D0D2 (17)

where Dn =
∂

∂Tn
.

Substituting Eqs. (15) - (17) into the nondimentional equa-
tions of motion and boundary conditions and separating the terms
of similar power leads to

order ε

D2
0wi1 +wiv

i1 = 0 (18)

wi1(0,τ) = w′′i1(0,τ) = 0 (19)

w11(ξs1,τ) = w21(ξs2,τ) (20)

w′11(ξs1,τ) =−w′21(ξs2,τ) (21)

w′′11(ξs1,τ) = w′′21(ξs2,τ)−ηD2
0w′11(ξs1,τ) (22)

w′′′11(ξs1,τ)+w′′′21(ξs2,τ) = kw11(ξs1,τ)+αD2
0w11(ξs1,τ) (23)

order ε3

D2
0wi3 +wiv

i3 =
1
2
[

2

∑
r=1

∫
ξsr

0
w′2r1dζr]w′′i1−2D0D2wi1

−2µD0w11 +Fi cosΩT0

(24)

wi3(0,τ) = w′′i3(0,τ) = 0 (25)

w13(ξs1,τ) = w23(ξs2,τ) (26)

w′13(ξs1,τ) =−w′23(ξs2,τ) (27)

w′′13(ξs1,τ) = w′′23(ξs2,τ)

−η [D2
0w′13(ξs1,τ)+2D0D2w′11(ξs1,τ)]

(28)

w′′′13(ξs1,τ)+w′′′23(ξs2,τ) = kw13(ξs1,τ)+ γw3
11(ξs1,τ)

+α[D2
0w13(ξs1,τ)+2D0D2w11(ξs1,τ)]

(29)

LINEAR PROBLEM
The solution of the problem at order ε can be obtained linearly.

Therefore the solution can be assumed as

wi1 = [A1(T2)e jωT0 + cc]Yi(ξi) (30)

where cc is the complex conjugate for the preceding terms. In-
troducing Eq. (30) into Eqs. (18)-(23) leads to

Y iv
i −ω

2Yi = 0 (31)

Yi(0) = Y ′′i (0) = 0 (32)

Y1(ξs1) = Y2(ξs2) (33)

Y ′1(ξs1) =−Y ′2(ξs2) (34)

Y ′′1 (ξ1) = Y ′′2 (ξ2)+ω
2
ηY ′1(ξ1) (35)

Y ′′′1 (ξs1)+Y ′′′2 (ξs2) = kY1(ξs1)−ω
2
αY1(ξ1) (36)
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The mode shapes of the beams Yi can be expressed as

Yi(ξi) = c1i sinβξi + c3i sinhβξi (37)

β =
√

ω (38)

where c1i and c2i are arbitrary constants. These constants and the
natural frequencies of the system can be obtained by substituting
Eq. (37) into Eqs. (33)-(36).One should note that the terms of c2i
and c4i are missing because we use two different reference frame
at each end of the boundary conditions in Eq. (32).

NONLINEAR PROBLEM
The problem at order ε3 is nonlinear. The inhomogeneous so-

lution of Eqs. (24) - (29) has secular terms. These secular terms
must be vanished in order to make the expansion in Eq. (15)
uniformly valid as τ increases. To achieve that the solvability
condition must be satisfied [2]. The solvability condition can be
obtained by representing the solution as

wi3 = φi(ξi,T2)e jωT0 + cc+W ∗i (ξi,T0,T2) (39)

where W ∗i is unique and free of small-divisor terms and secular
terms. When we have a primary resonance case, the excitation
frequency detunes from one of the natural frequency as

Ω = ω + ε
2
σ (40)

where σ is a detuning parameter. Introducing the expressions in
Eq.(30) and Eqs. (39) - (40) into Eqs. (24) - (29), and collecting
the coefficient of secular terms in order to delete them yields

φ
iv
i −ω

2
φi =

3
2

Ā1A2
1[

2

∑
r=1

∫
ξsr

0
Y ′2r (ξr)dζr]Y ′′i (ξsi)

−2 jω(A′1 +µA1)Yi(ξsi)+
1
2

Fie jσT2

(41)

φi(0,T2) = φ
′′
i (0,T2) = 0 (42)

φ1(ξs1,T2) = φ2(ξs2,T2) (43)

φ
′
1(ξs1,T2) =−φ

′
2(ξs2,T2) (44)

φ
′′
1 (ξs1,T2) = φ

′′
2 (ξs2,T2)

−η [−ω
2
φ
′
1(ξs1,T2)+2 jωA′1Y ′1(ξ1)]

(45)

φ
′′′
1 (ξs1,T2)+φ

′′′
2 (ξs2,T2) = kφ1(ξs1,T2)

+3γA2
1Ā1Y 3

1 (ξs1)+α[−ω
2
φ1(ξs1,T2)+2 jωA′1Y1(ξ1)]

(46)

Rearranging Eqs. (41) - (46) leads to the following solvability
condition

2 jω(A′1 +µA)b1 +3Ā1A2
1(

b2
2

2
+ γY 4

1 )−
1
2

f e jσT2

+ jω[2αA′1Y 2
1 (ξs1)+2ηA′1Y ′21 (ξs1)] = 0

(47)

where

b1 =
2

∑
r=1

∫
ξsr

0
Y 2

r dξr (48)

b2 =
2

∑
r=1

∫
ξsr

0
Y ′2r dξr (49)

b3 =
2

∑
r=1

∫
ξsr

0
Y ′′r Yrdξr (50)

f =
2

∑
r=1

∫
ξsr

0
FrYrdξr (51)

We note that integrating b3 yields b3 = −b2. Next, we Intro-
duce the polar form as

A1(T2) =
1
2

a(T2)eθ(T2) (52)

and the following expression in order to convert Eq. (47) into an
autonomous form

γ1 = σT2−θ (53)
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By substituting Eqs. (52) - (53) into the solvability condition,
the following equations can be obtained after separating the real
and imaginary components

ωa′b4 =
1
2

f sinγ1−ωb5a (54)

ωa(σ − γ
′
1)b4 =−

1
2

f cosγ1 +
3
8

a3b6 (55)

where

b4 = b1 +αY 2
1 (ξs1)+ηY ′21 (ξs1) (56)

b5 = b1µ (57)

b6 =
b2

2
2
+ γY 4

1 (ξs1) (58)

The nonlinear frequencies can be obtained by making σ = f =
µ = 0, then one can obtain from Eqs. (54) - (55) the following

a′ = 0⇒ a = constant (59)

ωab4γ
′
1 =−

3
8

b6a3 (60)

Therefore the nonlinear frequency can be expressed as

ωnl = ω +
3b6a2

8ωb4
(61)

To find frequency response,for periodic motion a′ = γ ′1 = 0,
then , after elimenating γ1, one can determine from Eqs. (54)
and (55) the detuning parameter as

σ =
3a2b6

8ωb4
±

√
f 2

4a2ω2b4
−

b2
5

b2
4

(62)

NUMERICAL SIMULATION
Simulation in the present study has been carried out using Mat-

lab. Some of the results are presented in order to show the effect
of rotational inertia on the frequencies and frequency response
curves. In all numerical calculation we use k = γ = 2π4 [4].

TABLE 1. Validating the natural frequencies of a beam with spring-
mass system for ξs1 = 0.1,α = 0.5,k1 = γ = 2π4

Data 1st mode 2nd mode 3rd mode 4th mode 5th mode

Present 10.9850 35.2410 72.1800 131.6660 216.6070

Ref [4] 10.9844 35.2402 72.1795 131.6656 216.6067

TABLE 2. The lowest five natural frequencies of the system for vari-
ous locations and rotational inertia

ξs1 η 1st mode 2nd mode 3rd mode 4th mode 5th mode

0.1 0 10.985 35.241 72.18 131.666 216.607

0.1 16.462 52.404 75.749 133.421 224.002

0.25 17.807 54.668 76.031 133.452 224.044

0.3 0 14.297 33.241 87.176 146.198 213.798

0.1 16.138 35.721 105.335 180.092 218.226

0.25 16.679 35.938 105.526 180.339 218.268

First, in order to check the current model, we verify some of
the results with those obtained in the literature. The comparisons
between the natural frequencies are listed in Table.1 and show
very good agreement.

The lowest five natural frequencies are tabulated in Table. 2 for
different values of η and ξs1. It is observed that increasing the
inertia increases the natural frequencies; however, this increasing
does not have a significant effect on the higher modes.

The nonlinear frequency curves for various values of α and
η are drown in Figs. 2-5. In Figs. 2-3, it is demonstrated that
including the inertia increases both the linear and nonlinear fre-
quencies. Moreover, this also mitigates the bending of curves.
Increasing the total mass of the spring mass system reduces the
linear and nonlinear frequencies as shown in Figs. 4-5.

The frequency response curves for different values of α and η

are plotted in Figs. 6-7. The solid line represents the stable so-
lutions, where as the dotted refers to the unstable solutions. It is
revealed that increasing the rotational inertia alleviates the maxi-
mum vibration amplitude. However, increasing the total mass of
the spring-mass system increases the maximum vibration ampli-
tude while the reduction due to increasing the rotational inertia
becomes more significant.
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FIGURE 2. Nonlinear frequency vs. vibration amplitude: k = γ =

2π4, α = 0.5, η = 0, ξs1 = 0.1 first mode of vibration.

FIGURE 3. Nonlinear frequency vs. vibration amplitude: k = γ =

2π4, α = 0.5, ξs1 = 0.1 first mode of vibration.

CONCLUSION
In the present study, the nonlinear vibrations of a beam with

spring-large mass system is investigated. The nonlinearity of the
system stems from mid-plane stretching and cubic spring con-
stant. The nonlinear problem is solved by the method of multiple
scales to obtain an approximate analytical solution. Explicit ex-
pressions for the nonlinear frequency and detuning parameter are
presented. The results are validated via comparisons with those
in the literature. The effect of rotational inertia on the linear fre-
quencies, the nonlinear frequencies, and the detuning parameter
are examined. The numerical simulation reveals that the linear
natural frequencies increase with inceasing rotational inertia .
It is also demonstrated that the nonlinear frequencies increases

FIGURE 4. Nonlinear frequency vs. vibration amplitude: k = γ =

2π4, α = 5, η = 0, ξs1 = 0.1 first mode of vibration.

FIGURE 5. Nonlinear frequency vs. vibration amplitude: k = γ =

2π4, α = 5, η = 0.1, ξs1 = 0.1 first mode of vibration.

as the inertia increases. Moreover, Increasing the inertia allevi-
ates the effect of nonlinearity. Numerical results also indicate
that maximum vibration amplitude increases with increasing to-
tal mass of the spring-mass system increases and decreasing ro-
tational inertia.
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