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Analytical and experimental investigation
of overhead transmission line vibration

O Barry1, JW Zu1 and DCD Oguamanam2

Abstract

The vibration of a single-conductor transmission line with a Stockbridge damper is examined by modeling the system as a

double-beam concept. The equations of motion are derived using Hamilton’s principle, and expressions are presented for

the frequency equation, mode shapes, and orthogonality conditions. The analytical results are validated experimentally.

The effect of the damper characteristics and location on the system natural frequencies is investigated via a parametric

study. The role of the latter with respect to frequency is inconclusive. The present approach enables transmission lines

designers to determine the exact natural frequencies and mode shapes that are required in the study of the vibrational

response of a single conductor with a Stockbridge damper.
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1. Introduction

The vibration of overhead transmission lines is one of
the most crucial factors that contribute to power out-
ages. This is a wind-induced high-frequency low-
amplitude vibration. The frequency of vibration varies
between 3 and 150Hz and causes a peak-to-peak amp-
litude of up to one conductor diameter. Stockbridge
dampers are often employed to eliminate or reduce
this vibration. Their effectiveness is highly dependent
on their overall characteristic, location, and the char-
acteristic of the conductor.

Several authors have studied the vibration of trans-
mission lines. The most common approach is a com-
bination of a numerical and an experimental method
(Claren and Diana, 1969; Dhotard et al., 1978; Nigol
and Houston, 1985; Kraus and Hagedorn, 1991;
Vecchiarelly et al., 2000; Verma and Hagerdorn, 2004;
Chan and Lu, 2007). The single conductor is usually
modeled as an axially loaded Euler–Bernoulli beam
while the Stockbridge damper is represented by a
single concentrated force on the conductor. The force
is expressed in terms of the velocity of the conductor at
the point of attachment of the damper and damper
impedance, which are usually obtained experimentally.

An attempt to depart from the above-mentioned
conventional methods of modeling a single-conductor
transmission line was reported by Barry et al.

(2011, 2013). Both conductor and damper were mod-
eled as one unified system in order to account for their
two-way coupling. The finite element method was used
to determine the system natural frequencies and time
responses. While the efficacy of the finite element model
was demonstrated, the procedure was very complicated
and computationally intensive. Further, the finite elem-
ent method is an approximate technique. The aim of
the present study was to address these shortcomings
by presenting an analytical approach that yielded
exact solutions (in that the equations of motion and
boundary conditions are satisfied exactly) with minimal
complications.

The proposed model was based on double-beam
concepts. The conductor was modeled as an axially
loaded Euler–Bernoulli beam and the Stockbridge
damper was modeled as an Euler–Bernoulli beam
with rigid tip masses. The Stockbridge damper was
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arbitrarily located along the span of the conductor.
Numerous studies on the vibration of double-beam/
string systems abound in the literature (Yamaguchi,
1984; Oguamanam et al., 1998; Oniszczuk, 2000; Vu
et al., 2000; Oniszczuk, 2003; Abu-Hilal, 2006; Foda,
2009; Palmeri and Adhikari, 2011; Foda, 2013).
However, these investigations were either limited to
cases where both beams were continuously connected
by viscous elastic layers or where one of the beams was
attached to the tip of the other.

In spite of this interest, there are no investigations
where the primary beam is axially loaded and/or sup-
porting in-span beam with tip mass. The use of this
concept to analytically model a single-conductor trans-
mission line with a Stockbridge damper was examined
in this study for the first time. The equations of motion
were derived using Hamilton’s principle. The expres-
sions for the characteristic equation, mode shapes,
and orthogonality relations are presented. The analyt-
ical results were experimentally validated. Parametric
studies were then used to examine the effect of the
damper characteristics and location on the system nat-
ural frequencies.

2. Description of the system

A schematic of a single conductor with a Stockbridge
damper is depicted in Figure 1. The conductor is rep-
resented as a pinned–pinned beam to delineate suspen-
sion spans. The Stockbridge damper is attached at a
distance Lc1 and consists of a messenger (or damper
cable), a mass (or counterweight) at each end of the
messenger, and a clamp. This clamp is a rigid massless
link with length h (this is the distance separating the
conductor and the messenger). The messenger is mod-
eled as two cantilevered beams with a tip mass at
each end.

3. Equations of motion

Two reference frames were attached at the ends of the
conductor as shown in Figure 1. A third reference

frame was attached at the point of contact between
the clamp and the messenger. The damper was attached
at a distance Lc1 from the left-hand-side reference
frame; it divided the conductor into two segments.
The transverse displacement of each segment was mea-
sured relative to the appropriate reference frame, and it
is denoted by wciðx, tÞ for i ¼ 1, 2. The messenger was
also divided into two segments and the transverse dis-
placement is denoted by wmiðxm, tÞ. The system kinetic
T and potential V energy can be expressed as
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where m1 ðm2Þ is the tip mass on the right-hand
(left-hand) side; I1 ðI2Þ is the tip rotational inertia
on the right-hand (left-hand) side; Lm1

ðLm2
Þ is the

length of the messenger on the right-hand (left-hand)
side; mc ðmmÞ is the mass per unit length of the con-
ductor (messenger); mm1 ðmm2Þ is the mass of the
messenger on the right-hand (left-hand) side; T
denotes the conductor tension; EcIc ðEmImÞ is the
flexural rigidity of the conductor (messenger); w�c1 is
the transverse displacement of the conductor evalu-
ated at Lc1; w�m1

ðw�m2
Þ is the transverse displacement

of the right-end (left-end) counterweight; and T is
the tension of the conductor. The overdots and

Figure 1. Schematic of a single conductor with a Stockbridge damper.
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primes denote temporal and spatial derivation,
respectively.

The equations of motion, equations (3) and (4), were
obtained by substituting the energy expressions in
Hamilton’s principle and taking the variations of the
field variables (�wc1 , �wc2 , �wm1

, and �wm2
),

mc €wci þ EcIcw
0000

ci � Tw00ci ¼ 0 ð3Þ

mm €w�c1 þ ð�1Þ
ðiþ1Þ €w

0�
c
1
Lmi þ €wmi

� �
þ EmImw

0000
mi ¼ 0

ð4Þ

Note that the subscript ‘i’ 2 ½1, 2� identifies the right-
hand and left-hand segments of both the conductor and
messenger. The continuity conditions of the displace-
ment at the attachment point of the damper to the
conductor, Lc1 , yielded the following equations:

wc1 Lc1 , t
� �

¼ wc2 Lc2 , t
� �

ð5Þ

w0c1 Lc1 , t
� �

¼ �w0c2 Lc2 , t
� �

ð6Þ

From the variation of the conductor displacement,
�wc1 , the obtained shear force boundary condition at
the location of the damper may be written as
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The contributions from the tension vanished because of
equation (6). The bending moment boundary condition
at the attachment of the messenger may be expressed as

X2
i¼1

(
mi ð�1Þ

ðiþ1Þ €w�c1Lmiþwc
0� h2þL2

mi

� �
þð�1Þðiþ1ÞLmi €w�mi

h i

þIi €w0�c1þð�1Þ
ðiþ1Þ €w0�mi

� �
þ €w0�c1h

2mmi

þmm

Z Lmi

0

ð�1Þðiþ1Þxm €wmidxm

þ
1

2
mm ð�1Þ

ðiþ1Þ €w�c1L
2
miþ

2

3
€w0�c

1
L3
mi

� �)

þEcIc w00�c1 �w
00�
c2

� �
¼0 ð8Þ

The last set of boundary conditions for the conductor
was obtained by enforcing no displacement and bend-
ing moment at both ends of each segment:

wcið0, tÞ ¼ 0 ð9Þ

w00cið0, tÞ ¼ 0 ð10Þ

With respect to the messenger, the shear force bound-
ary conditions at each end, Lm1

and Lm2
, can be

expressed as

mi €w�mi þ €w�c1 þ ð�1Þ
ðiþ1ÞLmi €w0�c1

� �
� EmImw

000�
mi ¼ 0 ð11Þ

and the bending moment boundary condition at each
end is
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�
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00�

mi ¼ 0 ð12Þ

The Stockbridge damper behaves as a cantilevered
beam at the junction of the clamp and the messenger
xm ¼ 0. Hence, the displacement and rotation of both
the right- and left-side messengers are zero:

wmið0, tÞ ¼ 0 ð13Þ

w0mið0, tÞ ¼ 0 ð14Þ

4. Frequency equation and
mode shapes

The transverse vibration displacement for each segment
of the conductor and messenger can be expressed as

wciðx, tÞ ¼ YciðxÞe
i!t ð15Þ

wmiðxm, tÞ ¼ YmiðxÞe
i!t ð16Þ

Substituting the above equations (equations (15) and
(16)) into the equations of motion (equations (3)
and (4)) yielded

Y00ci
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Y000mi ��4
mYmi ¼ �4

m Y�c1 þ ð�1Þ
ðiþ1ÞY0�c1xm

� �
ð18Þ

where
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ffiffiffiffiffiffiffiffiffi
T
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r
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The solutions of the above differential equations can be
expressed as

YciðxÞ ¼ A1i sin�xþ A2i cos�xþ A3i sinh �x

þ A4i cosh�x ð19Þ
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�
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By applying boundary conditions at each end of the
conductor, the coefficients A21,A41,A22, and A42 van-
ished and equation (19) reduced to

YciðxÞ ¼ A1i sin �xþ A3i sinh �x ð21Þ

Substituting equation (15) in equations (5) and (6)
yields

Yc1 Lc1

� �
¼ Yc2 Lc2

� �
ð22Þ
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� �
¼ �Y0c2 Lc2

� �
ð23Þ

Equations (15) and (16) were substituted into the
shear forces boundary condition (equation (7))
at x ¼ Lc1 , and after some algebraic manipulation
yielded

!2
X2
i¼1

(
mi Y�c1 þ ð�1Þ

ðiþ1ÞY0
�

c1
Lmi þ Y�mi

� �
þmmiY

�
c1

þmm

Z Lmi

0

Ymi dxm þ ð�1Þ
ðiþ1Þ 1

2
mmY

0�

c1
L2
mi

)

ð24Þ

þEcIc Y000�c
1
þ Y000�c

2

� �
¼ 0 ð25Þ

Similarly, the bending moment boundary condition at
x ¼ Lc1 (i.e. equation (8)) yielded
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For the messenger cable, equations (15) and (16) were
substituted into equations (11) and (12) to obtain the
following:

Y�c1 þ ð�1Þ
ðiþ1ÞLmiYc1

0 þ Y�mi þ �miY
000�

mi ¼ 0 ð27Þ

ð�1Þðiþ1ÞY0�c
1
þ Y0�mi � �miY

00�
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where

�mi ¼
EmIm
mi!2

�mi ¼
EmIm
Ii!2

Equations (13) and (14) naturally reduced to

Ymið0Þ ¼ 0 ð29Þ

Y0mið0Þ ¼ 0 ð30Þ

A set of 12 algebraic homogeneous equations (four are
from the conductor and eight from the messenger) was
obtained by substituting equations (20) and (21) into
equations (22) to (30). These algebraic equations are
linear in the unknown coefficients (As and Bs) and
can be written in matrix format as

½F �12�12 q
� �

12�12
¼ 0f g12�12 ð31Þ

where the elements of the matrix F are listed in the
appendix and

q ¼ ½A11,A31,A12,A32,B11,B21,B31,B41,B12,B22,
B32,B42�

T, with the superscript T denoting transpos-
ition. A nontrivial solution to the equation is possible
when matrix F is singular. Hence, the characteristic or
frequency equation was obtained as

detð½F �12�12Þ ¼ 0 ð32Þ

2828 Journal of Vibration and Control 21(14)



The mode shapes of the conductor were deduced by
using equation (22) while ignoring the hyperbolic func-
tion terms since the tension and the span length in
transmission lines are usually very high. Assuming
that A11 ¼ 1, the conductor mode shapes for each seg-
ment can be expressed as

Yc1ðxÞ ¼ sin�x1 ð33Þ

Yc2 ðxÞ ¼
s1
s2
sin �x2 ð34Þ

The mode shapes of the messenger were derived by
using the shear and moment conditions at each end of
the messenger (equations (27) and (28)), and the dis-
placement and slope at the clamp (equations (29) and
(30)). With reference to equation (20), the coefficients of
the mode shapes of the messenger are
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where the corresponding F i, j are listed in the
appendix and
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5. Orthogonality condition

After some algebraic manipulation the first orthogon-
ality relation can be expressed as

X2
i¼1

mc

Z Lci

0

Y
ðrÞ
ci Y
ðsÞ
ci dxþmm

Z Lmi

0

Y
ðrÞ
miY

ðsÞ
midxm

�

þYðrÞ
�

c1
YðsÞ

�

c1
miþmmLmið ÞþYðrÞ

�0

c1
YðsÞ

�0

c1
mi L

2
miþh

2
� �


þIiþh
2mmLmiþ

1

3
L3
mi

�
þY

ðrÞ�

mi Y
ðsÞ�

mi mmi

þYðrÞ
�0

mi Y
ðsÞ�0

mi Iiþð�1Þ
ðiþ1ÞmiLmi YðrÞ

�0

c1
YðsÞ

�

c1
þYðrÞ

�

c1
YðsÞ

�0

c1

� �
þmmi YðrÞ

�

c1
Y
ðsÞ�

mi þY
ðsÞ�

c1
Y
ðrÞ�

mi

� �
þmm

Z Lmi

0

YðrÞ
�

c1
Y
ðsÞ�

mi

�

þYðsÞ
�

c1
Y
ðrÞ�

mi

�
dxmþð�1Þ

ðiþ1Þ1

2
mmL

2
mi YðrÞ

�

c1
YðsÞ

�0

c1
þYðsÞ

�

c1
YðrÞ

�0

c1

� �
þð�1Þðiþ1ÞmiLmi YðrÞ

�0

c1
Y
ðsÞ�

mi þY
ðsÞ�0

c1
Y
ðrÞ�

mi

� �
þð�1Þðiþ1ÞIi YðrÞ

�0

c1
Y
ðsÞ�0

mi

�
þYðsÞ

�0

c1
YðrÞ

�0

mi

�
þð�1Þðiþ1Þmm

Z Lmi

0

xm YðrÞ
�0

c1
YðsÞmiþY

ðsÞ�0

c1
YðrÞmi

� �
dxm

	
¼ �rs

ð39Þ

where �rs is the Kronecker delta. The second orthogon-
ality relation can be expressed as
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6. Experimental procedure

Two sets of experiments were conducted to validate the
model. The first was performed at a conductor tension
of 27.84 kN and the second, at 34.8 kN. The conductor
was 795 KCMIL (Drake). (This conductor is con-
structed with 26 aluminum strands and seven galva-
nized steel wires as the core.) The material properties
and geometric parameters of the conductor and the
Stockbridge damper are tabulated in Table 1. The sche-
matic of the test set-up is depicted in Figure 2 and a
photograph of the electromagnetic shaker (Bruel &
Kjaer 4802) connected to the conductor is shown in
Figure 3. The conductor was suspended from two
steel-reinforced concrete blocks (towers) with a span
length of 27.25m. Insulator clamps were used to
attach the conductor to the towers through strain
links. This was done in such a way as to replicate
pinned–pinned boundary conditions for the conductor.
A Stockbridge damper was attached to the conductor
at a distance Lc1 .
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The conductor was loaded in tension using a hydrau-
lic ram cylinder. A load cell (Daytronics 3170) was
attached at one end of the conductor to monitor the
tension. The electrodynamic shaker (Bruel & Kjaer
4802) was installed at mid-span to drive the system
according to the signal generated by the vibration con-
troller. This shaker was only applicable to frequencies
greater than 10 Hz. The delivered force and the velocity
from the shaker were measured by a strain-gauge load
cell (Dytran 106V1) and an accelerometer (B & K
4382), respectively.

The conductor was excited at frequencies between 10
and 45Hz in order to determine the resonant frequen-
cies of the conductor–damper system. A dynamic signal
analyzer (PCI-6034E) was used for signal processing
and data acquisition functions. The system natural fre-
quencies were identified from frequency response
curves that were obtained from the signal analyzer.
These natural frequencies are tabulated in Table 2.

7. Numerical simulation

The numerical simulations were based on the material
properties and parameters listed in Table 1. The length
of the conductor is Lc ¼ 27:25 m, with flexural rigid-
ity EcIc ¼ 1602 Nm2, and linear mass density
mc ¼ 1:628 kg=m.

The analytical natural frequencies were determined
by numerically solving for the roots of the frequency
equation (equation (32)) using the bisection method in
MATLAB. The first 20 natural frequencies are dis-
played in Table 2 for the two tensions (27.84 kN and
34.8 kN) employed in the experiments. The Stockbridge
damper was attached at a distance Lc1 ¼ 0:94 m and
Lc1 ¼ 0:88 m for T¼ 27.84 kN and T¼ 34.8 kN,
respectively.

The first six experimental modes are not shown
because the shaker used to excite the conductor was

Figure 2. Schematic of experimental set-up.

Table 1. Damper parameter.

Parameter

h 0.05 m

m1 3.4 kg

m2 1.46 kg

I1 0.0175 kgm2

I2 0.015 kgm2

EmIm 31.8 Nm2

Lm1
0.3 m

Lm2
0.22 m

mm 0.25 kg/m
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only applicable for frequencies higher than 10Hz.
A comparison of the analytical and experimental
data shows very good agreement. Table 2 also
shows the results of the finite element method from

Barry et al. (2011). These are also in good agreement
with experimentally obtained resonant frequencies, but
with a 2% margin of error which is slightly higher than
those of the analytical method.

The discrepancies between the experimental and
analytical results could be partly attributed to the dif-
ficulty in replicating the boundary conditions during
the experiments. However, it suffices to mention that
not only were the analytical results more accurate
than those of the finite element; the analytical proced-
ure was less computationally intensive and had faster
execution time.

Figures 4 and 5 are depictions of the first five mode
shapes of the conductor for T¼ 27.84 kN and
T¼ 34.8 kN, respectively. Similarly, Figures 6 and 7
depict the first five mode shapes of the damper for
T¼ 27.84 kN and T¼ 34.8 kN, respectively. Figures 4
and 5 show that the mode shapes of this system are very
similar to those of a pinned–pinned beam, but the nth
mode of the former corresponds to the ðn� 1Þth mode
of the latter.

With respect to Figures 6 and 7, the first mode of the
Stockbridge damper remained relatively unchanged.
This implies that the system’s first mode had very
little participation from the damper. The remaining
four modes behaved more like a cantilevered beam.

Table 2. Validation of natural frequencies (Hz).

Mode
T¼ 27.84 kN T¼ 34.8 kN

Exp. Anal.

Ref. (Barry et al.,

2011) Exp. Anal.

Ref. (Barry et al.,

2011)

1 – 2.3953 2.3978 – 2.6780 2.6810

2 – 4.4008 4.4157 – 4.5402 4.5482

3 – 4.9556 4.9794 – 5.4390 5.4587

4 – 7.2560 7.2961 – 8.0807 8.1245

5 – 9.3722 9.4257 – 9.6785 9.7360

6 – 9.9441 10.0120 – 10.8620 10.9407

7 12.0956 12.1634 12.2593 13.0749 13.5217 13.6277

8 14.3910 14.5642 14.6818 15.5104 16.1901 16.3273

9 16.5942 16.9498 17.1010 17.5942 18.8053 18.9801

10 19.1878 19.2874 19.4680 20.8396 21.2930 21.4932

11 21.1717 21.5661 21.7955 22.7073 23.6093 23.8500

12 23.6302 23.8280 24.0862 24.5587 25.9045 26.1695

13 25.3417 26.1201 26.4206 27.0885 28.2907 28.6355

14 27.7020 28.3588 28.7044 27.7641 30.5914 30.9642

15 29.3096 30.3524 30.7484 31.4490 32.7797 33.1814

16 31.4913 32.4137 32.8581 34.0577 35.2503 35.8622

17 33.8856 34.8828 35.3717 36.5584 38.0422 38.8023

18 36.6252 37.5991 38.1732 40.0444 41.0131 41.8586

19 39.3756 40.4481 41.0821 42.6807 44.0936 45.0250

20 42.6673 43.3869 44.1125 45.7943 47.2564 48.2937

Figure 3. Photograph of the conductor, shaker, load cell, and

accelerometer.
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In both Figures 6 and 7, the second mode was similar to
the third except that the former deflected upward and
the latter downward. Note that only the right segment
of the messenger (Lm1

) was excited by the second and
third modes. This implies that the second and third
modes of the system must be closer to that of the
right-side segment of the messenger.

In light of the good agreement between the analyt-
ical and experimental results, the model was used to
parametrically investigate the influence of the damper
characteristics and location on the system natural

frequencies. Unless otherwise specified, the set of
material properties are as tabulated in Table 1 and
the damper was attached at a distance Lc1 ¼ 0:94 m.
The conductor tension T¼ 27.84 kN was employed in
the remainder of the numerical analyses.

At the first stage of the parametric studies, the effect
of the damper counterweights on the natural frequency
was examined. The mass of each counterweight was
varied from 0.5 kg to 4.5 kg. The results are tabulated
in Table 3. As expected, the natural frequencies gener-
ally increased with decreasing total mass. However, the

Figure 4. Conductor mode shapes for T¼ 27.84 kN.

Figure 5. Conductor mode shapes for T¼ 34.8 kN.
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fundamental frequency was unchanged, which indicates
that the mass of the counterweights had minimal or no
effect on the first mode.

The length of the messenger on either side was varied
from 0.1 to 2m in order to examine the role of the
messenger on the system natural frequencies. The
obtained frequencies are tabulated in Table 4. It was
observed that the natural frequencies generally
decreased with increasing total length of the messenger
as expected. This decrease in the natural frequency was
significant even for the fundamental mode.

The system natural frequencies for varying messen-
ger flexural rigidity are tabulated in Table 5. The results
showed that the system natural frequencies generally
increased with increasing flexural rigidity of the mes-
senger. The role of the distance separating the con-
ductor and the messenger (i.e. length of the rigid link,
h) was inferred from the results tabulated in Table 6.
It was observed that the natural frequencies decreased
with increasing rigid link length. This decrease in
the natural frequencies was less significant for the fun-
damental mode. Hence, the first mode was again

Figure 7. Messenger mode shapes for T¼ 34.8 kN.

Figure 6. Messenger mode shapes for T¼ 27.84 kN.
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Table 3. Effect of counterweight masses on natural

frequencies (Hz).

m2 (kg) Mode

m1 (kg)

0.5 1.5 2.5 3.5 4.5

0.5 1 2.40020 2.39890 2.39730 2.39550 2.3932

2 4.79960 4.77770 4.69650 4.36200 3.9500

3 7.1849 6.3439 5.2991 4.9421 4.8820

4 9.0107 7.3384 7.2819 7.2706 7.2658

5 9.7874 9.6910 9.6842 9.6817 9.6804

1.5 1 2.3998 2.3985 2.3969 2.3950 2.3927

2 4.7955 4.7730 4.6905 4.3573 3.9473

3 7.1608 6.3327 5.2977 4.9415 4.8803

4 8.9226 7.3285 7.2665 7.2540 7.2487

5 9.4923 9.3299 9.3221 9.3194 9.3180

2.5 1 2.3994 2.3981 2.3965 2.3946 2.3923

2 4.7900 4.7667 4.6823 4.3512 3.9440

3 7.0752 6.3089 5.2958 4.9406 4.8778

4 7.9269 7.2867 7.2046 7.1883 7.1814

5 9.0748 7.9465 7.9421 7.9410 7.9405

3.5 1 2.3989 2.3976 2.3960 2.3941 2.3917

2 4.7818 4.7574 4.6708 4.3432 3.9399

3 6.6605 6.2365 5.2925 4.9394 4.8742

4 7.3770 7.4215 6.7693 6.7496 6.7420

5 9.0535 9.7449 7.4037 7.4005 7.3991

4.5 1 2.3984 2.3971 2.3955 2.3936 2.3912

2 4.7688 4.7428 4.6534 4.3323 3.9347

3 6.0751 5.9722 5.2862 4.9374 4.8684

4 7.2875 6.5338 6.1599 6.1329 6.1247

5 9.0472 7.3791 7.3444 7.3377 7.3348

Table 5. Effect of the messenger flexural rigidity on natural

frequencies (Hz).

Mode
EmIm ðN=m

2Þ

0.1 1.0 10.0 100.0 1000.0

1 0.2879 0.8401 2.3789 2.3960 2.3964

2 0.5584 1.7632 2.6331 4.7469 4.7648

3 1.4704 2.4011 4.8047 6.6457 7.0474

4 2.1441 4.5985 5.5119 7.7690 9.1409

5 2.4025 4.8340 7.2300 9.8956 11.1076

6 4.8084 6.6791 9.6239 12.2451 13.2615

7 7.2255 7.2749 11.9507 14.4064 15.6416

8 9.6584 9.6814 13.7546 15.7283 18.1520

9 12.1122 12.1347 15.0584 17.5826 20.7434

10 14.5919 14.6161 17.1461 19.9560 23.3944

11 17.1023 17.1291 19.1027 22.4036 26.0685

12 19.6471 19.6788 20.7019 24.8682 27.9504

13 22.2253 22.2699 22.8631 27.3596 29.1293

14 24.6928 24.9075 25.3697 29.9151 31.8609

15 25.2733 27.5963 28.0008 32.5680 34.7620

16 27.6107 30.3412 30.7104 35.3305 37.7451

17 30.3395 33.1465 33.4880 38.1991 40.8034

18 33.1390 36.0166 36.3326 41.1655 43.9358

19 36.0042 38.9553 39.2457 44.2177 47.1413

20 38.9355 41.9662 42.2303 47.3172 50.4171

Table 4. Effect of the messenger length on natural

frequencies (Hz).

Lm2
ðmÞ Mode

Lm1
ðmÞ

0.1 0.5 1.0 1.5 2.0

0.1 1 2.3974 2.2127 0.8142 0.4441 0.2879

2 4.7748 2.4302 2.4014 2.4006 2.4003

3 7.0904 4.8114 4.8021 4.8000 4.7963

4 9.2496 7.2121 7.2000 7.1905 5.9484

5 11.2051 9.6054 9.5864 8.7283 7.2106

0.5 1 2.3978 2.2131 0.8142 0.4441 0.2879

2 3.3700 2.4303 2.4017 2.4010 2.4006

3 4.7838 3.3705 3.3705 3.3705 3.3705

4 7.1251 4.8181 4.8093 4.8073 4.8037

5 9.3573 7.2330 7.2220 7.2132 5.9493

(continued)

Table 4. Continued

Lm2
ðmÞ Mode

Lm1
ðmÞ

0.1 0.5 1.0 1.5 2.0

1 1 1.2277 1.2277 0.8142 0.4441 0.2879

2 2.3982 2.2132 1.2278 1.2277 1.2277

3 4.7821 2.4305 2.4021 2.4014 2.4010

4 7.1236 4.8170 4.8080 4.8060 4.8025

5 9.3550 7.2323 7.2212 7.2124 5.9494

1.5 1 0.6669 0.6669 0.6669 0.4441 0.2879

2 2.3982 2.2133 0.8142 0.6669 0.6669

3 4.7821 2.4305 2.4022 2.4014 2.4010

4 7.1225 4.8169 4.8080 4.8060 4.8025

5 9.1100 7.2316 7.2206 7.2118 5.9494

2 1 0.4303 0.4303 0.4303 0.4302 0.2879

2 2.3982 2.2133 0.8142 0.4441 0.4303

3 4.7819 2.4305 2.4022 2.4014 2.4010

4 6.1271 4.8168 4.8079 4.8059 4.8023

5 7.1264 6.1282 6.1282 6.1282 5.9493

2834 Journal of Vibration and Control 21(14)



dominated by the conductor characteristics. Table 7
shows the influence of the location of the Stockbridge
damper on the system natural frequencies. The location
of the damper affected all five modes, but with no obvi-
ous trend.

8. Conclusions

A double-beam-concept-based analytical model was
presented for the free vibration analysis of a single con-
ductor transmission line with a Stockbridge damper for
the first time. The first or main beam was subjected to
an axial load and had pinned–pinned boundary condi-
tions in order to simulate single conductor transmission
lines on suspension-spans. The Stockbridge damper
was modeled by an in-span beam with tip mass at
each end. The model was validated experimentally.
Expressions were presented for the frequency equation,
mode shapes, and orthogonality relations. Experiments
were conducted to validate the proposed model and the
results showed very good agreement.

Parametric investigations indicated that the mass of
the counterweights, length of the rigid link, length of
the messenger, and flexural rigidity had more effect on
the higher modes. The first mode was dominated by the
conductor characteristics. The role of the location of
the Stockbridge damper with respect to the system nat-
ural frequencies was inconclusive.
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Appendix

For the sake of simplicity, the following notation is used:

si ¼ sin �Lci , shi ¼ sinh�Lci

ci ¼ cos�Lci , chi ¼ cosh�Lci

s�i ¼ sin�mLmi
, sh�i ¼ sinh�mLmi

c�i ¼ cos�mLmi
, ch�i ¼ sinh�mLmi

Matrix ½F i, j� comprises 144 elements in which 80 are zero entries and the remaining 64 elements are given as

F 1, 1 ¼ s1, F 1, 2 ¼ sh1, F 1, 3 ¼ �s2, F 1, 1 ¼ �sh2

F 2, 1 ¼ �c1, F 2, 2 ¼ �ch1, F 2, 3 ¼ �c2, F 2, 4 ¼ �ch2

F 3, 1 ¼ �c1h
2 m1 þm2 þmm1

þmm2

� �
þ
�2

!2
EcIcs1

F 3, 2 ¼ �ch1h
2 m1 þm2 þmm1

þmm2

� �
�
�2

!2
EcIcsh1
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F 3, 3 ¼ �
�2

!2
s2EcIc, F 3, 4 ¼

�2

!2
sh2EcIc

F 3, 5 ¼ m1Lm1
s�1 þ�mc�1I1 þmm �

Lm1
c�1

�m
þ

1

�2
m

s�1

� �

F 3, 6 ¼ m1Lm1
c�1 ��ms�1I1 þmm

Lm1
s�1

�m
þ

1

�2
m

ðc�1 � 1Þ

� �

F 3, 7 ¼ m1Lm1
sh�1 þ�mch�1I1 þmm

Lm1
ch�1

�m
�

1

�2
m

sh�1

� �

F 3, 8 ¼ m1Lm1
ch�1 þ�msh�1I1 þmm

Lm1
sh�1

�m
�

1

�2
m

ðch�1 � 1Þ

� �

F 3, 9 ¼ �m2Lm2
s�2 ��mc�2I2 �mm �

Lm2
c�2

�m
þ

1

�2
m

s�2

� �

F 3, 10 ¼ �m2Lm2
c�2 þ�ms�2I2 �mm

Lm2
s�2

�m
þ

1

�2
m

ðc�2 � 1Þ

� �

F 3, 11 ¼ �m2Lm2
sh�2 ��mch�2I2 �mm

Lm2
ch�2

�m
�

1

�2
m

sh�2

� �

F 3, 12 ¼ �m2Lm2
ch�2 ��msh�2I2 �mm

Lm2
sh�2

�m
�

1

�2
m

ðch�2 � 1Þ

� �

F 4, 1 ¼
��3

!2
c1EcIc, F 4, 2 ¼

�3

!2
ch1EcIc

F 4, 3 ¼
��3

!2
c2EcIc, F 4, 4 ¼

�3

!2
ch2EcIc

F 4, 5 ¼ m1s�1 �
mm

�m
ðc�1 � 1Þ, F 4, 6 ¼ m1c�1 þ

mm

�m
s�1

F 4, 7 ¼ m1sh�1 þ
mm

�m
ðch�1 � 1Þ, F 4, 8 ¼ m1ch�1 þ

mm

�m
sh�1

F 4, 9 ¼ m2s�2 �
mm

�m
ðc�2 � 1Þ, F 4, 10 ¼ m2c�2 þ

mm

�m
s�2

F 4, 11 ¼ m2sh�2 þ
mm

�m
ðch�2 � 1Þ, F 4, 12 ¼ m2ch�2 þ

mm

�m
sh�2

F 5, 5 ¼ s�1 � �m1
�3

mc�1, F 5, 6 ¼ c�1 þ �m1
�3

ms�1

F 5, 7 ¼ sh�1 þ �m1
�3

mch�1, F 5, 8 ¼ ch�1 þ �m1
�3

msh�1

F 6, 9 ¼ s�2 � �m2
�3

mc�2, F 6, 10 ¼ c�2 þ �m2
�3

ms�2

F 6, 11 ¼ sh�2 þ �m2
�3

mch�2, F 6, 12 ¼ ch�2 þ �m2
�3

msh�2

F 7, 5 ¼ c�1 þ �m1
�ms�1, F 7, 6 ¼ �s�1 þ �m1

�mc�1

F 7, 7 ¼ ch�1 � �m1
�msh�1, F 7, 8 ¼ sh�1 � �m1

�mch�1

F 8, 9 ¼ c�2 þ �m2
�ms�2, F 8, 10 ¼ �s�2 þ �m2

�mc�2

F 8, 11 ¼ ch�2 � �m2
�msh�2, F 8, 12 ¼ sh�2 � �m2

�mch�2

F 9, 1 ¼ F 10, 1 ¼ �s1, F 9, 2 ¼ F 10, 2 ¼ �sh1

F 9, 6 ¼ F 9, 8 ¼ F 10, 10 ¼ F 10, 12 ¼ 1

F 11, 1 ¼
��c1
�m

, F 11, 2 ¼
��ch1

�m

F 12, 1 ¼ �F 11, 1, F 12, 2 ¼ �F 11, 2
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