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ABSTRACT 

       Nonlinear free undamped vibrations are investigated for 
ultra-precision manufacturing (UPM) machines with quadratic 
stiffness. The modes of the system are linearly coupled. The non-
resonant case and the bounded internal resonance case are 
considered. The results of the non-resonant case indicate that the 
behavior of the system is the same as the linear behavior. 
However, for the internal resonance case, the results show that 
the amplitudes are coupled. The results also indicate that the 
nonlinear frequencies and amplitudes depend not only on the 
initial conditions, but also on the location of the isolators with 
respect to the center of gravity of the UPM. 
INTRODUCTION 

Micro and Nano products have received considerable 
attention by numerous researchers in the last few years. These 
products can be fabricated by Ultra-precision manufacturing 
(UPM) machines [1]. Since the tolerance and accuracy of these 
products are of high importance, the machines must be properly 
isolated from exogenous vibrations [2], [3]. 

 Passive isolators are often used in order to reduce the 
vibration transmitted to the UPM machines because of their cost 
effectiveness and reliability [2], [3]. Decoupled vibration modes 
of the isolated machine can be achieved by aligning the isolator 
mounting location with the center of gravity (C.G) [4]. This 
decoupling prevents transmitting the vertical vibration to the 
horizontal axes of machine [3], [5]. It also eliminates the 
occurrence of two or more resonance peaks in the 
transmissibility response of machine [6]. However, aligning the 
C.G exactly with isolators is very difficult, so vibration modes 
are coupled in many UPM machine designs [3]. Furthermore, 
reduction of residual vibrations which resulted from soft isolator 
mounts can be achieved by coupling the vibration modes [7]. 

 Udwadia [8] postulated that mode coupling changes the 
natural frequencies of the system and damping behavior. 
Chinedum [9] introduced a mathematical model to represent 
mode coupling in UPM machines. He showed that residual 
vibrations and transmissibility can be reduced by selecting the 
proper isolator, motor, and work surface heights. He further 
demonstrated that coupling vibrations mode provides optimal 

conditions for vibrations reduction [10]. However, the vibration 
modes of multi degree of freedom system can also be coupled in 
nonlinear system due to the nonlinear stiffness. Weakly nonlinear 
systems can be solved by approximating the solution using 
perturbation methods [11], [12]. 
 The linear vibrations of UPM machines with mode coupling 
due to misalignment between isolators and C.G have been 
reported in previous literatures. However, no work has been 
reported on the nonlinear coupled system of UPM machines. 
This is the focus of the present paper. The coupled nonlinear 
equations of motion of the isolated machine are presented and 
the solutions are obtained using the multiple scale method. The 
effect of changing the misalignment on the vibration amplitude 
and nonlinear frequency is also studied. 
MATHEMATICAL MODEL 

Fig. 1. Simple model of isolated machine with quadratic nonlinearity. 

Fig. 1 illustrates a schematic diagram of an isolated UPM 
machine modeled in y-z plane. This machine has a mass m and a 
centroidal moment of inertia I. The isolators are assumed to have 
both linear and quadratic nonlinear stiffness. ky, kz and qy, qz are 
the combined linear stiffness and the nonlinear stiffness in the y 
and z directions, respectively. The isolator mounting is located 
vertically at h and horizontally at b from the center of gravity. 
The two coordinate y and θx are coupled through h. The dynamic 
in the z-direction is ignored, since the goal of this study is 
studying the effect h on the coupling in the isolated system. 
Moreover, the more sensitive axis in UPM is the horizontal axis. 

 In order to obtain the natural frequencies of the coupled 
system and study the effect of changing h on them, the damping 
and inertia forces are neglected. Based on that, the equation of 
motion for this free undamped system is 

𝑀�̈� + 𝐾𝑢 + 𝑄𝑢1 = 0 (1) 
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where M, K, Q, u, u1 are the mass matrix, the linear stiffness 
matrix, the nonlinear stiffness vector, the linear displacement 
vector, and the nonlinear displacement vector, respectively. these 
elements are defined as: 

 
𝑀 = [

𝑚 0
0 𝐼

] ; 𝐾 = [
𝑘𝑦 −𝑘𝑦ℎ

−𝑘𝑦ℎ 𝑘𝜃 + 𝑘𝑦ℎ
2] ; 

𝑄 = [
𝑞𝑦 −𝑞𝑦ℎ

2

−𝑞𝑦ℎ 𝑞𝜃 + 𝑞𝑦ℎ
3] ; 𝑢 = [

𝑦
𝜃𝑥
] ;  𝑢1 = [

𝑦2

𝜃𝑥
2] 

(2) 

where  
 𝑘𝜃 = 𝑏

2𝑘𝑧;  𝑞𝜃 = 𝑏
3𝑞𝑧 (3) 

A. Perturbation Analysis 
An approximation to the solution of Eq (1) can be obtained by 

using perturbation methods (method of multiple scales). we 
assume the expansion for the displacement in the form 

 𝑦 = 𝜖𝑦1(𝑇0, 𝑇1) + 𝜖
2𝑦2(𝑇0, 𝑇1) + ⋯ (4) 

 𝜃𝑥 = 𝜖𝜃1(𝑇0, 𝑇1) + 𝜖
2𝜃2(𝑇0, 𝑇1) + ⋯ (5) 

where ϵ is a bookkeeping parameter. T0 and T1 are fast time scale, 
and slow time scale, respectively. They are defined as 

 𝑇0 = 𝑡 ;  𝑇1 = 𝜖𝑡 (6) 
The second derivative of time in terms of Tn is 

 (∙∙) = 𝐷0
2 + 2𝜖𝐷0𝐷1 (7) 

 where 𝐷𝑛 =
𝜕

𝜕𝑇𝑛
.  

By substituting Eqs. (4) - (7) into Eq (1) and equating the 
coefficient of like powers yields   
Order ϵ: 

 𝑚𝐷0
2𝑦1 + 𝑘𝑦𝑦1 − 𝑘𝑦ℎ𝜃1 = 0 (8) 

 𝐼𝐷0
2𝜃1 − 𝑘𝑦ℎ𝑦1 + (𝑘𝜃 + 𝑘𝑦ℎ

2)𝜃1 = 0 (9) 
Order ϵ2: 

 𝑚𝐷0
2𝑦2 + 𝑘𝑦𝑦2 − 𝑘𝑦ℎ𝜃2

= −2𝐷0𝐷1𝑚𝑦1 − 𝑞𝑦𝑦1
2

+ 𝑞𝑦ℎ
2𝜃1
2 

(10) 

 𝐼𝐷0
2𝜃2 − 𝑘𝑦ℎ𝑦2 + (𝑘𝜃 + 𝑘𝑦ℎ

2)𝜃2
= −2𝐷0𝐷1𝐼𝜃1 + 𝑞𝑦ℎ𝑦1

2 − (𝑞𝜃
+ 𝑞𝑦ℎ

3)𝜃1
2 

(11) 

Since the problem at order ϵ is linear, the solution of 
Eqs (8) – (9) can be given as 

 𝑦1(𝑇0, 𝑇1) = 𝛬1𝐴1(𝑇1)𝑒
𝑗𝜔1𝑇0 + 𝛬2𝐴2(𝑇1)𝑒

𝑗𝜔2𝑇0

+ 𝑐𝑐 
(12) 

 𝜃1(𝑇0, 𝑇1) = 𝐴1(𝑇1)𝑒
𝑗𝜔1𝑇0 + 𝐴2(𝑇1)𝑒

𝑗𝜔2𝑇0 + 𝑐𝑐 (13) 
where cc represents the complex conjugate of the preceding 
terms. Substituting Eqs (12) – (13) into Eqs (8) – (9), yields 

 
𝜔1 = √

𝐴 − 𝐵

2𝑚𝐼
; 𝜔2 = √

𝐴 + 𝐵

2𝑚𝐼
 

(14) 

 
𝛬𝑖 = ℎ +

𝑘𝜃 − 𝜔𝑖
2𝐼

𝑘𝑦ℎ
 

(15) 

where  
 𝐴 = 𝑚𝑘𝜃 +𝑚𝑘𝑦ℎ

2 + 𝑘𝑦𝐼; 

𝐵 = √𝐴2 − 4𝑚𝐼𝑘𝑦𝑘𝜃 

(16) 

Substituting Eqs (12) – (13) into order ϵ2 nonlinear equations 
(Eqs (10) – (11)) gives 

 𝑚𝐷0
2𝑦2 + 𝑘𝑦𝑦2 − 𝑘𝑦ℎ𝜃2

= −2𝑗𝑚Λ1𝐴1
′𝜔1𝑒

𝑗𝜔1𝑇0

− 2𝑗𝑚Λ2𝐴2
′𝜔2𝑒

𝑗𝜔2𝑇0

+ (ℎ2 − Λ1
2)𝐴1

2𝑞𝑦𝑒
2𝑗𝜔1𝑇0

+ (ℎ2 − Λ2
2)𝐴2

2𝑞𝑦𝑒
2𝑗𝜔2𝑇0

+ 2(ℎ2 − Λ1Λ2)𝐴1𝐴2𝑞𝑦𝑒
𝑗(𝜔1+𝜔2)𝑇0

+ 2(ℎ2 − Λ1Λ2)�̅�1𝐴2𝑞𝑦𝑒
𝑗(𝜔2−𝜔1)𝑇0

− 2𝑞𝑦𝐴1�̅�1Λ1
2 − 2𝑞𝑦𝐴2�̅�2Λ2

2 + 2𝑞𝑦ℎ
2𝐴1�̅�1

+ 2𝑞𝑦ℎ
2𝐴2�̅�2 

(17) 

  
 

 𝐼𝐷0
2𝜃2 − 𝑘𝑦ℎ𝑦2 + (𝑘𝜃 + 𝑘𝑦ℎ

2)𝜃2 

= −2𝑗𝐼𝐴1
′𝜔1𝑒

𝑗𝜔1𝑇0 − 2𝑗𝐼𝐴2
′𝜔2𝑒

𝑗𝜔2𝑇0 

+(𝑞𝑦ℎ𝛬1
2 − 𝑞𝜃 − 𝑞𝑦ℎ

3)𝐴1
2𝑒2𝑗𝜔1𝑇0 

+(𝑞𝑦ℎ𝛬2
2 − 𝑞𝜃 − 𝑞𝑦ℎ

3)𝐴2
2𝑒2𝑗𝜔2𝑇0  

+2(𝑞𝑦ℎ𝛬1𝛬2 − 𝑞𝜃
− 𝑞𝑦ℎ

3)𝐴1𝐴2𝑒
𝑗(𝜔1+𝜔2)𝑇0  

+2(𝑞𝑦ℎ𝛬1𝛬2 − 𝑞𝜃
− 𝑞𝑦ℎ

3)�̅�1𝐴2𝑒
𝑗(𝜔2−𝜔1)𝑇0  

+2(𝑞𝑦ℎ𝛬1
2 − 𝑞𝜃 − 𝑞𝑦ℎ

3)𝐴1�̅�1 

+2(𝑞𝑦ℎ𝛬2
2 − 𝑞𝜃 − 𝑞𝑦ℎ

3)𝐴2�̅�2 
 

(18) 

A. Non-Resonant Case 
In this case the natural frequencies are not commensurable. 

Based on that, the solvability conditions in Eqs (17) – (18) yield  
 

𝐴𝑛
′ = 0 

𝑦𝑖𝑒𝑙𝑑𝑠
→    𝐴𝑛 = 𝑎𝑛𝑒

𝑗𝛽𝑛 (19) 
 where an and βn are real constants and the nonlinear frequency 
equals the linear one. 

B. The Resonant Case (Internal Resonance) 
In this case we assume that the natural frequencies are 

commensurable or near commensurable (ω2≈2ω1). The detuning 
parameter σ can be introduced according to 

 𝜔2 = 2𝜔1 + 𝜖𝜎 (20) 
    In order to introduce the solvability conditions for Eqs (17) - 
(18), the solution of y2 and θ2 should be introduced as [11], [12] 

 𝑦2 = 𝑃11𝑒
𝑗𝜔1𝑇0 + 𝑃12𝑒

𝑗𝜔2𝑇0  (21) 
 𝜃2 = 𝑃21𝑒

𝑗𝜔1𝑇0 + 𝑃22𝑒
𝑗𝜔2𝑇0 (22) 

Substituting Eqs (21) - (22) into Eqs (17) – (18), equating the 
coefficient of 𝑒𝑗𝜔1𝑇0 and 𝑒𝑗𝜔2𝑇0 on both sides, and equating the 
determinant of the coefficient matrix to zero, the solvability 
conditions can be obtained as 

 𝑅2𝑛 = −𝛬𝑛𝑅1𝑛 (23) 
where 

 𝑅11 = −2𝑗𝑚𝛬1𝐴1
′𝜔1
+ 2(ℎ2 − 𝛬1𝛬2)�̅�1𝐴2𝑞𝑦𝑒

𝑗𝜎𝑇1 
(24) 

  𝑅21 = −2𝑗𝐼𝛬1𝐴1
′𝜔1
+ 2(𝑞𝑦ℎ𝛬1𝛬2 − 𝑞𝜃
− 𝑞𝑦ℎ

3)�̅�1𝐴2𝑒
𝑗𝜎𝑇1  

(25) 

 𝑅12 = −2𝑗𝑚𝐴2
′𝜔2 + (ℎ

2 − 𝛬1
2)𝐴1

2𝑞𝑦𝑒
−𝑗𝜎𝑇1 (26) 

 𝑅22 = −2𝑗𝐼𝐴2
′𝜔2 + 2(𝑞𝑦ℎ𝛬1𝛬2 − 𝑞𝜃

− 𝑞𝑦ℎ
3)�̅�1𝐴2𝑒

−𝑗𝜎𝑇1 
(27) 
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Introducing 𝐴𝑛 = 𝑎𝑛𝑒𝑗𝛽𝑛  with real an and βn in Eqs (23) - (27), 
and separating the real and imaginary parts lead to 

 𝛽1
′ = −

𝑎2
2
𝛤1 𝑐𝑜𝑠 𝛾 (28) 

 𝑎1
′ =

𝑎1𝑎1
2
𝛤1𝑠𝑖𝑛𝛾 (29) 

 
𝑎2𝛽2

′ = −
𝑎1
2

4
𝛤2 𝑐𝑜𝑠 𝛾 

(30) 

 
𝑎2
′ = −

𝑎1
2

4
𝛤2𝑠𝑖𝑛𝛾 

(31) 

where 
 𝛾 = 𝛽2 − 2𝛽1 + 𝜎𝑇1 (32) 
  

𝛤1 =
𝑞𝑦(ℎ

2𝛬1 + ℎ𝛬1𝛬2 − 𝛬1
2𝛬2 − ℎ

3) − 𝑞𝜃

𝐼𝜔1 +𝑚𝛬1
2𝜔1

 
(33) 

 
𝛤2 =

𝑞𝑦(ℎ
2𝛬2 + ℎ𝛬1

2 − 𝛬1
2𝛬2 − ℎ

3) − 𝑞𝜃

𝐼𝜔2 +𝑚𝛬2
2𝜔2

 
(34) 

Dividing Eq(29) by Eq(31) yields to 
 𝑎1

′𝑎1 + 𝜐𝑎2
′ 𝑎2 = 0 (35) 

where 
 

𝜐 =
2𝛤1
𝛤2

 
(36) 

 
Integrating Eq(35) leads to 

 𝑎1
2 + 𝜐𝑎2

2 = 𝐸 (37) 
where E is the constant of integration. The results is Eq(36) 
indicate that the solution is bounded when v is positive, or in 
other words when both Γ1Γ2 have the same sign. In this study, we 
are going to study only the bounded case. Deriving Eq(32) with 
respect to T1, changing the independent variable T1 to a2 by using 
Eqs(28),(30)&(31), and integrating the result, we  obtain  

 a1
2a2 cos γ − 2σa2

2 = L (38) 
where L is the constant of integration. If we let  

 a1
2 = Eξ (39) 

a2 becomes 
 

𝑎2
2 =

𝐸(1 − 𝜉)

𝜐
 

(40) 

By substituting Eqs (38) - (40) into Eq (29), the following 
equation is obtained 

 𝑣

𝐸
(
𝑑𝜉

𝑑𝑇1
)2 = 𝐹2(𝜉) − 𝐺2(𝜉) 

(41) 

where 
 𝐹(𝜉) = ±𝜉√1 − 𝜉 (42) 
 

𝐺(𝜉) = ±√
𝜐

𝐸3
[𝐿 + 2𝜎𝐸(1 − 𝜉)] 

(43) 

In this study, the curve G is assumed to meet F at three distinct 
points, such that 𝜉1 ≤ 𝜉2 ≤ 𝜉3. In this case ξ is periodic, but the 
motion is not. Based on that, the solution of ξ can be defined in 
terms of Jacobi elliptic functions. Eq(41) can be rewritten as 

 𝑣

𝐸
(
𝑑𝜉

𝑑𝑇1
)2 = (𝜉3 − 𝜉)(𝜉 − 𝜉2)(𝜉 − 𝜉1) 

(44) 

By introducing the following transformation,  
 𝜉3 − 𝜉 = (𝜉3 − 𝜉2)𝑠𝑖𝑛

2𝜒 (45) 
and integrating Eq(44) after applying this transformation, we 
obtain 

 𝜉 = 𝜉3 − (𝜉3 − 𝜉2)𝑠𝑛
2[𝜅(𝑡 − 𝑡0); 𝜂] (46) 

where sn is Jacobi elliptic function, t0 refers to χ=0, and κ,η are 
 

𝜅 = 𝜖√
𝐸(𝜉3 − 𝜉1)

𝜐
 

(47) 

 
𝜂 = √

𝜉3 − 𝜉2
𝜉3 − 𝜉1

 
(48) 

Using Eqs (39) - (40) a1 and a2 become 
  𝑎1 = √𝐸(𝜉3 − (𝜉3 − 𝜉2)𝑠𝑛

2[𝜅(𝑡 − 𝑡0); 𝜂]) 
 

(49) 
 
𝑎2 = √

𝐸

𝜐
(1 − (𝜉3 − (𝜉3 − 𝜉2)𝑠𝑛

2[𝜅(𝑡 − 𝑡0); 𝜂])) 
(50) 

The nonlinear frequency (ωnl=ω+β) for this system are 
obtained as 

 𝜔𝑛𝑙1 = 𝜔1 −
𝑎2
2
𝛤1 (51) 

 
𝜔𝑛𝑙2 = 𝜔2 −

𝑎1
2

4𝑎2
𝛤2 

(52) 

 
It is obvious from Eqs(49) - (52) that the nonlinear frequencies 

are not constant and vary with time, therefore, the motion is 
aperiodic when the modes are coupled due to internal resonance. 

II. NUMERICAL RESULTS 
The numerical simulation is carried out using the values from 

[8] listed in Table I.  
TABLE I 

 Key parameters of UPM machine 

Parameter value 
m (kg) 1182 

Ix (kg.m2) 96 
ky (KN/m) 880 
kz (KN/m) 1,200 
qy (KN/m2) 100 
qz (KN/m2) 400 

by (mm) 295 
Fig. 2 shows the effect of changing the isolators position on v. 

it is observed that v has positive values for h= -0.2 – 0 m, and 
negative values for h= 0 – 0.2 m. since our solution is only valid 
for the positive values of v, our study is focused on the negative 
range of h. The peak at zero represents discontinuous point 
because there is no coupling between the modes. 
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Fig. 2 The effect of changing h on v. 

Fig. 3 depicts the relation between h and the value of detuning 
parameter. The results show that the detuning parameter 
increases with increasing absolute value of h, and the zero 
mistuning occurs when h=-0.213 m. 

 
Fig. 3 The effect of h on detuning parameter σ. 

Figs. 4&5 illustrate the modal amplitudes a1 and a2 with time 
for two different initial conditions. The results indicate that the 
solution of quadratic nonlinear equation depends on the initial 
conditions. It is observed that the amplitude of the second mode 
has been significantly affected by the nonlinearity with time, 
when the initial condition of this mode is zero. Furthermore, the 
modal amplitudes depend on the value of h, too, as shown in 
Figs. 6&7. The results in Fig.6 indicate that the mode amplitude 
a1 increases with increasing absolute value of h. The opposite is 
observed in Fig.7 for the second mode amplitude a2. 

 
Fig. 4. Free oscillation amplitudes a1(0) =1, a2(0) =0. 

 
Fig. 5 Free oscillation amplitudes a1(0) =1, a2(0) =1. 

 
Fig. 6 The effect of changing h on a1, a1(0) =1, a2(0) =0. 
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Fig. 7 The effect of changing h on a2, a1(0) =1, a2(0) =0. 

Figs. 8&9 depict the changing of nonlinear frequencies with 
time. The results show that the behavior of nonlinear frequency 
depends on the value of initials condition of each mode. 
Moreover, it is observed that the modal amplitude fluctuates 
more when the initial condition of second mode is zero, 
comparing to the linear frequencies. Furthermore, the nonlinear 
frequency depends also on the value of h as shown in Fig.10. It 
is also observed that the nonlinear frequencies of two modes 
come closest to each other as the misaligning decreases. This 
result corroborate those obtained for the linear frequencies in [7], 
[9].  

 
Fig. 8. The effect of nonlinearity on frequency, a1(0) =1, a2(0) =0. 

 
Fig. 9 The effect of nonlinearity on frequency, a1(0) =1, a2(0) =1. 

 
Fig. 10 The effect of h on nonlinear frequency, a1(0) =1, a2(0) =0. 

CONCLUSION 

In this paper, the nonlinear vibration of free undamped ultra-
precision manufacturing machine (UPM) has been investigated 
analytically. The passive isolator is assumed to have a 
combination between linear and quadratic nonlinear stiffness. 
The modes are coupled linearly due to altering the location of 
isolators with respect to the center of gravity of the UPM. They 
are also coupled linearly due to the nonlinear resonance 
(ω2≈2ω1). The closed form solution for the bounded case (v >0) 
is obtained by using the method of multiple scales, and the final 
solution is presented in terms of Jacobi elliptic functions. The 
non-resonant case shows that there is no nonlinear coupling, and 
the amplitudes are constant. On the other hand, the internal 
resonance case shows a nonlinear coupling between the 
amplitudes. The results of the numerical analysis demonstrate 
that both the amplitudes and frequencies depend on the initial 
conditions and the distance between isolator and center of 
gravity. Moreover, the results indicate that increasing the isolator 
support height h increases the value of a2 and reduces a1.  

5 Copyright © 2017 ASME

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 07/29/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



 

REFERENCES 
 

[1] L. Alting, F. Kimura, H. Hansen, and G. Bissacco, “Micro engineering,” 
 Annals of the CIRP, vol. 52, 2003, pp. 635-657. 

[2] D. DeBra, “Vibration isolation of precision machine tools and 
instruments,” Annals of the CIRP, vol. 41, 1992, pp. 711-718. 

[3] E. Rivin, “Vibration Isolation of Precision Equipment,” Precision 
Engineering, vol. 17, 1995, pp. 41-56. 

[4] P. Subrahmanyan, and D. Trumper, “Synthesis of passive vibration 
isolation mounts for machine tools a control systems paradigm,” In 
American Control Conference, IEEE, vol.4, 2000, pp. 2886-2891. 

[5] E. Rivin, “Vibration isolation of precision objects,” Sound and Vibration, 
vol. 40, 2006, 12-20. 

[6] F. Andrews, “Items which can compromise vibration isolation,” 2012. 
[7] C. Okwudire, and J. Lee, “Minimization of the residual vibrations of ultra-

precision manufacturing machines via optimal placement of vibration 
isolators” Precision Engineering, vol. 37, 2013, 425-432. 

[8] F. Udwadia, and R. Esfandiari, “Non-classically damped dynamic systems: 
an iterative approach,” Transactions of ASME Journal of Applied 
Mechanics., vol. 57, 1990, pp. 423-433. 

[9] C. Okwudire, “A study on the effects of isolator, motor and work surface 
heights on the vibrations of ultra-precision machine tools,”. Proc. ICOMM, 
Evanston, Illinois, 2012, pp. 31-36. 

[10] C. Okwudire, C. Kim, and J. Kim “Reduction of the vibrations of ultra-
precision manufacturing machines via mode coupling,” ASPE 2012 Annual 
Meeting, San Diego, CA, 2012, pp. 21-26. 

[11] A. Nayfeh, and D. Mook, Nonlinear oscillations New York: John Wiley & 
Sons, 2008. ch. 6. 

[12] A. Nayfeh, Introduction to perturbation methods, New York: John Wiley & 
Sons, 2008. ch. 15

6 Copyright © 2017 ASME

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 07/29/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use




