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This paper investigates the nonlinear vibration due to mid-plane stretching of an axially
loaded simply supported beam carrying multiple rigid masses. Explicit expressions
and closed form solutions of both linear and nonlinear analysis of the present vibra-
tion problem are presented for the first time. The validity of the analytical model is
demonstrated using finite element analysis and via comparison with the result in the
literature. Parametric studies are conducted to examine how the nonlinear frequency
and frequency response curve are affected by tension, rotational inertia, and num-
ber of intermediate rigid bodies. © 2016 Author(s). All article content, except where
otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4973334]

Beam structures are widely used in many engineering applications; such as airplane wings,
buildings, bridges, micromechanical systems, overhead transmission lines, as well as many others
in the aerospace, mechanical, and civil industries. Numerous authors have studied the transverse
vibrations of beams carrying masses or spring-mass-damper system. Most of the studies reported in
the literature are based on linear vibration models.1–9 A few studies can be found on lateral vibration
of beams under axial loads.10–12 It is important to note that the lateral vibrations of beams under
tensile axial load are also of practical interest in many engineering applications. In the design of large
flexible solar arrays, the boom that supports the array is under pre-tensile stresses due to the tension
that must be maintained in the solar cell substrate. Bokaian et al. examined a free vibration analy-
sis for an axially loaded beam with different combinations of boundary conditions.10 The authors
demonstrated that the beam behaves like a string if the dimensionless tension parameter was greater
than.12 Barry et al. studied both free and forced vibration of an axially loaded beam carrying multiple
spring-mass-damper system.11 They presented a generalized orthogonality conditions and showed
that using the classical orthogonality condition for the vibration analysis of a loaded beam can lead
to erroneous results. All the reported studies so far are based on linear vibration models, which are
usually sufficient for predicting the dynamic characteristics of the system when dealing with small
deformations. However, when dealing with higher deformation, nonlinearity should be included for
accurate modeling. For beam problems under immovable boundary conditions, the most common
nonlinearity is attributed to mid-plane stretching. A thorough review of the subject was examined
by Nayfeh et al.13,14 Several authors have also investigated nonlinear vibrations due to mid-plane
stretching.15–22 Burgreen studied the free vibration analysis of pin-ended column.15 Ozkaya et al.
studied the nonlinear vibration of beam with clamped-clamped boundary conditions and carrying
one intermediate point mass.18 They extended their work by investigating the same problem but
with various boundary condition18 and with multiple intermediate point masses.20 All their works
demonstrated a hardening type nonlinearity. The nonlinear vibration of a beam carrying one inter-
mediate spring-mass system was examined by Pakdemirli et al.21 They postulated that the mid-plane
stretching and the spring-mass system had a great effect on the frequency-response curves. Barry et
al. extended the work of Pakdemirli et al. by including multiple intermediate mass-spring-damper
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support, and various boundary conditions.22 However, they treated the intermediate masses as point
masses therefore neglecting the mass rotational inertia. At this point it is worth mentioning that in all
the aforementioned nonlinear vibration references, the authors treated the mass as particles instead of
rigid bodies. In the present work, we analytically examined for the first time the nonlinear vibration
of an axially loaded beam carrying multiple rigid masses. This work is an extension of our previous
work22 and the work of Ozkaya.20 We presented explicit expressions for the frequency equation,
mode shapes, nonlinear frequency, and the modulation equations for the phase and amplitude. The
validity of these analytical expressions were demonstrated through finite element analysis and via
comparison with results in the literature. We conducted parametric studies to predict the effect of the
mass moment of inertia and tension on the nonlinear frequency and response of the system.

A schematic of the system is depicted in Fig. 1. Following our previous work,22 the system
governing equations are

mẅi+1 + EIw′′′′i+1 − Tw′′i+1 =
EA−T

2L



n∑
r=0

∫ xr+1

xr

w′2r+1dx

w′′i+1

for i= 0, 1, 2, . . . n

(1)

wp(xp, t)=wp+1(xp, t),

w′p(xp, t)=w′p+1(xp, t),

EI
(
w′′p (xp, t) − w′′p+1(xp, t)

)
+ Jpẅ

′
p(xp, t)= 0

EI
(
w′′′p (xp, t) + w′′′p+1(xp, t)

)
−Mpẅp(xp, t)= 0

(2)

for p= 1, 2, 3, · · · , n

where w is the transverse displacement of the beam, x is the axial coordinate, m is the mass per unit
length of the beam, T is the tension of the beam, EI is the flexural rigidity of the beam, Mp and Jp

are the pth in-span mass and rotational inertia, respectively.
The following dimensionless parameters can be introduced

ζ =
x
L

, Wp =
wp

L
, ξp =

xp

L
, τ =

t

L2

√
EI
m

,

ηp =
Jp

mL3
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Mp

mL
, R=

√
I

AL2
,

s =

√
TL2

2EI
, λ=

1

R2
(1 − 2R2s2),

α =

√
−s2 +

√
s4 + ω2, β =

√
s2 +

√
s4 + ω2

(3)

whereω is the circular linear natural frequency. Using the above dimensionless parameters and adding
damping and forcing terms, the governing equations becomes

Ẅi+1 +W ′′′′
i+1 − 2s2W ′′

i+1 =
1
2
λ


W ′′

i+1

n∑
r=0

∫ ξr+1

ξr

W ′2
r+1dζ


− 2 µ̄Ẇi+1 + F̄i+1 cosΩτ (4)

FIG. 1. Schematic of an axially loaded simply supported beam carrying multiple rigid masses.
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Wp(ξp, τ)=Wp+1(ξp, τ),

W ′
p(ξp, τ)=W ′

p+1(ξp, τ),

W ′′
p (ξp, τ) −W ′′

p+1(ξp, τ)=−ηpẄ ′
p(ξp, τ),

W ′′′
p (ξp, τ) +W ′′′

p+1(ξp, τ)= αmpẄp(ξp, τ)

(5)

where the dots and primes denote differentiation with respect to dimensionless time τ and dimen-
sionless coordinate ξp, respectively. µ̄ is the dimensionless damping coefficient of the beam, F̄i+1 is
the dimensionless excitation amplitude and Ω is the dimensionless excitation frequency.

Due to the absence of quadratic nonlinearity, the solution of Eq. 4 is assumed to be expandable
in the form

Wi+1(ζ , τ, ε)= εW(i+1)1(ζ , T0, T2) + ε3W(i+1)3(ζ , T0, T2) + . . . , (6)

where ε is a small dimensionless parameter used for book-keeping. T0 = τ is a fast-time scale and
T2 = ε

2τ is a slow-time scale. The present study considers primary resonances only. Hence, the
damping and forcing terms are ordered to counter the effect of the nonlinear terms. The damping
coefficient µ̄ and excitation amplitude F̄i+1 are given as

µ̄= ε2µ, F̄ i+1 =Fi+1ε
3

At order ε , the problem is linear. Hence, the solution can be assumed as

W(p)1 =
[
A(T2)ejωT0 + cc

]
Yp(ζ) (7)

where cc denotes the complex conjugate of the preceding terms and Yp(ζ) is the mode shape.
Note that for one intermediate mass, it is more convenient to use two reference frames (i.e., one

at each end of the beam) to obtain a more compact representation of the frequency equation and
mode shapes. After some algebraic manipulation, the frequency equation for one intermediate mass
is obtained as

(αβ5 + 2α3 β3 + α5 β) sin α sinh β + αmpω
2
[
(α3 + αβ2) sin α sinh βξ1 sinh βξ2

− (α2 β + β3) sinh β sin αξ1 sin αξ2

]
+ αmpω

4ηp

[
α2 cos αξ1 cos αξ2 sinh βξ1 sin βξ2

+ β2 cos αξ1 cos αξ2 cosh αβξ1 cosh βξ2 + αβ (sin αξ1 cos αξ2 cosh βξ1 sinh βξ2

+ cos αξ1 sin αξ2 sinh βξ1 cosh βξ2)
]
+ ω2ηp

[
(αβ4 + α3 β2) sin α cosh βξ1 cosh βξ2

− (α4 β + α2 β3) sinh β cosh αξ1 cos αξ2

]
= 0

(8)

and the mode shapes are

Yi(ζ)= c1i sin αξi + c2i sinh αξi for i = 1, 2 (9)

where constants cii are

c11 = 1

c21 =−
α

βγpp

[
(α2 + β2) sin αsinhβξ2 + ω

2ηp cos αξ1(α cos αξ2sinhβξ2 − β sin αξ2 cosh βξ2)
]

c12 =
1
γpp

[
(α2 + β2) sin αξ1 sinh β + ω2ηp cosh βξ2(α cos αξ1 sinh βξ1 − β sin αξ1 cosh βξ1)

]

c22 =
α

βγpp

[
(α2 + β2) sin α sinh βξ1 + ω

2ηp cos αξ2(α cos αξ1 sinh βξ1 β sin αξ1 cosh βξ1)
]

and

γpp = [(α2 + β2) sinh β sin αξ2 + ω
2ηp cosh βξ1(α cos αξ2 sinh βξ2 − β sin αξ2 cosh βξ2)]

At order ε3, the problem is nonlinear. A solution can be obtained if a solvability condition is
satisfied. This condition can be obtained by expressing the solution in the form

W(i+1)3 =Φi+1(ζ , T2)ejωT0 + cc +Wi+1(ζ , T0, T2) (10)
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Following the procedure in our previous work,22 by substituting Eq. 10 into Eq. 4, multiplying
each resulting equation by its corresponding linear mode shape Yi, taking the integral and adding the
two resulting equations, and using the orthogonality condition along with the boundary conditions
(after substituting Eq. 10 into Eq. 5), the solvability condition for the nonlinear problem can be
obtained as

2jω(A′ + µA)b1 +
3
2
λA2Āb2

2 −
1
2

fejσ(T2) + 2jωA′
n∑

r=1

α mrY
2
r (ξ r) + 2jωA′

n∑
r=1

η rY
′2
r (ξ r)= 0 (11)

The polar form of the complex amplitude A can be expressed as

A=
1
2

a(T2)ejθ(T2) (12)

where a is the real amplitude and θ denotes the phase. Substituting Eq. 12 into Eq. 11 and separating
real and imaginary parts yield the following modulation equations for the amplitude and phase

ωab4γ
′ =ωab4σ −

3
8

a3b3 +
1
2

f cos γ (13)

ωa′b4 =
1
2

f sin γ − ωb1µa (14)

where

b1 =

n∑
r=0

∫ ξr+1

ξr

Y2
r+1dζ , b2 =

n∑
r=0

∫ ξr+1

ξr

Y ′2r+1dζ

b3 =
1
2
λb2

2, b4 = b1 +

n∑
r=1

[
α rY

2
r (ξr) + ηrY

′2
r (ξr)

]

γ =σT2 − θ, f =
n∑

r=0

∫ ξr+1

ξr

Fr+1Yr+1dζ

where σ is a detuning parameter of order.1 The nonlinear undamped frequencies are obtained from
Eqs. 13 and 14 by taking µ= f = b5 =σ = 0

ωNL =ω + ka2 where k =
3
8

b3

ωb4
(15)

In the case of periodic excitation a′ and γ′ are equal to zero. Hence, the detuning parameter can
be expressed as

σ =
3
8

a2b3

ωb4
±

√√
f 2

4a2ω2b2
4

−
b2

1

b2
4

µ2 (16)

The validity of the frequency equation is demonstrated in Tables I and II. The results in Table
I indicate excellent agreement between the present work and the previous work in the literature.
Table II shows a comparison between present work and the finite element analysis. The results also
show very good agreement with a maximum percentage of error of 0.8%. Table III shows the effect

TABLE I. Present vs. Ref. 19,22; (η = 0, s= 0,α= 1, ξ1 = 0.5).

Mode Present Ref. 22 Ref. 20

1 5.6795 5.6795 5.6795
2 39.4784 39.4784 39.4784
3 67.8883 67.8883 67.8883
4 157.9144 157.9144 157.9144
4 206.7901 206.7901 206.7901
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TABLE II. Analytical vs. FEA (frequency in rad/s); (η = 0.5, s = 1, α = 0.5, ξ1 = 0.5).

Mode Analytical FEA % of Error

1 4.9162 4.9559 0.8075
2 7.3091 7.3367 0.3780
3 62.3020 62.6700 0.5907
4 72.2230 72.6290 0.5621
5 200.3700 200.8300 0.2296

TABLE III. First five modes for a beam carrying up to four rotational masses (s= 1).

α,η, ξ Values Mode Frequency (rad/s)

α1,α2,α3,α4 1,1,1,1 1 4.2361
[-0.5ex] η1,η2,η3,η4 0.5,0.5,0.5,0.5 2 5.6644
[-0.5ex] ξ1, ξ2, ξ3, ξ4 0.1,0.5,0.7,0.9 3 6.0103

4 9.1118
5 30.3810

of attaching multiple rigid bodies on the natural frequencies. As expected, the results indicate that
the systems natural frequencies decreases with increasing number of intermediate rigid masses.

As for the nonlinear analysis, the validity is demonstrated via comparison of the results in
the literature and it is depicted in Fig. 2. The results show an excellent agreement. For validation
purpose, the tension is taken to be s = 0. As observed in Fig. 2, the curves bend to the right, which is an
indication of hardening type nonlinearity. The effect of the tension on the nonlinear natural frequency
is depicted in Fig. 3. The results indicate that the stretching of the curve shifts from right to left for
s > 1. It is also observed that the stretching to the left is more pronounced with increasing tension.
Fig. 4 examines the role of the mass rotational inertia on the nonlinear frequency. The results show
that the stretching decreases with increasing rotational inertia. In the forced response analysis, the
forcing amplitude is f = 5b4 and the damping coefficient is µ = 0.2. The influence of the tension on
the frequency response curve is depicted in Fig. 5. As seen previously, the curve tends to bend more to
the left with increasing tension. In Fig. 6, the effect of varying the rotational inertia on the frequency
response curve is examined. The results show that the frequency response curve tends to bend more

FIG. 2. Validation of the present formulation.
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FIG. 3. Effect of tension on the nonlinear frequency for ξ = 0.5,α1 = 1,η1 = 0.5.

FIG. 4. Effect of rotational inertia on the nonlinear frequency for ξ = 0.5,α1 = 1, s= 5.

FIG. 5. Effect of tension on the frequency-response-curve for ξ = 0.5,α1 = 1,η1 = 0.5.
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FIG. 6. Effect of rotational inertia on the frequency-response-curve for ξ = 0.5,α1 = 1,η1 = 0.5.

FIG. 7. Effect of multiple rigid masses on the frequency-response-curve for s= 5.

to the left with decreasing rotational inertia. This observation is an indication that the tension and
the rotational inertia have opposite effect on the frequency response curve. The effect of attaching
multiple intermediate rigid bodies is depicted in Fig. 7. The results indicate that the stretching of the
frequency response curve tends to decrease as the number of intermediate rigid bodies is increased.
This is an indication of the reduction in the softening type nonlinearity. These observations are in
agreement with the literature for s= 0. In that, the hardening nonlinearity type is more pronounced
as the number of intermediate point masses increases.

In conclusion, this paper presents the nonlinear vibration analysis of an axially loaded simply-
supported beam carrying multiple intermediate rigid bodies. For the first time, explicit expressions
are presented for the characteristic equation, mode shapes, nonlinear frequency, and modulation
equations for the steady state phase and steady state amplitude. The validity of the analytical model
is demonstrated using finite element analysis and results in the literature. The numerical simulations
indicate that the presence of the tension in the beam shifts the nonlinearity type from hardening
to softening and that the softening type nonlinearity is more pronounced with increasing tension.
However this softening nonlinearity tends to decrease with both increasing mass rotational inertia
and increasing number of intermediate rigid bodies.
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19 E. Özkaya and M. Pakdemirli, Journal of Sound and Vibration 221, 491 (1999).
20 E. Özkaya, Journal of Sound and Vibration 257, 413 (2002).
21 M. Pakdemirli and A. Nayfeh, Journal of Vibration and Acoustics 116, 433 (1994).
22 O. Barry, D. Oguamanam, and J. Zu, Nonlinear Dynamics 77, 1597 (2014).

http://dx.doi.org/10.1006/jsvi.1998.1796
http://dx.doi.org/10.1016/j.jsv.2006.06.080
http://dx.doi.org/10.1177/1077546307076285
http://dx.doi.org/10.1002/cnm.1640110905
http://dx.doi.org/10.1016/S0020-7403(01)00072-8
http://dx.doi.org/10.1006/jsvi.2001.4138
http://dx.doi.org/10.1016/j.jsv.2006.12.028
http://dx.doi.org/10.1006/jsvi.2000.2990
http://dx.doi.org/10.1016/0022-460X(90)90851-P
http://dx.doi.org/10.1016/0022-460X(90)90663-K
http://dx.doi.org/10.1155/2014/485630
http://dx.doi.org/10.1016/j.sna.2010.04.020
http://dx.doi.org/10.1006/jsvi.1997.1135
http://dx.doi.org/10.1006/jsvi.1996.0643
http://dx.doi.org/10.1115/1.2930446
http://dx.doi.org/10.1007/s11071-014-1402-5

