
PIEZOELECTRIC VIBRATION CONTROL OF A SANDWICH BEAM WITH TIP MASS 

Eshagh Farzaneh 
Mechanical Engineering 

Central Michigan University 
Mt Pleasant, MI, USA 

Oumar Barry 
Mechanical Engineering 

Virginia Polytechnic Institute and State University 
Blacksburg, VA, USA 

Pablo Tarazaga 
Mechanical Engineering 

Virginia Polytechnic Institute and State University 
Blacksburg, VA, USA 

ABSTRACT 

This paper studies the vibration mitigation of a sandwich beam 

with tip mass using piezoelectric active control. The core of the 

sandwich beam is made of foam and the face sheets are made of 

steel with a bonded piezoelectric actuator and sensor. The three-

layer sandwich beam is clamped at one end and carries a 

payload at the other end. The tip mass is such that its center of 

mass is offset from the point of attachment. The extended 

higher-order sandwich panel (HSAPT) theory is employed in 

conjunction with the Hamilton’s principle to derive the 

governing equations of motion and boundary conditions. The 

obtained partial differential equations are solved using the 

generalized differential quadrature (GDQ) method. Free and 

forced vibration analyses are carried out and the results are 

compared with those obtained from the use of the commercial 

finite element software ANSYS.  Derivative feedback control 

algorithm is employed to control the vibration of the system. 

Parametric studies are conducted to examine the arrangement 

impact of the piezoelectric sensors and actuators on the system 

vibrational behavior. 

INTRODUCTION 
Most engineering structures and devices are prone to 

unwanted vibrations induced by environment conditions. When 

left uncontrolled, these vibrations can cause fatigue failures and 

eventually undermining public safety and/or resulting in 

significant economic loss.  The control of these vibrations can 

be achieved through passive, active, or semi-active techniques. 

Passive isolation offer a simple, cost-effective, reliable, and 

energy efficient means of vibration isolation, but they are only 

effective within a limited range of excitation frequency [1, 2]. 

Active vibration control involves the use of sensors and 

actuators in a system to measure the structural response and 

produce control forces to eliminate the vibration of the host 

structure [3].  Semi-active isolation is a combination of passive 

devices with controllable properties [4].  

When higher performance is desired, active vibration control is 

the best choice among the three aforementioned isolation 

techniques. Recently, piezoelectric smart structures have been 

widely employed for active vibration control applications [5]-

[20]. These smart structures are usually very flexible and can 

consist of regular or sandwich beams or plates bounded with 

piezoelectric patches [20]. In aerospace applications, sandwich 

structures are among the most commonly used flexible members 

because of their high specific stiffness, high specific strength, 

low structural weight, and high absorption capability. A typical 

sandwich structure comprises two outer layers (or face sheets) 

of identical geometric and material properties and one middle 

layer (or core).  When vibration suppression is the primary goal, 

the core is softer than the face sheets. However, the use of soft 

material in the core of sandwich structures call for the 

relaxation of a constant core transverse displacement, which 

cannot be properly handled with classical models based on the 

first order shear deformation theory (FOSDT).  

Modern models based on high order sandwich panel theory 

(HSAPT) are proposed [21, 22, 23, 24, 25, 26] to accurately 

predict the dynamic of soft core sandwich structures. The 
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original HSAPT model used mixed formulation in which the 

unknown generalized displacement variables are the axial and 

transverse displacements of the top and bottom face sheets, and 

the uniform shear stress in the core [23]. Other HSAPT models 

replace the core shear stress variable by the mid-core transverse 

displacement. Such models are called HSAPT displacement 

[24].  The most modern model of sandwich structures is the 

extended high order sandwich panel (EHSAPT), which is an 

improvement of the HSAPT and is applicable to both soft and 

hard-core sandwich structures.  EHSAPT incorporates the in-

plane core rigidity and extends the HSAPT generalized 

displacement variables by including the axial and transverse 

displacements and the rotation at the centroid of the core [27]. 

Regarding control algorithms for vibration suppression in smart 

composite structures, numerous techniques have been proposed 

in the literature. This includes the linear quadratic regulator 

(LQR) [28], velocity feedback control [28, 29, 30], and 

proportional-integral-derivative (PID) control [31]. It should be 

noted that direct velocity feedback and PID are the most 

commonly used piezoelectric vibration control due to their 

simplest design and implementation [32].   

The direct velocity feedback control is adopted in this paper to 

control the vibration of a sandwich beam with tip mass. It is 

worth noting that the majority of previous works focus on 

controlling bare sandwich beams. To our best knowledge, there 

is no work in the literature that studies the piezoelectric 

vibration control of a sandwich beam with tip mass. The 

investigation of this problem is reported in this paper for the 

first time.  The tip mass of the sandwich beam is such that its 

center of gravity is offset from the point of attachment. The core 

of the sandwich beam is made of foam and the face sheets are 

made of steel. The HSAPT and Hamilton’s principle are used in 

deriving the governing equations of motion and boundary 

conditions.  Natural frequencies and vibration response of the 

system are obtained using the GDQ method and the results are 

compared to those of ANSYS.  Parametric studies are carried 

out to examine the role of sensor and actuator location on the 

performance of the controller.  

 

 

MATHEMATICAL MODELING 
A schematic diagram of the sandwich beam with tip mass 

along with attached piezoelectric patches is shown in Fig.1. The 

length and the width of the beam are L and b respectively. This 

beam is composed of three layers. Two thin/stiff face sheets 

with thickness  and a thick/soft core with a thickness . The 

length of the tip mass is defined as . The length, thickness, 

and width of the piezoelectric patches are  

respectively.  

As it can be seen from Fig. 2, the piezoelectric patches 

considered here act as sensors and actuators.  The electrical 

potential of the sensor is defined as  and that of the actuator 

is defined as .  It is assumed that the piezoelectric layers and 

the face sheets deform according to the Euler-Bernoulli beam 

theory. 

 
 

Figure 1. Schematic of sandwich beam with tip mass 

attached with piezoelectric patches. 

 

 

This assumption is reasonable as the face sheets and 

piezoelectric layers are very thin and only change in the length. 

The core, however, is thick and consequently it can change in 

both length and thickness.  To this end, the displacement fields 

of the core are based on the HSAPT to account for its in-plane 

rigidity along with its flexibility in the transverse direction. 

 

 
Figure 2. Sensor and actuator and feedback control loop. 

 

 

The total kinetic (T) and potential (U) energies of the 

system depicted in Fig.1 are given as:   

 

 

 
(1) 

The kinetic energy of the beam is   
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                                                                     (2) 

 

where ,  are the density of the face sheets, core of 

sandwich beam. The terms are longitudinal 

displacements at core, top and bottom face sheets and 

are vertical displacements at core, top and bottom 

face sheets and  is the slope at the centroid of the core.  , 

 , and  are the volume of the top face sheet, bottom face 

sheet, and core. The dots denote differentiation with respect to 

time (t) and the primes denote differentiation with respect to 

space (x).  , , and  are the velocity of the top face sheet, 

bottom face sheet, and core in the longitudinal direction. ,  

, and  are the velocity of top face sheet, bottom face sheet, 

and core in the transverse direction.  and , and  are the 

angular velocity of top face sheet, bottom face sheet, and core.   

 

The kinetic energy of the tip mass is 

 

 
 (3)  

 

where  is the mass of the payload,  is the mass moment 

of inertia.  and are the velocity in the 

transverse direction and angular velocity of the centroid of the 

core at the end of the sandwich beam.  is the velocity in the 

longitudinal direction.   

 

The kinetic energy due to the piezoelectric effect is given 

as  

 

                                                                                                 (4) 

 

Where  and  are the density of the piezoelectric sensor 

and actuator attached to the sandwich beam. Here M is also the 

mass of tip mass.  and  are the volume of the piezoelectric 

sensor and actuator, respectively.   

 

The potential energy of the beam is  

 

                                                                                                 (5) 

 

Where  is the face sheets modulus of elasticity. is the 

modulus of elasticity of the core.   is the shear modulus of the 

core.  

 

The potential energy due to piezoelectric effect is given as 

 

                                                                                              (6) 

 

Where ,  are the modulus of elasticity of sensor and 

actuator, which are considered here the same as .  is the 

piezoelectric coefficient,  is the dielectric coefficients. 

 and   are the unknown electric potentials at the 

mid-surface of the actuator and sensor.    

 

The governing equations of motion are obtained using 

Hamilton’s principle and are given by the following seven 

equations (Eqs.7-15): 

 

                                                      (7)                         
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(8) 

 

 

(9)                                                                                                                                                                

 

 

                                                                                        (10) 

 

 

                                                                                             (11) 

 

 

                     (12) 

 

(13)        

 

 

         (14) 

 

 

                            (15)    

 

                      

Where   is defined as or .  

 

The boundary conditions are given by Eqs. (16)-(23) as 
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(16) 

 

The general forms of the axial forces (Pt and Pb), the shear 

forces (Vt, Vb, Vc,) and bending moments (Mt and Mb) are given 

as  

 

              (17) 

 

 

                                   (18) 

 
 

                                        (19) 

                                       (20) 

 

 

       (21) 

 

 

                                                                 

(22) 

 

                                                                    (23) 

 

 

Following [33], the direct velocity feedback control used 

here is given as 

 

                                                                                 
(24) 

 

Where G is the velocity feedback gain. 

 

 

NUMERICAL RESULTS AND DISCUSION 
 

The numerical simulation is based on the material and 

geometric properties listed in Tables 1 and 2 for the sandwich 

beam with tip mass, and piezoelectric respectively.  The first set 

of the numerical analyses is to validate the present formulation 

by comparing the obtained natural frequencies of the 

piezoelectric sandwich beam with tip mass using the GDQ 

method to those of Ansys simulation.  The results are presented 

in Table 3 and show very good agreement.  The results in Table 

3 also indicate that the natural frequencies of sandwich beam-
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tip mass with piezoelectric patches are higher than those of the 

sandwich beam-tip mass without piezoelectric patches. This is 

expected as the presence of the piezoelectric patches make the 

sandwich beam stiffer. 

  

Table 1: Material and geometric properties of the sandwich 

beam with tip mass 

(Gpa)  (Mpa) 
     (mm) 

210 22.1 7900 60 1.9 

 (mm) L (mm) b (mm) 
  

 (mm) 

25 260 60 2600 70 

 

Table 2: Material and geometric properties of piezoelectric 

PZT-4 [31] 

 (Gpa)    (Gpa) 
 

 

210 210 7500 -10 

 (mm)    

0.25 52 60 10.275 

  

Table 3: Natural frequency of sandwich beam-tip mass 

with and without piezoelectric patches  

               Case GDQ ANSYS 

With piezoelectric 

patches 

58.16 

304.78 

638.08 

57.25 

291.47 

604.19 

 

Without piezoelectric 

patches 

 

57.91 

304.14 

637.77 

56.92 

289.67 

601.62 

 

 

The role of the piezoelectric patches location on the natural 

frequency of the system is illustrated in Table 4 using both 

GDQ and ANSYS simulation. It can be observed that the 

natural frequency decreases as the piezoelectric patches are 

placed farther from the clamp end. This is an indication that the 

sandwich beam is the stiffest when the piezoelectric is closer to 

the clamp end.  

Table 5 depicts the effect of the piezoelectric patches 

length on the natural frequencies of the system.  The results 

show that increasing the length of piezoelectric patches can 

increase or decrease the fundamental natural frequency of the 

sandwich beam with tip mass. For higher modes, it is observed 

that increasing the piezoelectric patches length consistently 

decreases the natural frequencies.  

 

 

 

 

 

 

 

 

Table 4: Effect of piezoelectric patches location on the 

natural frequency (Hz) of sandwich beam-tip mass  

Piezoelectric Location     
 

         GDQ 

58.16 

304.78 

638.08 

58.06 

300.76 

629.30 

 

               ANSYS 

57.25 

291.47 

604.19 

56.68 

287.33 

595.03 

 

Table 5: Effect of piezoelectric patches length on the 

natural frequency (Hz) of sandwich beam-tip mass  

Piezoelectric 

Length 
                 

 

GDQ 

58.16 

304.78 

638.08 

58.24 

298.47 

629.29 

58.07 

294.06 

619.40 

 

ANSYS 

57.25 

291.47 

604.19 

57.30 

286.39 

594.29 

56.84 

279.07 

580.99 

 

The second part of the numerical simulation is to examine 

the piezoelectric vibration suppression of the sandwich bean 

with tip mass. The applied force is a rectangular pulse, which is 

defined as  

 

               P                   

F(t)    

               0                                                                                  

                                                                                        (25) 

 

Here P is the magnitude of the load applied at the tip of the 

sandwich beam and T is the load duration.  The value of P and 

T used in the numerical simulation are 10 N and 50 ms, 

respectively.  

 

Figure 3 depicts the effect of the feedback control gain on 

the vibration response at the system (Fig. 3a) and voltage 

received by the actuator (Fig. 3b). The piezoelectric patches 

with length of 52 mm are attached near the clamped end at the 

top and bottom face sheets as depicted in Figure 1.  The results 

in Fig. 3a indicate that the tip deflection of a sandwich beam 

decreases with increasing feedback gain. This figure also shows 

that increasing the feedback gain increases the actuator voltage.  

    

The role of the location of the piezoelectric patches is 

depicted in Figure 4. For the specific example studied in this 

paper, the results in Fig. 4a indicate that superior vibration 

suppression can be achieved by attaching the piezoelectric 

patches closer to the tip mass.              
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(a)

 
 

(b) 

 
Figure 3: (a) Deflection of sandwich beam with tip mass 

, (b) Voltage receives by actuator with different feedback 

gain (G). 

 

The least vibration performance is obtained when the 

piezoelectric patch is placed closer to the mid-point of the 

system. Fig. 4b also shows that highest transient actuator 

voltage is obtained when the piezoelectric patches are placed 

closer to the tip mass, but the highest steady state voltage is 

achieved when piezoelectric patches are placed near the middle 

of the sandwich beam-tip mass. These observations are a clear 

confirmation that the locations of the piezoelectric patches are 

crucial in controlling the vibration. It is anticipated that the best 

location of the piezoelectric patches should be closer to 

antinodes vibration loop. However, as this antinode varies with 

changing frequency, the best location of the piezoelectric 

patches should be obtained through optimization. 

 

(a) 

 
          

(b) 

 
Figure 4: Role of location of piezoelectric patches: (a) 

Deflection of sandwich beam with tip mass , (b) Actuator 

voltage for a piezoelectric length of 52 mm and G=0.0001.  

 

CONCLUSION 
  

In this study, we presented for the first time the free and 

force vibration of a cantilever sandwich beam-tip mass with 

piezoelectric patches using higher-order sandwich panel theory. 

The equations of motion and boundary conditions were 

obtained using Hamilton’s principle.  Numerical analyses were 

conducted using the GDQ method to determine the natural 

frequencies and vibration response of the system. The results of 

the GDQ method were validated using Ansys simulation and 
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showed very good agreement.  Both Ansys and GDQ results 

showed that the natural frequencies of the sandwich beam-tip 

mass with piezoelectric patches are higher than those without 

piezoelectric patches. However, increasing the length of the 

piezoelectric, in general, decreases the natural frequencies of 

the system. This is due to the fact that the density of the 

piezoelectric in this case is more dominant than its stiffness.  

The natural frequencies of the system also increase as the 

piezoelectric patches were placed near the clamp end.  

Parametric studies were also conducted to analyze the role of 

the piezoelectric patches location on the vibration control of the 

sandwich beam-tip mass. It was observed that the location of 

piezoelectric patches is crucial in controlling the vibration of 

the system. The results related to presented model revealed that 

a best vibration control performance can be achieved when 

piezoelectric patches were attached near the tip mass. The worst 

performance was observed when they were placed closer to the 

middle of the sandwich beam. It should be noted, however, that 

these conclusions only pertain to the specific case presented in 

this paper. A more thorough study is needed to determine the 

optimum location of piezoelectric sensors and actuators for 

achieving best vibration control performance. The authors 

anticipate carrying out this task in their future work. 
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