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The vibration of a single conductor with Stockbridge dampers is examined theoretically

and experimentally. Two novel analytical models are presented. In the first model, the

conductor is modeled as a beam subjected to an axial load and the Stockbridge damper

is reduced to an equivalent discrete mass-spring-mass and viscous damping coefficient.

The second model is based on a double-beam concept. The main beam with an axial

load is a representation of the conductor and the Stockbridge damper is modeled as an

in-span beam with rigid mass at each end. Using Hamilton’s principle, the governing

equation of motion and boundary conditions are derived. Expressions are presented for

the frequency equations, mode shapes, and orthogonality conditions.

Experiments are conducted to determine the equivalent damping coefficient of the

Stockbridge damper, the self-damping coefficient of the conductor, the natural frequencies

and response of the conductor with and without a Stockbridge damper. The experimental

data are used to validate the proposed models.

With respect to the dynamics of the conductor, the results of both analytical models

are found to be in a good agreement with those of the experiments. The first model is

simpler and easier to implement with little computation, but gives a very poor prediction

of the dynamics of the Stockbridge damper. The second model is more complicated, but

gives a good prediction of the dynamics of both conductor and Stockbridge damper.

Numerical examples of the free vibration analysis show a significant dependency of the

natural frequencies on the mass of the counterweights, length of the rigid link, length

of the messenger, and flexural rigidity. The first mode is dominated by the conductor
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characteristics. The roles of the location of the Stockbridge damper on the system natural

frequencies are inconclusive.

The forced vibration results indicate that the response of a bare conductor decreases

monotonically with increasing vibration frequency. However, for a loaded conductor, the

response can increase or decrease with increasing frequency depending on the location

of the damper. Optimization is performed to determine the optimal damping arrange-

ment. The results show that asymmetric damping arrangement and the orientation of

the heavier counterweight of the Stockbridge damper toward the span ends result in a

better damping performance. These findings can be very useful for transmission lines

design engineers and structural engineers.
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Chapter 1

Background

1.1 Introduction

Overhead transmission lines are continuously exposed to wind forces which make them

prone to the development of repetitive cyclic motions that are sources of tremendous dam-

age to power networks. These motions are known as “wind-induced conductor motion”

and they take the form of conductor galloping, wake-induced oscillations, and aeolian

vibration. These motions are mainly distinguished by their frequencies and amplitudes

of vibration.

Conductor galloping is very low frequency and high amplitude vibration. It is common

to both single and bundle conductors and it is caused by the steady crosswinds acting

upon an asymmetrically iced conductor surface. The thickness of ice that can cause

galloping can be smaller than 2 mm. The frequency of vibration varies from 0.08 to 3 Hz

and the amplitude can exceed the conductor sag for the span involved (5 to 300 times

the conductor diameter) [1]. Conductor galloping can lead to the worst damage in a very

short period of time (1 to 48 hours). Galloping cannot break conductor hardware, but it

can damage insulators, dampers, suspension hardware, poles, and towers.

Wake-induced oscillation, also caused by a steady wind, is medium amplitude and

medium frequency vibration. The vibration amplitude varies from 0.5 to 80 times the

conductor diameter and the frequency varies from 0.15 to 10 Hz [1]. This type of conduc-

tor motion only pertains to bundle conductors. Unlike conductor galloping, wake-induced

oscillation can occur at anytime of the year and can damage the conductor strands. It

can also damage suspension hardware, spacer dampers, and dampers. These damages

can take place within one month to eight years after installation.

The present study focuses on the third type of wind-induced conductor motion, aeolian

vibration. The word aeolian is borrowed from an ancient Greek legendary figure, Aeolus,

1



Chapter 1. Background 2

which means god of wind. This type of vibration arises from alternating forces caused by

vortex shedding. Vortex shedding is associated with the flow of air across a bluff body.

Aeolian vibration is specific to single conductor and it is characterized by low amplitudes

and high frequencies vibration. The work in this thesis is an extension of my master’s

work [2]. As such part of the content in this chapter is reproduced from [2].

The frequency of aeolian vibration ranges from 3 to 150 Hz and the wind speed ranges

from 1 to 7 m/s [1, 3]. The amplitude of vibration is usually less than the diameter of

the conductor. The conductor diameter ranges from 6 to 50 mm.

Figure 1.1: Breakage of conductor on Hydro Quebec transmission lines [4].

Field observations indicated that the type of terrain is one of the many factors that

contribute to aeolian vibration. Aeolian vibration is more prone to open fields and bodies

of water (such as rivers, lakes, etc.) and usually it occurs in late evenings or early

mornings. When aeolian vibration of transmission lines is not properly controlled, it can

result in serious accidents causing injuries and death, and/or considerable economic loss.

Alternating bending stresses and tensile stresses are produced by the vibrations in the

vicinity of the clamps. This eventually leads to fatigue damage of the conductor (Fig.

1.1) in the form of broken strands in the outer layers, usually at suspension clamps.

Other damages include breakage of hardware such as insulator strings, strain link, strain

plates, shackle, and ball clevis. In some cases, these failures may occur within the first

year of construction.

Most of transmission lines utility organizations used Stockbridge dampers to control

aeolian vibration. The role of the damper is to minimize or eliminate the vibration by

reducing the vibration amplitude to a safe level. The effectiveness of the damper depends
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on the conductor characteristics (i.e, mass and tension of the conductor) and the location

of the damper. Investigations in [5, 6] show that a damper is most effective when it is

designed to cover a wide range of frequencies and when it is appropriately positioned

on the conductor. Stockbridge dampers are designed to fit a wide range of conductor

diameters. This range can vary between 3 to 10 mm.

1.2 Motivation

Most often generation power plants are located in remote areas, far from cities. As such,

high voltage transmission lines are needed to transport power to urban areas. Millions

of transmission towers and thousands of kilometers of overhead power lines are used

worldwide to supply electricity. In the province of Ontario, the overhead transmission and

distribution system stretch over 150,000 km [7]. The design and construction cost of these

transmission lines can be very expensive. Some of the cost can be reduced by designing

the transmission lines using lower structures. This is usually possible by increasing the

tension of the conductor in order to meet the minimum required clearance. However, it

has been shown that the conductor is more prone to vibration at higher tension. In other

words, raising the conductor tension can cause more vibration and eventually can lead

to fatigue failure.

Over the years, special care has been undertaken by transmission lines utility orga-

nizations to control aeolian vibration. Some organizations limit their design tension to

20% and 25% of the rated tensile strength (RTS) in the summer and winter season, re-

spectively [7, 8]. However, several transmission lines failures continue to occur. In 2005

Hydro One customers in Sarnia experienced a power outage due to transmission lines

failure. The breakage of the conductor and damper is shown in Fig. 1.2. Three years

later, another transmission lines failure occurred in London, Ontario. Fig. 1.3 shows the

broken torsional damper of the transmission line. Investigations showed that the failure

of both lines were attributed to aeolian vibration [9].
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Figure 1.2: Broken conductor strand and slippage of the messenger wire of the Stock-
bridge damper [9].

Figure 1.3: Sample of conductor and torsional damper failure on Cowal junction to
Longwood TS in London [10].

Other high voltage organizations have also reported transmission lines failure due

to vibration. For instance, in 1996 Manitoba Hydro company reported failure of 19

transmission towers which resulted in damage that cost the company about 10 million

USD [11]. In 2009, some customers of Electricité de France experienced a blackout due

to the collapse of 45 towers in the southern part of France. These failures were also

attributed to aeolian vibration [12].

The aforementioned examples of failures indicate that the control of aeolian vibration

is still a challenge. As such, it is crucial to further examine the dynamics of conductors
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and dampers, and thereby assist transmission line design engineers in deciding on the

limitation of the design tension of the conductor and optimal selection and location of

dampers.

1.3 Literature review

Aeolian vibration of overhead transmission lines is characterized by the interaction of

the dynamics of the conductor and Stockbridge damper with fluid dynamics. The fluid

dynamics govern the wind force that causes aeolian vibration. The dynamics of the

conductor and Stockbridge damper capture the motion of the conductor and Stockbridge

damper in response to the applied wind force.

1.3.1 Conductor dynamics

Conductors are made of several layers of individual round wires packed tightly together

in concentric counter-rotating helices (Figs. 1.4 and 1.5). Aluminum conductor steel

reinforced (ACSR) is the most common conductor used in overhead power lines because

of its high tensile-strength-to-weight ratio. ACSR conductor consists of aluminum outer

strands and steel inner strands. Most of the power is transmitted through the aluminum

outer layers. The inner strands of steel are for the strength required to support the weight

without stretching the aluminum. The higher strength conductors are usually used for

river crossing (longer span) since this requires more resistance. T-2 conductor is another

type of conductor used in overhead power lines. It is a two standard round conductors

twisted around each other, and it is designed to resist vibrations. Other conductors used

in Transmission lines include all aluminum conductors (AAC) and all aluminum alloy

conductor (AAAC).

Figure 1.4: Structure of a conductor [1].
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Figure 1.5: Cross section of special conductors [1].
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The dynamics of the conductor can be idealized as the vibration of an axially loaded

Euler-Bernoulli beam. Claren and Diana [6] were among the earliest investigators to

examine aeolian vibration of transmission lines. They analytically and experimentally

determined the natural frequencies of the conductor without damping. The effect of the

conductor flexural rigidity on natural frequencies was investigated by Dhotarad et al. [5].

The differences in the values of natural frequencies observed in the simply-supported end

cable (with and without flexural rigidity) were less than 3%. They hypothesized that

the location of the dampers had negligible effect on strain for low frequency excitation

(i.e., low wind speed). Barbieri et al. [13] performed free vibration analysis of a single

conductor without damping using Galerkin method and experimentally validated their

results.

For a complete dynamic model of a conductor, many experiments have been conducted

to determine the self-damping of the conductor. Past investigations on this topic have

resulted in the development of empirical formulae to predict the power dissipation of the

conductor. An exponential form that contains constants that depend on the conductor

parameters has been suggested [14, 15, 16, 17, 18, 19].

1.3.2 Stockbridge damper Dynamics

Most engineering structures such as airplanes, cables, bridges, ships and many more can

experience vibrations which eventually cause fatigue failure. These vibrations can be

suppressed by means of dampers. One of the first damping devices for vibration bodies

was invented in the early 1900s by Hermann Frahm [20]. The role of the damping device

was to annul the resonance vibrations of the main body.

The Stockbridge damper has similar purpose to that of Frahm; that is, it can elim-

inate or reduce aeolian vibration by absorbing the energy from the wind in order to

stabilize the motion of the conductor. Dampers control aeolian vibration by reducing

the strain level at the suspension clamp to a safe strain limit of 200 µm/m [21]. The

effectiveness of a damper depends on its response within its frequency band [22, 23].

Based on a rule of thumb, it was thought that dampers’ locations will not coincide with

a node provided these locations are less than the loop length corresponding to the highest

expected vibration frequency.

Stockbridge damper was invented by George H. Stockbridge in 1925. It is a dumbbell-

shaped device with a mass at each end of a short flexible cable or rod called the messenger

cable. The damping mechanism is observed as vibrations of the conductor that are trans-

ferred through the clamp to the messenger cable. The flexuring of the messenger causes
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slipping between its strands and consequently induces the weights (called counterweights)

at their ends to oscillate. By carefully choosing the parameters of the damper (such as

the mass of the counterweights, length, and the stiffness of the messenger), the energy

imparted on the conductor from the wind can be greatly dissipated by the Stockbridge

damper.

George Stockbridge claimed in his patent that a short (i.e., 30 in or 75 cm) and very

flexible messenger increases damping effectiveness [23]. Furthermore, the use of concrete

or similar material for the weights in lieu of metallic weight was recommended because

no charging current is absorbed by concrete material [23]. However, this idea was quickly

rejected because of the poor mechanical performance of concrete. The first Stockbridge

damper, as patented by George Stockbridge, had a concrete block at each end and it is

shown in Fig. 1.6.

Figure 1.6: Stockbridge’s original concrete block design [23].

Modern dampers shown in Fig. 1.7 use metal bell-shaped weights. The bell is hollow

and the damper cable is fixed internally to the distal end, which permits relative motion

between the cable and damping weights. There are two types of modern Stockbridge

dampers, the 2R damper and 4R damper. The former, 2R damper, also known as the

symmetric Stockbridge damper, has identical weights and messenger lengths at both ends.

Given that this damper consists of two identical weights, the moment exerted by one is

neutralized by the other. This 2R damper is characterized to possess two natural modes

of vibration when the motion of the clamp is restricted to the vertical plane. The second

type, 4R damper, is called the asymmetric Stockbridge damper. It consists of different

weights and cable lengths on each side. Consequently, a resultant moment is induced by

the unbalanced weights at the ends and this results in four resonant frequencies.

The cable of the Stockbridge damper shown in Fig. 1.8 is called messenger. This
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messenger is generally made of galvanized steel, but stainless steel is used in more polluted

areas. Both materials result in the same damping capacity; however, stainless steel

provides better fatigue resistance. The clamp of the damper which is used to hang on to

the conductor is made of aluminum alloy. This is to ensure that the weight is small enough

to restrict its motion to the vertical plane for higher conductor vibration frequencies. In

the past, damper counterweights were made of zinc alloy, but due to the rise in cost of

this material, forged steel weights or extruded steel rods are used instead.

Figure 1.7: Stockbridge damper [1].

Figure 1.8: Stockbridge damper cable [1].

The dynamics of Stockbridge dampers have been examined by numerous authors.

The common approach is to experimentally determine its impedance curve [24]. Another

approach is to model the Stockbridge damper as a two degree-of-freedom system [25, 26].

The dynamic response of a Stockbridge damper was examined by Wagner et al. [26]. In

their analysis, the authors assumed massless messenger and model the clamp as a base

motion and the counterweight as a rigid mass. Their proposed model was experimentally
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validated. Feldmann [27] investigated the effects of Stockbridge dampers using theoretical

and experimental approaches. It was found that the Stockbridge damper is remarkably

efficient, and the counterweights do not dissipate energy but produce a coupling between

the damper and the conductor which makes them good disturbers of aeolian vibration.

Markiewicz [28] presented a method and a computational model for the evaluation

of the optimum dynamic characteristics of Stockbridge dampers to be mounted near

tension insulator assemblies (dead end span). It was suggested that Stockbridge dampers

be designed so that their mechanical impedance matches as closely as possible to the

determined optimum damper impedance for the cable to be protected. The advantage of a

Stockbridge-type vibration damper with low-mass clamp over a conventional Stockbridge

vibration damper with bolted clamp was examined by Krispin [29]. Theoretical and

experimental analysis were used to show that the conventional Stockbridge damper is

not effective for controlling the vibration of smaller size conductor such as optical ground

wires (OPGW). He, therefore, recommended the use of low clamp mass dampers because

they improve power dissipation (damping performance) in the upper range frequencies.

The dynamics of the Stockbridge damper was examined experimentally by Vecchiarelli

[30, 31]. His experimental results showed that the energy dissipated by a Stockbridge

damper varies highly with the vibration frequency and the displacement amplitude of the

damper clamp. His other observation was that the displacement of the damper clamp

depends on the location of the damper as such he indicated that the energy dissipated

by the damper can be significantly affected by the positioning of the damper on the

conductor.

A rule of thumb was developed by EPRI [1] to determine the optimum location of

the damper. In order to avoid positioning the damper at a node, it was postulated that

the damper should be placed at a distance between 70% and 80% of the loop length

corresponding to the highest wind speed of 7 m/s. The location of the damper was also

examined by Nigol and Houston [32]. They indicated that dampers should never be

placed at any point of symmetry along the conductor (i.e, 1/4, 1/3, 1/2, etc.) because

they fail to provide vibration protection at every 4th, 3rd, and 2nd harmonic [32].

1.3.3 Fluid dynamics

The nature of the flow in aeolian vibration of conductors is similar to that of an uniform

flow of air across a rigid cylinder. This flow depends on the Reynolds number, which is

defined as the ratio of inertial forces to viscous forces. With respect to aeolian vibration,

the Reynolds number varies between 2700 and 14000 [33]. Aeolian vibration is caused by



Chapter 1. Background 11

alternating vortices. As the vortices are shed from the surface of the conductor normal

to the wind, they cause a resultant force that acts in the transverse direction. This force

is periodic with a Strouhal frequency fs, which is proportional to the wind speed and

inversely proportional to the diameter of the conductor. The parameter of proportionality

is called Strouhal number and it varies from 0.15 to 0.25. In general, the average Strouhal

value is taken as 0.2.

Diana and Falco [34] examined the vibration of a rigid cylinder and found that the lift

force acting on the cylinder is similar to the vibration response of the cylinder since they

are both harmonic at steady state. This finding was verified by Bishop and Hassan [35]

and by Bearman and Currie [36]. It was observed that during resonance the lift force leads

the displacement by a phase angle ranging from 0-180 degrees. It was experimentally

shown by Griffin and Koopmann [37] that this lift coefficient is significantly dependent

on the amplitude of vibration of the rigid cylinder.

1.3.4 Current models

The most common method to predict aeolian vibration of a single conductor is the energy

balance method (EBM). The vibration level of the conductor is evaluated by determining

the balance between the energy imparted to the conductor by the wind and the energy dis-

sipated by the conductor (via conductor self-damping) and the added dampers. Oliveira

et al. [38] developed a dynamical model of aeolian vibration to predict the amplitude of

steady-state motion of the conductor based on EBM. They included a method for solving

the time-dependent Navier-Stokes equation. Kraus and Hagedorn [16] also employed the

EBM to examine vibration magnitudes. Their results were compared to those obtained

from a wind tunnel experiment. The optimal position of Stockbridge dampers along the

span of the conductor was investigated by Verma and Hagedorn [39]. To avoid locating

dampers on nodes for system natural frequencies of less than 50 Hz, they analytically

showed that it was sufficient to maintain approximately 1 m maximum distance between

adjacent dampers.

The method of impedance is also another method used to evaluate aeolian vibration of

a single conductor transmission lines. Tompkins et al. [40] examined the interaction of a

conductor with a damper using the electrical-mechanical impedance method. This model

was reformulated in solely mechanical-impedance terms by Rawlins [41] and then used

to analyze conductor vibrations. Further extension of the model was proposed by Nigol

and Houston [32] who included the boundary conditions at both ends and considered the

arbitrary location of the excitation source. Their model was experimentally verified and
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it was used to demonstrate optimum damping concepts.

A major drawback of both the impedance and EBM approach is the limitation to only

one-way coupling between the conductor and damper. Specifically, the dynamics of the

damper influenced that of the conductor but not the converse. Another weakness is that

these two methods ignore some crucial parameters of the damper or conductor such as

flexural rigidity of the conductor and messenger, and the mass of the damper. An attempt

to depart from the above-mentioned conventional methods of modeling a single-conductor

transmission line was reported in Refs. [2, 42, 43, 44]. Both conductor and damper were

modeled as one unified system in order to account for their two-way coupling. The finite

element method was used to determine the system natural frequencies and time responses.

While the efficacy of the finite element model was demonstrated, the procedure was very

complicated and computationally intensive. Further, the finite element method is an

approximate technique.

1.4 Objectives

The aim of the present study is to address shortcomings of the previous methods of

modeling a single-conductor transmission line by presenting analytical approaches that

yield exact solutions with minimal complications. Hitherto the analytical modelling and

analysis of the two-way coupling of the cable-damper system has not been investigated.

The objectives of this dissertation are threefold:

1. Conduct experiments to determine the damping characteristics, as well as, natural

frequencies and response of a single conductor with and without a Stockbridge

damper.

2. Develop novel analytical models of a single conductor with Stockbridge dampers.

3. Design a damping arrangement scheme by optimizing the location of the Stock-

bridge damper.

1.5 Organization of the thesis

In chapter 2, two sets of experimental analysis are presented to determine the damping

coefficient of the conductor and the Stockbridge damper. The generated data were then

used to validate the mathematical models in the next chapters. The first set of experi-

ments pertain solely to the Stockbridge damper that was directly mounted on the shaker.
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In the second set of experiments, the Stockbridge damper was attached to the span of a

conductor and the shaker was placed at mid-span to excite the conductor.

In chapter 3, the Stockbridge damper is reduced to a spring-mass-damper system,

hence the conductor-damper system is modeled as a beam with a spring-mass-damper.

Chapter 4 presents the analytical model of the conductor-damper system that is modeled

as a double beam system. In both chapters 3 and 4, expressions are presented for the

characteristic equations, mode shapes, and orthogonality conditions. Parametric studies

are conducted to examine the effect of conductor and damper parameters on the natural

frequency and response of the system.

Chapter 5 discusses the design of the damping arrangements scheme in order to

determine the optimal damper location required to protect the conductor from fatigue

failure. Finally, the conclusion and future work are discussed in chapter 6.



Chapter 2

Experimental Analysis

2.1 Introduction

This chapter describes the two sets of experiments that were carried out to determine the

equivalent damping coefficient of the Stockbridge damper and the self-damping ratio of

the conductor, as well as to validate the models outlined in the next chapters. The first

experiment is on the forced-response test of Stockbridge dampers on a shaker and the

second experiment pertained to a conductor with and without an attached Stockbridge

damper using the forced method as well. All the tests were performed in accordance

with IEEE [45] and IEC [46] standards. The equipment and apparatus used to conduct

the experiments are discussed in detail. Also, the procedure and results of each set of

experiments are outlined.

2.2 Apparatus

The main apparatus used to conduct the testing were: an electro-dynamic shaker, strain

gauge load cells, accelerometers, and charger amplifiers. An electro-dynamic shaker is

a vibration exciter capable of generating sinusoidal force. The shaker used for this test

was able to control the vibration amplitude and frequency to an accuracy of ±2%. The

disadvantage of the shaker was that frequency lower than 10 Hz could not be measured.

The load cell is a strain-gauge based sensor containing a Wheatstone bridge. When a

force is applied, the load cell experiences a change in strain which results in the unbalance

of the Wheatstone bridge. Two load cells were used in this experiment. The one depicted

in Fig. 2.1 measured the force of the shaker with a capacity of 2225 N. The other, depicted

in Fig. 2.2, was used to measure the tension of the conductor and has a capacity of 50

14
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Figure 2.1: Photograph of the conductor, shaker (B&K 4802), load cell, and accelerom-
eter.

kN.

The piezoelectric accelerometer, depicted in Fig. 2.3, is an electromechanical device

used to measure acceleration. It consists of two metal beams or microstructures that

have capacitance between them. The movement of one structure by an accelerative force

results in a change of capacitance. This capacitance is then converted to voltage through

some circuitry. The resulting voltage is related to the acceleration.

Charger amplifiers were used to filter electronic noise resulting from component pos-

sessing higher frequencies. Both the force and acceleration signals required filtering in

order to avoid problems due to aliasing (noise). Two charger amplifiers were used: one

for the piezoelectric accelerometer and the other for the load cell.

2.3 Stockbridge damper test

This section discusses the experimental analysis of the Stockbridge damper using the

forced response method. Measurements were taken of the force transmitted by the shaker

to the damper, the velocity of the damper, and the phase angle between the force and

the velocity. These measurements were used to calculate the damping coefficient of the
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Figure 2.2: Photograph of the Load cell for tension measurement.

Figure 2.3: Free loop piezoelectric accelerometer.
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tested Stockbridge dampers. The resonant frequencies of the damper were then obtained

using the damping coefficient curve. In the following subsection, the forced response

method, the test set-up, procedure, and results are presented.

2.3.1 Forced response method

In the forced-response method (see IEEE guide [45]), the damper is directly mounted on

a shaker and the damper is tested at frequencies within the range of Strouhal frequencies

corresponding to wind velocity of 1-7m/s. IEEE guide recommends a constant damper

clamp velocity. The power dissipated by the damper is given as

Pd =
1

2
FVc cosφFV (2.1)

where F is the force transmitted to the shaker by the damper, Vc is the measured velocity

at the clamp, and φFV is the phase angle between the force and the velocity.

2.3.2 Experimental procedure and results

The main objective of this test is to determine the characteristics of the Stockbridge

damper. The Stockbridge damper is often postulated to be dependent on the forcing

frequency and the conductor vibration velocity at the location of the damper clamp

[31, 32, 47, 48]. This Stockbridge damper can be modeled as an equivalent viscous

damping coefficient [49]. Following [31], the equivalent damping coefficient, cd, of the

Stockbridge damper can be expressed as:

cd =
Edω

πV 2
c

(2.2)

where

Ed =
Pd

f
(2.3)

Ed and Pd are the energy and power dissipated by the damper over a complete cycle,

respectively. The excited frequency in Hz is denoted by f .

A schematic of the experimental set-up is shown in Fig. 2.4. The Stockbridge damper

was mounted on an electrodynamic shaker. A load cell was installed between the shaker

and the fixture to measure the delivered force and an accelerometer was placed at the

clamp to measure the velocity of the damper. The characteristics of the tested Stock-

bridge damper are as follows: the flexural rigidity is EmIm = 31.8 Nm2 and mass per unit

length is mm = 0.25 kg/m. The mass of the right and left counterweights are respectively
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m1 = 3.4 kg and m2 = 1.46 kg. The length of the messenger on the right and left are l1

= 0.22 m and l2 = 0.3 m, respectively.

The Stockbridge damper was excited in the range of wind-induced vibration (sweep)

at a constant velocity of 100 mm/s. The frequency range was confined to frequencies

greater than 10 Hz because the shaker was ineffective at frequencies lower than 10 Hz.

Both load cell and accelerometer were connected to a dynamic signal analyzer through

charge amplifiers. For each tested frequency, values were recorded for the input force from

the shaker, velocity at the clamp, and phase angle between the force and the velocity. The

recorded frequency, force, and velocity at the clamp are employed in Eq. (2.2) to obtain

the equivalent damping coefficient of the Stockbridge damper. A plot of cd against the

recorded frequencies is shown in Fig. 2.5. The frequencies corresponding to the observed

peaks are the resonant frequencies of the Stockbridge damper.

Figure 2.4: Schematic of the Stockbridge damper experimental set-up

2.4 Conductor test

The experimental data of the conductor were also acquired through the forced response

method which was described in the previous section. The main objective herein was

to determine the conductor self-damping, the natural frequency and response of the

conductor-damper system. The conductor, Drake 795 Kcmil, was tested at 20 and 25

%RTS (rated tensile strength). The testing procedure can be described in three steps.

The first step was to establish the resonant frequencies. The second was to locate the

antinode and the last step was to measure and record the vibration amplitude of this

antinode, excitation force, and phase angle between the force and the vibration amplitude.
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Figure 2.5: Equivalent viscous damping coefficient of the Stockbridge damper

It is noted that after reaching a stationary condition, all the energy imparted to

the span by the shaker is equal to that dissipated by the conductor over one vibration

cycle; that is, all the energy introduced by the shaker is dissipated by the conductor

self-damping. As such, the energy dissipated by the conductor is given as [46]

Ediss = πFyf sin(θd) (2.4)

where F is the driving force from the shaker, yf is the displacement of the conductor at

the location shaker (0 to peak), θd is phase angle between displacement and driving force.

The maximum kinetic energy of the cable is given as

Ek,max =
1

4
mcLcω

2y0 (2.5)

where mc is the conductor mass per unit length, Lc is the span length, y0 denotes the

antinode vibration amplitude and ω is the corresponding resonant circular frequency.

The non-dimensional damping ratio is defined as

ζ =
1

4π

Ediss
Ek,max

(2.6)

The expression of the damping ratio of the conductor is now obtained by substituting
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Eqs. (2.4) and (2.5) into Eq. (2.6)

ζ =
Fyf sin θd
mLω2y0

(2.7)

2.4.1 Experimental procedure

The experimental investigations were carried out on a 27.25 m test span depicted in

Fig. 2.6. A schematic of the test set-up is depicted in Fig. 2.7. The conductor was

attached to a dead-end clamp on both ends, which were connected to linear bear-

ings mounted on intermediate abutments made of steel reinforced concrete as shown

in Fig. 2.8. The conductor was then locked solidly to an insulator clamp at each end.

The clamps were suspended on steel reinforced concrete towers as depicted in Fig. 2.9.

A hydraulic ram (cylinder) as depicted in Fig. 2.10 was installed at the south-end of

the test-span to string the conductor at a desired tension. A cantilever weight (pulley

system) shown in Fig. 2.11 was used at the north-end of the test-span to maintain a

constant tension throughout the span. A maximum torque of 40 Nm was used to secure

the damper on the conductor.

One load cell was placed at the end to monitor the tensile load. The other load cell and

an accelerometer were used to measure the input force and velocity from the shaker to the

conductor, respectively. The shaker was placed at mid-span. Another accelerometer was

placed on an antinode of the corresponding forcing frequency to measure the vibration

displacement.

The conductor with and without damper was then vibrated at various frequencies

and power levels based on the Alcoa wind power curve derived from wind tunnel tests

on flexible cable [15]. The voltage signal from the load cell and accelerometer were sent

through charger amplifiers(low-pass filter) by means of coaxial cable and then to a digital

data acquisition system for recording.

2.4.2 Experimental results

The parameters of the tested conductor and Stockbridge damper are tabulated in Table

2.1. The damper was attached at a distance of 0.94 m from the last point of contact of

the suspension clamp and the conductor.

The frequency response curve of the signal analyzer was used to measure the natural

frequencies. That is, the peaks in the amplitude portion of the frequency-response func-

tion give the natural frequencies of the conductor. This was observed when the force is

at minimum and the velocity is at maximum.
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Figure 2.6: Conductor span with a Stockbridge damper.

Figure 2.7: Schematic of experimental set-up.
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Figure 2.8: Intermediate abutment dead-end clamps.

Figure 2.9: Steel reinforced concrete towers and suspension clamp.
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Figure 2.10: Hydraulic cylinder.

Figure 2.11: Cantilever weight (pulley system).
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Table 2.1: Conductor and damper parameter

Parameter

h 0.05 m
EcIc 1602 Nm2

mc 1.628 kg/m
D 28.143mm
RTS 139.2kN
m1 3.4 kg
m2 1.46 kg
I1 0.0175 kgm2

I2 0.015 kgm2

EmIm 31.8 Nm2

Lm1 0.3 m
Lm2 0.22 m
mm 0.25 kg/m

The natural frequencies of the conductor with and without a Stockbridge damper

are presented in Table 2.2 for 20 and 25% RTS (rated tensile strength). It is observed

from Table 2.2 that the natural frequencies of the bare conductor are slightly higher than

those of the loaded conductor. The measured vibration amplitudes of the conductor with

and without damper are shown in Fig. 2.12. As expected, the vibration amplitude of the

conductor with and without damper decreases with increasing frequency. This is because

the conductor self-damping increases with the frequency. However, the rate at which the

vibration amplitude of the conductor with damper decreases is much higher than that

of the conductor without damper. This is an indication that attaching a Stockbridge

damper to the conductor significantly reduces the vibration amplitude.

With regard to the conductor self-damping ratio, only the bare conductor was tested

(i.e., no damper was attached). The recorded data indicate that the damping ratio

is significantly dependent on the excitation frequency, vibration displacement, and the

conductor tension. This conclusion is in agreement with [34]. The conductor self-damping

ratio can be expressed as

ζ =
CfαY β

T γ
(2.8)

where f is the excitation frequency in Hz, Y is non-dimensional peak-to-peak displace-

ment (non-dimensionalized with respect to the conductor diameter),T is the conductor

tension, C, α, β, and γ are constants. Using linear regression analysis, the constants in

Eq.(2.8) were determined to be C = 20760, α = 1.406, β = 0.298, and γ = 1.835. It

should be noted that the linear regression analysis was based on the experimental data
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Table 2.2: Experimental natural frequencies (Hz).

Mode
T = 27.84 kN T = 34.8 kN

Bare conductor Loaded conductor Bare conductor Loaded conductor
1 - - - -
2 - - - -
3 - - - -
4 - - - -
5 - - - -
6 - - - -
7 12.2330 12.0956 13.6720 13.0749
8 15.1490 14.3910 16.6780 15.5104
9 17.2000 16.5942 19.2800 17.5942
10 20.1180 19.1878 21.9522 20.8396
11 22.2010 21.1717 24.9180 22.7073
12 25.1050 23.6302 27.2153 24.5587
13 27.4090 25.3417 30.8245 27.0885
14 31.1070 27.7020 33.6452 27.7641
15 32.9240 29.3096 36.1602 31.4490
16 34.3010 31.4913 38.9175 34.0577
17 36.1900 33.8856 42.2660 36.5584
18 38.9530 36.6252 44.2518 40.0444
19 41.5690 39.3756 47.2281 42.6807
20 44.9530 42.6673 50.0215 45.7943

Figure 2.12: Frequency response of conductor with and without damper.
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Figure 2.13: Conductor damping constant for fixed frequency for T = 20% RTS.

for T= 10, 20, 25, and 40% RTS. However, because of company confidentiality agreement

only the 20 and 25 % RTS data are presented and the results are shown in Figs. 2.13 to

2.16. It should be noted that measurements were repeated twice to minimize the effect

of random error.

Figs. 2.13 and 2.14 show plots of the damping ratio against the non-dimensional peak-

to-peak amplitude. At every resonant frequency, a line of best fit is plotted. Both figures

indicate similar trends in that the damping ratio increases with increasing displacement.

However, the damping ratio values in Fig. 2.13 (i.e., for T = 20% RTS) are higher than

those in Fig. 2.14 (i.e., for T = 25% RTS). This implies that increasing the tension

reduces the self-damping of the conductor.

For given displacement of Y/D = 0.1 and Y/D = 0.3, plots of damping ratio against

resonant frequencies are depicted in Figs. 2.15 and 2.16 for T = 20% RTS and T = 25%

RTS, respectively. These plots indicate that the conductor-self damping increase with

increasing frequency and the figure with the lower tension (i.e. Fig. 2.15) exhibits higher

conductor self-damping.

2.5 Summary

Two sets of experiments were conducted to determine the characteristics of the Stock-

bridge damper and the conductor. In the first set of experiments the Stockbridge damper
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Figure 2.14: Conductor damping constant for fixed frequency for T = 25% RTS.

Figure 2.15: Conductor damping constant for a fixed vibration amplitude for T = 20%
RTS.
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Figure 2.16: Conductor damping constant for fixed vibration amplitude for T = 25%
RTS.

was mounted on the shaker and measurements were recorded for the excitation force, ve-

locity, vibration frequency, and phase angle between the force and the velocity. These

recorded data were used to obtain the damping coefficient of the Stockbridge damper.

It was demonstrated that this damping coefficient is dependent on the excitation fre-

quency. It was also observed that the tested Stockbridge damper possesses four resonant

frequencies which confirm the physical nature of asymmetric Stockbridge damper.

In the second set of experiments, a conductor with and without a damper was strung

between the concrete blocks and a shaker was placed at mid-span to excite the system.

The natural frequency and the vibration response of the conductor with and without

a damper were recorded. Linear regression analysis was used to determine an explicit

expression for the damping ratio of the conductor. This damping ratio was found to be

significantly dependent on the tension, excitation frequency and vibration amplitude.



Chapter 3

Single Beam/Lump Mass System

3.1 Introduction

This chapter discusses a novel model of a vibrating single-conductor transmission line

carrying Stockbridge dampers in which the conductor is modeled as a beam subjected to

a tensile load and the damper is reduced to an equivalent discrete mass-spring-mass and

viscous damping system. Numerous researchers (see Refs. [50]-[78] and the references

mentioned therein) have investigated the vibration of beams with an attached in-span

mass and/or spring-mass system. In spite of these interests, there is no investigation

where the beam is subjected to an axial load while supporting an in-span mass-spring-

mass and viscous damping system.

A schematic of the transmission line system is depicted in Fig. 3.1. The equivalent

mass and stiffness of the messenger are determined on the premise that the damper

consisted of the two cantilevered beams with a tip mass as depicted in Fig. 3.2. The

equivalent viscous damping is obtained through experiments using the forced response

method (IEEE guide [45]) as described in the previous chapter.

The equations of motion are derived using Hamilton’s principle. Explicit expressions

are presented for the characteristic equation and mode shapes. The model is validated

using both the numerical and experimental results in the literature. Parametric studies

are conducted to investigate the effect of the magnitude and location of the damper on

the natural frequency. The role of the Strouhal frequency on the vibration response is

also examined. Some of the content in this chapter is published in [76].

29
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Figure 3.1: Schematic of a simply-supported beam with an in-span mass-spring-mass
system.

Figure 3.2: Schematic of Stockbridge damper messenger with counterweight.

3.2 Mathematical formulation

Following [30], the Stockbridge damper can be reduced to an equivalent mass-spring-mass

and damper system. The equivalent spring stiffness and suspended mass are denoted by

k and Md, respectively.

k = 2

(
3EmIm
L3
m

)
(3.1)

Md =
33mmLm

140
+m1 +m2 (3.2)

where Em, Im, and mm are the messenger elastic modulus, second moment of area, and

mass per unit length, respectively. The masses of the right-hand side and left-hand side

ends of the messenger are denoted by m1 and m2, respectively. The equivalent stiffness

is the parallel combination of the stiffnesses of the two cantilevered beams, each with a

tip mass.

The vertical displacements of the mass attached to the conductor Mc and the sus-

pended mass Md are denoted by z0(t) and z(t), respectively. The system kinetic T and
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potential V energy may then be expressed as

T =
N∑
i=1

1

2
mc

Li∫
Li−1

ẇ2
i (x, t)dx+

1

2
Mdiżi

2 +
1

2
Mci ˙z0i

2

 (3.3)

V =
N∑
i=1

1

2
EcIc

Li∫
Li−1

w′′i
2
(x, t)dx+

1

2
cdi(żi − ˙z0i)

2

+
1

2
k(zi − z0i)2 +

1

2
T

Li∫
Li−1

w′i
2
(x, t)dx

 (3.4)

where z0(t) = w1(L1, t), EcIc is the conductor flexural rigidity, mc is mass per unit length

of the conductor, T denotes the conductor pretension. The overdots and primes denote

temporal and spatial derivatives, respectively. The subscript “i” denotes the position

of the mass-spring-damper-mass system and “N” is the total number of attached mass-

spring-damper-mass systems.

These energies are introduced into the Hamilton’s principle to obtain the equations

of motion and continuity conditions

EcIcw
′′′′
i +mcẅi − Tw′′i = 0 (3.5)

Mdiz̈ + ki(zi − z0i) + cd(żi − ż0i) = 0 (3.6)

w1(0, t) = w′′1(0, t) = w2(0, t) = w′′2(0, t) = 0 (3.7)

wi(Li, t) = wi+1(Li, t) (3.8)

w′i(Li, t) = w′i+1(Li, t) (3.9)

w′′i (Li, t) = w′′i+1(Li, t) (3.10)

−Mcz̈0i + EcIcw
′′′
i (Li, t)− Tw′i(Li, t)− k(z0i − zi)− cd(ż0i − żi)

−EcIcw
′′′
i+1(Li, t) + Tw′′′i+1(Li, t) = 0 (3.11)

3.2.1 Frequency equation and mode shapes

Assuming the system exhibits harmonic vibration such that the deformations wi(xi, t)

and displacements z(t) are expressed as

wi(xi, t) = LWi(ξi)e
jωt for i = 1, 2 (3.12)

zi(t) = LAie
jωt (3.13)
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where Wi(ξi) and Ai are the respective non-dimensional amplitudes of wi(xi, t) and zi(t),

and ω is the circular natural frequency of the system. Substituting Eqs. (3.12) and (3.13)

into Eqs. (3.5)-(3.11) and ignoring the viscous damping component yield the following

non-dimensional system equations

W ′′′′
i (ξi)− s2W ′′

i (ξi)− Ω4Wiξi) = 0 (3.14)

Ai −KiWi(ξi) = 0 (3.15)

where

Wi(ξi) = c1i sinαξi + c2i cosαξi + c3i sinh βξi + c4i cosh βξi (3.16)

Substituting Eqs. (3.12) and (3.13) into Eqs. (3.7)-(3.11) yields

W1(0) = W ′′
1 (0) = W2(0) = W ′′

2 (0) = 0 (3.17)

Wi(ξi) = Wi+1(ξi) (3.18)

W ′
i (ξi) = W ′

i+1(ξi) (3.19)

W ′′
i (ξi) = W ′′

i+1(ξi) (3.20)

W ′′′
i (ξi)−W ′′′

i+1(ξi)− ηiWi(ξi) + γiAi = 0 (3.21)

where the following nondimensional variables are used

Ai = KWi(ξi), Ki =
ki

ki −Mdiω2
, s2 =

TL2

EcIc
, (3.22)

Ω4 =
mcω

2

EcIc
L4, ηi =

ki − ω2Mci

EcIc
L3, γi =

kiL
3

EcIc
and ξi =

xi
L

(3.23)

Substituting Eq. (3.15) into Eq. (3.21) yields

W ′′′
i (ξi)−W ′′′

i+1(ξi) +Wi(ξi)(Kiγi − ηi) = 0 (3.24)

The use of the classical boundary conditions at each end, Eqs. (3.17), along with

Eqs. (3.18)-(3.20) and Eq. (3.24) yields a set of 4+4N algebraic homogeneous equations (4

equations from the boundary condition at the ends and 4N equations from the continuity

relations). These algebraic equations are linear in the unknown coefficients (C’s) and

they can be presented in matrix format as

[F ]
(4+4N)X(4+4N)

{C}
(4+4N)X(1)

= {0}
(4+4N)X(1)

(3.25)
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For the sake of simplicity, the following notations are introduced

sα = sinα, cα = cosα

sh
β

= sinh β, ch
β

= cosh β

s
αi

= sinα(ξi), c
αi

= cosα(ξi),

sh
βi

= sinh β(ξi), ch
βi

= cosh β(ξi),

ε = K1γ1 − η1.

The elements of the matrix F are expressed as

F(4i−1,4i−3) = s
αi

F(4i−1,4i−2) = c
αi

F(4i−1,4i−1) = sh
βi

F(4i−1,4i) = ch
βi

F(4i−1,4i+1) = −s
αi

F(4i−1,4i+2) = −c
αi

F(4i−1,4i+3) = −sh
βi

F(4i−1,4i+4) = −ch
βi

F(4i,4i−3) = αc
αi

F(4i,4i−2) = −αs
αi

F(4i,4i−1) = βch
βi

F(4i,4i) = βsh
βi

F(4i,4i+1) = −αc
αi

F(4i,4i+2) = αs
αi

F(4i,4i+3) = −βch
βi

F(4i,4i+4) = −βsh
βi

F(4i+1,4i−3) = α2s
αi

F(4i+1,4i−2) = −α2c
αi

F(4i+1,4i−1) = β2sh
βi

F(4i+1,4i) = β2ch
βi

F(4i+1,4i+1) = α2s
αi

F(4i+1,4i+2) = α2c
αi

F(4i+1,4i+3) = −β2sh
βi

F(4i+1,4i+4) = −β2ch
βi

F(4i+2,4i−3) = −α3c
αi

+ εs
αi

F(4i+2,4i−2) = α3s
αi

+ εc
αi

F(4i+2,4i−1) = β3ch
βi

+ εsh
βi

F(4i+2,4i) = β3sh
βi

+ εch
βi

F(4i+2,4i+1) = α3c
αi

F(4i+2,4i+2) = −α3s
αi

F(4i+2,4i+3) = −β3ch
βi

F(4i+2,4i+4) = −β3sh
βi

F
(1,1)

, F
(1,2)

, F
(1,3)

, F
(1,4)

, F
(2,1)

, F
(2,2)

, F
(2,3)

, F
(2,4)

depends on the boundary conditions at

the origin x = 0. F
(q−1,p+1)

, F
(q−1,p+2)

, F
(q−1,p+3)

, F
(q−1,p+4)

, F
(q,p+1)

, F
(q,p+2)

, F
(q,p+3)

, F
(q,p+4)
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are obtained from the boundary conditions at x = L, where q = 4N + 4 and p = 4N .

A non-trivial solution is obtained when matrix F is singular. Hence, the characteristic

or frequency equation is obtained as

det([F ]
(4+4N)X(4+4N)

) = 0 (3.26)

For a single conductor with one damper the frequency equation is expressed as

(k − ω2Md)(−βηα2cαθshβ + αηβ2sαchβ

− αηβ2sαchβθ − αβ2γKsαchβ + αβ2γKsαchβθ

+ βηα2cαshβ − βγKα2cαshβ − α3γKsαchβ

+ α3γKsαchβθ − β3γKcαshβ + β3ηcαshβ (3.27)

− 2αβ5sαshβ − 2α5βsαshβ − β3ηcαθshβ

− 4α3β3sαshβ + α3ηsαchβ − α3ηsαchβθ

+ βγKα2cαθshβ + β3γKcαθshβ) = 0

where

φ = cα1α
3 + s1(η − γK)

ε = −chβ1β3 + shβ1(η − γK)

κ = cα2α
3

χ = −chβ2β3

cαθ = cos(α{ξ1 − ξ2})

chβα = cosh(β{ξ1 − ξ2})

The characteristic equation is multiplicatively decomposed into a component that

yielded the natural frequency of the suspended simple discrete spring-mass system and

another that provided the frequency of the more complex system.

The mode shapes associated with each beam segment is obtained by substituting the

integration constants from Eq. (3.25) into Eq. (3.16). For a single conductor with one
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damper, the shape functions can be written as

W1(ξ1) = c11 sinαξ1 (3.28)

W2(ξ2) = c11
s1
s2

sinαξ2 (3.29)

3.2.2 Orthogonality relations

The solution of the equations of motion, Eqs. (3.5) and (3.6), can be expressed as

wi(x, t) = Yi(x)(r)ejωt (3.30)

zi(t) = Z
(r)
i ejωt (3.31)

where

Yi(x) = LWi(ξi) (3.32)

Zi(t) = LAi (3.33)

Substituting Eqs. (3.30) and (3.31) into Eq. (3.6) and multiplying the resulting

equation by Z(s) yields

− kZ(r)
i Z

(s)
i +Mdω

2
rZ

(r)
i Z

(s)
i − jωrcdZ

(r)
i Z

(s)
i = −Y ∗(r)i Z

(s)
i (k + jωrcd) (3.34)

Interchanging “r” and “s” in Eq. (3.34) and subtracting the resulting equation from

Eq. (3.34) yields

(
ω2
r − ω2

s

)
MdZ

(r)
i Z

(s)
i − jcd(ωr − ωs)Z

(r)
i Z

(s)
i = −k

(
Y
∗(r)
i Z

(s)
i − Y

∗(s)
i Z

(r)
i

)
jcd

(
ωrY

∗(r)
i Z

(s)
i − ωsY

∗(s)
i Z

(r)
i

)
(3.35)

With reference to the equations of motion of the beam, substituting Eqs. (3.30) and

(3.31) into Eq. (3.5), then multiplying the resulting equation by Y(s) and integrating over

the entire length of the beam, as well as applying the continuity conditions, Eqs. (3.18)-
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(3.21), with any classical boundary conditions except those for free ends yields

ω2
r

N∑
i=1

mc

Li∫
0

Y
(r)
i Y

(s)
i dx+McY

∗(r)
i Y

∗(s)
i

− jcdωr

N∑
i=1

Y
∗(r)
i Y

∗(s)
i

=
N∑
i=1

EcIc

Li∫
0

Yi
′′(r)Yi

′′(s)dx+ T

Li∫
0

Yi
′(r)Yi

′(s)dx+ kY
∗(r)
i Y

∗(s)
i −

kZ
(r)
i Y

∗(s)
i − jcdωrZ

(r)
i Y

∗(s)
i

)
(3.36)

Re-writing Eq. (3.36) and interchanging “r” and “s” yields

ω2
s

N∑
i=1

mc

Li∫
0

Y
(s)
i Y

(r)
i dx+McY

∗(s)
i Y

∗(r)
i

− jcdωs

N∑
i=1

Y
∗(s)
i Y

∗(r)
i

=
N∑
i=1

EcIc

Li∫
0

Yi
′′(s)Yi

′′(r)dx+ T

Li∫
0

Yi
′(s)Yi

′(r)dx+ kY
∗(r)
i Y

∗(s)
i −

kZ
(s)
i Y

∗(r)
i − jcdωsZ

(s)
i Y

∗(r)
i

)
(3.37)

Subtracting Eq. (3.37) from Eq. (3.36) and substituting Eq. (3.35) into the resulting

equation yields

(
ω2
r − ω2

s

) N∑
i=1

mc

Li∫
0

Y
(r)
i Y

(s)
i dx+McY

∗(r)
i Y

∗(s)
i +MdZ

(r)
i Z

(s)
i


− jcd (ωr − ωs)

(
Y
∗(r)
i Y

∗(s)
i + Z

(r)
i Z

(s)
i

)
= 0 (3.38)

From Eq. (3.38), the first set of orthogonality relation is obtained as

N∑
i=1

mc

Li∫
0

Y
(r)
i Y

(s)
i dx+McY

∗(r)
i Y

∗(s)
i +MdZ

(r)
i Z

(s)
i

 = δrs (3.39)

where δrs is the Kronecker delta. The second set of orthogonality relation is expressed as

N∑
i=1

(
Y
∗(r)
i Y

∗(s)
i + Z

(r)
i Z

(s)
i

)
= δrs (3.40)

The use of Eqs. (3.34) and (3.37) with the aid of some algebraic manipulation yields
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the third and fourth set of orthogonality relation. This may be written as

N∑
i=1

EcIc

Li∫
0

Yi
′′(r)Yi

′′(s)dx+ T

Li∫
0

Yi
′(r)Yi

′(s)dx

+ k
(
Y
∗(r)
i Y

∗(s)
i − Z(s)

i Y
∗(r)
i − Z(r)

i Y
∗(s)
i + Z

(r)
i Z

(s)
i

)
= δrs (3.41)

N∑
i=1

(
Y
∗(r)
i Z

∗(s)
i + Z

(r)
i Y

(s)
i

)
= δrs (3.42)

3.2.3 Forced vibration formulation

Given that the validation of the forced response was based on the experiment reported in

Ref. [32], the excitation force was from the mid-span located electrodynamic shaker. This

force can be expressed as F (x, t) = f(t)δ(x− Lc/2), and the forced-vibration equations

may be written as

mcẅi + EcIcw
′′′′

i − Tw′′i = F (x, t)δ (x− 0.5) (3.43)

Mdiz̈i + ki (zi − wi(Li)) + cdi (żi − ẇi(Li)) = 0 (3.44)

Using the assumed mode method, the transverse displacement of the beam and the

displacement of vibration absorber may be expressed as

wi =
Nr∑
r=1

qr(t)Y
(r)
i (x) (3.45)

zi =
Nr∑
r=1

qr(t)Z
(r)
i (x) (3.46)

where Nr is the number of retained modes, Y
(r)
i (x) is the mode shape corresponding to

the rth mode, Z
(r)
i is the displacement amplitude of the absorber, and qr(t) is the rth

generalized coordinate. Substituting Eqs. (3.45) and (3.46) into Eqs. (3.43) and (3.44),

respectively yield

mc

Nr∑
r=1

q̈rY
(r)
i + EcIc

Nr∑
r=1

qrYi
′′′′(r) − T

Nr∑
r=1

qrYi
′′(r) = F (t)δ (x− 0.5) (3.47)

Mdi

Nr∑
r=1

q̈rY
(r)
mi + ki

Nr∑
r=1

qr

(
Z

(r)
i − Y

(r)
ci (Li)

)
+ cdi

Nr∑
r=1

q̇r

(
Z

(r)
i − Y

(r)
ci (Li)

)
= 0 (3.48)
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Multiplying Eqs. (3.47) and (3.48) by Y
(s)
i and Z

(s)
i , respectively, adding the two

resulting equations, integrating over the entire length of the beam, and applying the

continuity conditions, Eqs. (3.18)-(3.21), with any classical boundary condition (except

for free ends) yield

Nr∑
r=1

q̈r

mc

Li∫
0

Y
(r)
i Y

(s)
i dx+MciY

∗(r)
i Y

∗(s)
i +MdiZ

(r)
i Z

(s)
i


+ cdi

Nr∑
r=1

q̇r

{
Y
∗(r)
i Y

∗(s)
i − Z(s)

i Y
∗(r)
i − Z(r)

i Y
∗(s)
i + Z

(r)
i Z

(s)
i

}

+
Nr∑
r=1

qr


Li∫
0

(
EcIc Yi

′′(r)Yi
′′(s) + T Yi

′(r)Yi
′(s)
)
dx

+ki

(
Y
∗(r)
i Y

∗(s)
i − Z(s)

i Y
∗(r)
i − Z(r)

i Y
∗(s)
i + Z

(r)
i Z

(s)
i

)}
= F (x, t)Y

(s)
i (0.5) (3.49)

Use of the orthogonality relations, Eqs. (3.39)-(3.42), yields the following uncoupled

differential equation

[Mrr] {q̈r}+ [Crr] {q̇r}+ [Krr] {qr} = {Fr} (3.50)

where the matrices Mrr, Cr, and Krr are expressed as

Mrr =
N∑
i=1

mc

Li∫
0

Y
(r)2

i dx+MciY
∗(r)2
i +MdiZ

(r)2

i

 (3.51)

Crr =
N∑
i=1

cdi

(
Y
∗(r)
i − Z(r)

i

)2
(3.52)

Kr =
N∑
i=1


Li∫
0

(
EcIc Yi

′′(r)2 + T Yi
′(r)2
)
dx (3.53)

+ki

(
Y
∗(r)
i − Z(r)

i

)2}
Fr = F (x, t)Y

(r)
i (0.5) (3.54)

The amplitude of the damper can be readily expressed as

Z
(r)
i = κiY

∗(r)
i (3.55)
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where

κi =

(
1 + (2ςiri)

2

(1− r2i )2 + (2ςiri)2

)1/2

, ςi =
cdi

2Mdiωsi

,

ri =
Ω

ωsi

, ωsi =

√
ki
Mdi

.

3.3 Discussion

3.3.1 Free vibration analysis

The free vibration analyses are based on a 795-KCMIL-DRAKE-ACSR conductor with

the following parameters: conductor diameter d = 28.1 mm, flexural rigidity EcIc = 1602

N/m, mass per unit length mc = 1.6286 kg/m, and the tension T = 27840 N. The

characteristics of the Stockbridge damper are as follows: the flexural rigidity is EmIm =

31.8 Nm2 and mass per unit length is mm = 0.25 kg/m. The mass of the right and left

counterweights are m1 = 3.4 kg and m2 = 1.46 kg. The length of the messenger on the

right and left are l1 = 0.3 m and l2 = 0.22 m. The parameters of the equivalent reduced

model are: suspended mass Md = 4.83 kg, clamp mass Mc = 0.2 kg and equivalent spring

stiffness k = 1356.96 N/m.

The first ten natural frequencies are tabulated in Table 3.1. The results in the second

column are obtained using Eq. (3.27), the frequency equation. The entries in the third

column are the results obtained via a finite element (FE) implementation of the conductor

and mass-spring-mass model. A good agreement is observed between the values of the

exact solution and the FE method. This observation is true for the results by Barry et

al. [2] and [42], which are presented in the fourth column. The second natural frequency

is not captured in Refs. [2] and [42]. This frequency, 16.5798 rad/s, is in close proximity

to that of the suspended spring-mass system (i.e., ω =
√

k
Md
≈ 16.7603 rad/s), and

its absence may be explained by their formulation method. The damper employed in

Refs. [2] and [42] is modelled as a system comprising two independent beams that

are cantilevered to a rigid link which is connected to the conductor. Each cantilevered

beam models a segment of the messenger and carries a tip mass which representes the

counterweight.

A plot of the mode shapes corresponding to the lowest five mode shapes of the system

is depicted in Fig. 3.3. Except for the second mode shape, these mode shapes can be

related to the mode shapes of the bare beam. As observed earlier, the second mode

frequency is in the proximity of the natural frequency of the suspended spring-mass
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Table 3.1: The first ten natural frequencies obtained using various methods for conductor
in-span mass Mc = 0.2 kg, L = 27.25 m and damper location ξ1 = 0.05.

Mode Natural frequency (rad/s)
Present FEM FEM Bare beam

(Beam-mass-spring-damper) (Double- beam) Ref.[2]
1 14.9825 14.9825 15.0679 15.0866
2 16.5774 16.5798 - 30.2077
3 30.2624 30.2624 30.0462 45.3978
4 45.4512 45.4512 44.7763 60.6911
5 60.7353 60.7354 58.9636 76.1214
6 76.1411 76.1412 72.3839 91.7220
7 91.6983 91.6986 85.6873 107.5255
8 107.4380 107.4389 99.9189 123.5638
9 123.3925 123.3948 115.1862 139.8682
10 139.5951 139.6002 131.1940 156.4688

system. It is conjectured that the inertia/mass of the damper effectively divides the

conductor into two segments.

Figure 3.3: The mode shapes corresponding to the lowest five natural frequency of the
conductor with mass-spring-mass system.
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The influences of the relative magnitudes of the in-span mass Mc and the suspended

mass Md on the system natural frequencies are examined by maintaining their total sum

constant — in the reported simulation Mc + Md = 5 kg. The results are tabulated in

Table 3.2. Using the scenario where the two masses are equal as a reference, it is observed

that increasing the in-span mass Mc (and simultaneously decreasing the suspended mass

Md in order to maintain the constant total mass condition) increases the system natural

frequencies of all five modes. This is plausible because increasing the in-span mass

effectively increases the system stiffness (via the segmentation).

Table 3.2: The lowest five natural frequencies when the span length L = 200 m, in-span
mass-spring-mass system is located at ξ1 = 0.0333, and the magnitudes of the in-span
mass Mc and suspended mass Md are selected such that their sum Mc +Md = 5 kg.

Mass (kg) Natural frequency (rad/s)
Mc,Md ω1 ω2 ω3 ω4 ω5

0, 5 2.0544 4.1067 6.1537 8.1899 10.2016
1, 4 2.0544 4.1067 6.1543 8.1930 10.2153
2, 3 2.0544 4.1068 6.1547 8.1953 10.2239

2.5, 2.5 2.0544 4.1068 6.1549 8.1961 10.2268
3, 2 2.0544 4.1068 6.1551 8.1967 10.2290
4, 1 2.0544 4.1068 6.1552 8.1975 10.2317
5, 0 2.0544 4.1068 6.1553 8.1978 10.2325

To further examine the effects of the in-span and suspended masses on the system

natural frequencies, both masses are varied from 0 to 5 kg. The first five natural frequen-

cies are respectively depicted in Figs. 3.4 to 3.8. For a given in-span mass, the natural

frequency decreases with increasing suspended mass. An identical, but less pronounced,

effect is observed when the suspended mass is fixed while increasing in-span mass.

Fig. 3.9 shows the effect of the damper location on the system natural frequencies.

The frequency at each damper location is normalized with respect to the frequency cor-

responding to the damper location ξ1 = 0.004. The normalizing frequencies are 2.0548,

4.1096, 6.1645, 8.2195 and 10.2746 rad/s, corresponding to modes 1 through 5, respec-

tively. One half of the conductor length is plotted because of symmetry. The first mode

decreases monotonically with decreasing distance of the damper from the conductor mid-

point. This is because the effective stiffness of the system decreases as the damper location

approaches the centre of the conductor. The other four modes are not uniquely affected

in that they all decrease and increase depending on whether they are approaching a node

or an antinode. The rate of change is more pronounced in the fifth frequency.
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Figure 3.4: Effect of the mass Md and Mc on the fundamental frequency.

Figure 3.5: Effect of the mass Md and Mc on the second natural frequency.

3.3.2 Forced vibration analysis

With regard to forced vibration analysis, the validation of the present model is examined

in two-fold: the first employes the indoor experimental data reported in Ref. [32] and the
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Figure 3.6: Effect of the mass Md and Mc on the third natural frequency.

Figure 3.7: Effect of the mass Md and Mc on the fourth natural frequency.

second relies on the finite element model of Ref. [2]. In the case of the indoor experiment,

a 585 Kcmil (26/7) ASCR conductor was strung between two rigid terminals that were

23.5 m apart. Two identical dampers were attached at a distance of 1.73 m from each

end and a shaker was mounted at mid-span. The shaker force and the mid-span velocity
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Figure 3.8: Effect of the mass Md and Mc on the fifth natural frequency.

Figure 3.9: The effect of the damper location on natural frequencies for span length L =

200 m. The frequencies are nondimensionalized as
ωi

ωξ=0.004

.

of the conductor were measured for various resonant frequencies. The tested conductor

had the following characteristics: diameter D = 24.1 m, mass per unit length m = 1.19

kg/m, rated tensile strength (RTS) of 105 kN. The tested damper was a single degree-of-
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freedom damper and it comprised a mass Md = 3.19 kg, spring stiffness k = 3800 N/m,

and an equivalent viscous damping cd = 177 Ns/m. A conductor tension of 25% RTS

was considered. The experimental results were based on the optimum curve depicted in

Fig. 11 of Ref. [32]. The mass of the clamp is ignored in order to properly represent the

tested damper. The comparison of the experimental data and the computed results from

the proposed model are presented in Fig. 3.10. They show very good agreement.

Figure 3.10: Validation of the proposed model via experiment from Ref.[32].

The second part of the validation and the remaining numerical analyses are based

on the 795 Kcmil ASCR conductor and the Stockbridge damper data provided in the

free vibration analysis section. The system is subjected to a concentrated harmonic force

f(t) = 100 sin(Ωft) N. The span length is L = 200 m and the damper is attached at a

distance L1 = 3.333 m. The equivalent viscous damping is obtained from Fig. 2.5 for each

excitation frequency. Fig. 3.11 depicts plots of the conductor non-dimensional maximum

vibration amplitude for various Strouhal frequencies which are obtained using both the

proposed model and that in Ref. [2].

With reference to the conductor vibrational response, the results obtained using the

present model are in good agreement with those obtained using Ref. [2]. The normal-

ized mid-span vibration amplitude of the conductor (relative to the conductor diameter,

D), decreases with increasing forcing frequency. The results for the damper show poor

agreement with those obtained using the finite element method (see Ref. [2]). This poor

agreement between the proposed simple model and the complete, but complicated, model

of Ref. [2] indicates that the former cannot be used to predict the response of the coun-

terweights. It is possible to reduce the discrepancy by tuning the relative magnitudes of
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the in-span and suspended masses, but this is ad hoc at best.

Figure 3.11: Validation of the proposed model via finite element from Ref.[2].

The effect of attaching one or two dampers on the conductor is demonstrated in

Fig. 3.12. Three plots of the non-dimensionalized mid-span vibration amplitude are

depicted. The first plot is that of the bare conductor, the second is for one damper at

L1 = 3.33 m, and the third is for two dampers at 3.33 m from each end. The results

indicate that using one damper reduces the vibration of the conductor, and the reduction

was most pronounced between 10 and 25 Hz. With two dampers, the vibration of the

conductor is drastically reduced throughout the whole range of Strouhal frequency. To

further illustrate the role of attaching two dampers, Fig. 3.13 depicts plots of vibration

response of the bare and loaded conductor for a given Strouhal frequency of 20 Hz. The

response of the bare conductor displays a resonance phenomenon as expected because

the Strouhal frequency is closer to one of the system natural frequencies. This resonance

is completely eliminated in the system with two dampers.

3.4 Summary

The conductor was modeled as a beam with a tensile load and the Stockbridge damper

was reduced to an equivalent mass-spring-mass and viscous damping system. Expressions

were presented for the frequency equation, mode shapes, and orthogonality conditions.

Both free and forced vibration analyses were examined and the results were validated

using the numerical and experimental results. In the free vibration analysis, it was

demonstrated that the mass and the location of the damper have a significant impact on



Chapter 3. Single Beam/Lump Mass System 47

Figure 3.12: The effect of attaching dampers.

Figure 3.13: The bare and loaded conductor non-dimensional vibration amplitude at 20
Hz resonance forcing frequency.

the natural frequencies. The results in the forced vibration analysis indicated that the

number of dampers and their locations are significant factors in controlling the vibration

of the conductor. Overall, the model was found to be a good predictor of the response

of the conductor, but a poor predictor of the response of the damper. It is believed that
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the simplicity of the damper model smears the damper dynamics. A more detail model

is examinded in the next chapter to better capture the system dynamics.



Chapter 4

Double-Beam System

4.1 Introduction

Unlike in the previous chapter where the model was based on a beam with a mass-

spring-damper system, the model presented in this chapter is based on double-beam

concepts. The conductor is modeled as an axially loaded Euler-Bernoulli beam and the

Stockbridge damper is modeled as an Euler-Bernoulli beam with rigid tip masses. This

Stockbridge damper is arbitrary located along the span of the conductor. Numerous

studies on the vibration of double-beam/string systems abound in the literature (see

Refs. [79]-[86]). However, these investigations are either limited to cases where both

beams are continuously connected by viscous elastic layers or where one of the beams is

attached to the tip of the other.

In spite of these interests, there are no investigations where the primary beam is

axially loaded and/or supporting in-span beam with tip mass. The use of this concept

to analytically model a single-conductor transmission line with a Stockbridge damper

was examined in this thesis for the first time. The equations of motion are derived using

Hamilton’s principle. The expressions for the characteristic equation, mode shapes, and

orthogonality relations are presented. The analytical results are experimentally validated.

Parametric studies are then used to examine the effect of the damper characteristics and

location on the system natural frequencies and response. Part of the content in this

chapter is published in [87, 88].

49
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Figure 4.1: Schematic of a single conductor with a Stockbridge damper.

Figure 4.2: Close-up of damper.

4.2 Mathematical formulation

A schematic of a single conductor with a Stockbridge damper is depicted in Fig. 4.1. The

conductor is represented as a pinned-pinned beam to delineate suspension spans. The

Stockbridge damper is attached at a distance Lc1 and consists of a messenger (or damper

cable), a mass (or counterweight) at each end of the messenger, and a clamp. This clamp

is a rigid, massless link with length h (this is the distance separating the conductor and

the messenger). The messenger is modeled as two cantilevered-beams with a tip mass at

each end.

Two reference frames are attached at the ends of the conductor as shown in Fig. 4.1.

A third reference frame is attached at the point of contact between the clamp and the

messenger. The damper is attached at a distance Lc1 from the left-hand side reference

frame; it divides the conductor into two segments. The transverse displacement of each

segment is measured relative to the appropriate reference frame, and it is denoted by

wci(x, t) for i = 1, 2. The messenger is also divided into two segments and the transverse
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displacement is denoted by wmi(xm, t).

A close-up view of the conductor and damper deformation is depicted in Fig. 4.2.

The position vector of a deformed differential element of the conductor is written as

rc(x, t) = xi1 + wc(x, t)j1 (4.1)

At the point of attachment of the damper x = Lc1 , the position is given as

r∗c ≡ rc(x = Lc1 , t) = Lc1i1 + wc(Lc1 , t)j1 (4.2)

The position vector of the messenger cable on the right and left segments are respectively

given as

rmm1 = hj2 + Lm1i2 + wm1j2 + r∗c (4.3)

rmm2 = hj2 − Lm2i2 + wm2j2 + r∗c (4.4)

The position vector of the right- and left-end counterweights can be written as

rm1 = hj2 + Lm1i2 + w∗m1
j2 + rgm1 + r∗c (4.5)

rm2 = hj2 − Lm2i2 + w∗m2
j2 + rgm2 + r∗c (4.6)

where w∗m1
(w∗m2

) is the transverse displacement of the right-end (left-end) counterweight.

Equations Eqs. (4.1)-(4.6) are used to derive the system kinetic T and potential V
energy which, when higher-order terms (i.e., O(3)) are ignored, can be expressed as

T =
1

2

2∑
i=1

mc

Lci∫
0

ẇ2
cidx+mi

{
ẇ∗2c1

+ 2ẇ∗c1

(
(−1)(i+1)ẇ′∗c1

Lmi + ẇ∗mi

)
+ẇ′∗2c1

(
h2 + L2

mi

)
+ (−1)(i+1)2Lmiẇ

∗
miẇ

′∗
c1

+ ẇ∗2mi

}
+ Ii

(
ẇ′∗c1

+ (−1)(i+1)ẇ′∗mi

)2
+mmi

(
ẇ∗2c1

+
(
ẇ′∗c1

h
)2)

+mm

Lmi∫
0

{
2ẇ∗c1

ẇmi + (−1)(i+1)2xmẇ
′∗
c1
ẇmi + ẇ2

mi

}
dxm

+mm

(
(−1)(i+1)ẇ∗c1

ẇ′∗c1
L2
mi +

1

3
ẇ′∗2c1

L3
mi

)}
(4.7)
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V =
1

2

2∑
i=1

EcIc

Lci∫
0

w′′ci
2
dx+ T

Lci∫
0

w′ci
2
dx +EmIm

Lmi∫
0

wmi
′′2dxm

 (4.8)

where m1 (m2) is the tip mass on the right-hand (left-hand) side; Lm1 (Lm2) is the length

of the messenger on the right-hand (left-hand) side; mc (mm) is the mass per unit length

of the conductor (messenger); mm1 (mm2) is the mass of the messenger on the right-hand

(left-hand) side; T denotes the conductor tension; EcIc (EmIm) is the flexural rigidity

of the conductor (messenger); and T is the tension in the conductor. The overdots and

primes denote temporal and spatial derivation, respectively.

The equations of motion, Eqs. (4.9) and (4.10), are obtained by substituting the

energy expressions in the Hamilton’s principle and taking the variations of the field

variables (δwc1 , δwc2 , δwm1 , and δwm2).

mcẅci + EcIcw
′′′′

ci − Tw′′ci = 0 (4.9)

mm

(
ẅ∗c1

+ (−1)(i+1)ẅ′∗c1
Lmi + ẅmi

)
+ EmImw

′′′′
mi = 0 (4.10)

Note that the subscript ‘i’ ∈ [1, 2] identifies the right-hand and left-hand segments of

both the conductor and messenger. The continuity conditions of the displacement at the

attachment point of the damper to the conductor, Lc1 , yield

wc1 (Lc1 , t) = wc2 (Lc2 , t) (4.11)

wc1

′ (Lc1 , t) = −wc2

′ (Lc2 , t) (4.12)

From the variation of the conductor displacement, δwc1 , the obtained shear force

boundary condition at the location of the damper may be written as

2∑
i=1

{
mi

(
ẅ∗c1

+ (−1)(i+1)ẅ′∗c1
Lmi + ẅ∗mi

)
+ ẅ∗c1

mmi

+mm

Lmi∫
0

ẅmidxm +
1

2
mmẅ

′∗
c1

(−1)(i+1)L2
mi


− EcIc

(
wc1

′′′∗ + wc2

′′′∗)+ T
(
w′∗c1

+ w′∗c2

)
= 0 (4.13)

The contributions from the tension vanish because of Eq. (4.12). The bending moment
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boundary condition at the attachment of the messenger may be expressed as

2∑
i=1

{
mi

[
(−1)(i+1)ẅ∗c1

Lmi + w′∗c
(
h2 + L2

mi

)
+ (−1)(i+1)Lmiẅ

∗
mi

]
+ Ii

(
ẅ′∗c1

+ (−1)(i+1)ẅ′∗mi

)
+ ẅ′∗c1

h2mmi

+mm

Lmi∫
0

(−1)(i+1)xmẅmidxm

+
1

2
mm

(
(−1)(i+1)ẅ∗c1

L2
mi +

2

3
ẅ′∗c1

L3
mi

)}
+ EcIc

(
wc1

′′∗ − wc2

′′∗) = 0 (4.14)

The last set of boundary conditions for the conductor are obtained by enforcing no

displacement and bending moment conditions at both ends of each segment:

wci(0, t) = 0 (4.15)

wci
′′(0, t) = 0 (4.16)

With respect to the messenger, the shear force boundary conditions at each end, Lm1

and Lm2 , can be expressed as

mi

(
ẅ∗mi + ẅ∗c1

+ (−1)(i+1)Lmiẅ
′∗
c1

)
− EmImwmi

′′′∗ = 0 (4.17)

and the bending moment boundary condition at each end is

Ii
(
ẅ′∗mi + (−1)(i+1)ẅ′∗c1

)
+ EmImwmi

′′∗ = 0 (4.18)

The Stockbrigde damper behaves as a cantilevered beam at the junction of the clamp

and the messenger xm = 0. Hence, the displacement and rotation of both right and

left-side messenger are zero:

wmi(0, t) = 0 (4.19)

wmi
′(0, t) = 0 (4.20)



Chapter 4. Double-Beam System 54

4.2.1 Frequency equation and mode shapes

The transverse vibration displacement for each segment of the conductor and messenger

can be expressed as

wci(x, t) = Yci(x)eiωt (4.21)

wmi(xm, t) = Ymi(x)eiωt (4.22)

Substituting the above equations, Eqs. (4.21) and (4.22), into the equations of motion,

Eqs. (4.9) and (4.10), yields

Yci
′′′′ − S2Yci

′′ − Ω4
cYci = 0 (4.23)

Ymi
′′′′ − Ω4

mYmi = Ω4
m

(
Y ∗c1

+ (−1)(i+1)Y ′∗c1
xm
)

(4.24)

where Ωc =

(
ω2mc

EcIc

) 1
4

, Ωm =

(
ω2mm

EmIm

) 1
4

and S =

√
T

EcIc
.

The solutions of the above differential equations can be expressed as

Yci(x) = A1i sinαx+ A2i cosαx+ A3i sinh βx+ A4i cosh βx (4.25)

Ymi(xm) = B1i sin Ωmxm +B2i cos Ωmxm +B3i sinh Ωmxm

+B4i cosh Ωmxm − (Y ∗c1
+ (−1)(i+1)xmY

′∗
c1

) (4.26)

where α =

√
−S

2

2
+

√
S4

4
+ Ω4

c and β =

√
S2

2
+

√
S4

4
+ Ω4

c.

By applying boundary conditions at each end of the conductor, the coefficientsA21 , A41 , A22 ,

and A42 vanishes and Eq. (4.25) reduces to

Yci(x) = A1i sinαx+ A3i sinh βx (4.27)

Substituting Eq. (4.21) in Eqs. (4.11) and (4.12) yields

Yc1 (Lc1) = Yc2 (Lc2) (4.28)

Yc1

′ (Lc1) = −Yc2

′ (Lc2) (4.29)

Eqs. (4.21) and (4.22) are substituted in the shear forces boundary condition, Eq. (4.13)
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at x = Lc1 , and after some algebraic manipulation yields

ω2

2∑
i=1

{
mi

(
Y ∗c1

+ (−1)(i+1)Y ′∗c1
Lmi + Y ∗mi

)
+mmiY

∗
c1

+mm

Lmi∫
0

Ymidxm + (−1)(i+1)1

2
mmY

′∗
c1
L2
mi


+ EcIc

(
Y ′′′∗c1

+ Y ′′′∗c2

)
= 0 (4.30)

Similarly, the bending moment boundary condition at x = Lc1 (i.e., Eq. (4.14)) yields

ω2

2∑
i=1

{
m1

[
(−1)(i+1)Y ∗c1

Lmi + Y ′∗c1

(
L2
mi + h2

)
+ (−1)(i+1)LmiY

∗
mi

]
+ Ii

(
Y ′∗c1

+ (−1)(i+1)Y ′∗mi

)
+mmih

2Y ′∗c1

+mm

Lmi∫
0

(−1)(i+1)xmwmidxm

+
1

2
mm

(
(−1)(i+1)Y ∗c1

L2
mi +

2

3
Y ′∗c1

L3
mi

)}
− EcIc

(
Y ′′∗c1
− Y ′′∗c2

)
= 0 (4.31)

For the messenger cable, Eqs. (4.21) and (4.22) are substituted into Eqs. (4.17) and

(4.18) to obtain the following:

Y ∗c1
+ (−1)(i+1)LmiYc1

′ + Y ∗mi + λmiY
′′′∗
mi = 0 (4.32)

(−1)(i+1)Y ′∗c1
+ Y ′∗mi − κmiY

′′∗
mi = 0 (4.33)

where λmi =
EmIm
miω2

, κmi =
EmIm
Iiω2

.

Eqs. (4.19) and (4.20) naturally reduce to

Ymi(0) = 0 (4.34)

Ymi
′(0) = 0 (4.35)
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For the sake of simplicity, the following notations are used

s
i
= sinαLci

, sh
i
= sinh βLci

,

c
i
= cosαLci

, ch
i
= cosh βLci

,

s
Ωi

= sin ΩmLmi
, sh

Ωi
= sinh ΩmLmi

,

c
Ωi

= cos ΩmLmi
, ch

Ωi
= sinh ΩmLmi

A set of 12 algebraic homogeneous equations (four are from the conductor and eight

from the messenger) are obtained by substituting Eqs. (4.26) and (4.27) into Eqs. (4.28)

to (4.35). These algebraic equations are linear in the unknown coefficients (A’s and B’s)

and can be written in matrix format as

[F ]
12X12
{q}

12X12
= {0}

12X12
(4.36)

where

q = [A11 , A31 , A12 , A32 , B11 , B21 , B31 , B41 , B12 , B22 , B32 , B42 ]T , with the supercript T denot-

ing transposition. A non-trivial solution to the equation is possible when matrix F is

singular. Hence, the characteristic or frequency equation is obtained as

det([F ]
12X12

) = 0 (4.37)

It should be noted that matrix [Fi,j] comprises 144 elements in which the 64 non-zero

entries are given as

F1,1 = s1, F1,2 = sh1 , F1,3 = −s2 , F1,1 = −sh2

F2,1 = αc1 , F2,2 = βch1 , F2,3 = αc2 , F2,4 = βch2

F3,1 = αc1h
2 (m1 +m2 +mm1 +mm2) +

α2

ω2
EcIcs1

F3,2 = βch1h
2 (m1 +m2 +mm1 +mm2)− β2

ω2
EcIcsh1

F3,3 = −α
2

ω2
s2EcIc, F3,4 =

β2

ω2
sh2EcIc



Chapter 4. Double-Beam System 57

F3,5 = m1Lm1sΩ1
+ ΩmcΩ1

I1 +mm

(
−Lm1cΩ1

Ωm

+
1

Ω2
m

s
Ω1

)
F3,6 = m1Lm1cΩ1

− ΩmsΩ1
I1 +mm

(
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Ωm

+
1

Ω2
m

(c
Ω1
− 1)

)
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)
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)
F3,11 = −m2Lm2shΩ2

− ΩmchΩ2
I2 −mm

(
Lm2chΩ2

Ωm

− 1

Ω2
m

sh
Ω2

)
F3,12 = −m2Lm2chΩ2

− ΩmshΩ2
I2 −mm

(
Lm2shΩ2

Ωm

− 1

Ω2
m

(ch
Ω2
− 1)

)

F4,1 =
−α3

ω2
c1EcIc, F4,2 =

β3

ω2
ch1EcIc

F4,3 =
−α3

ω2
c2EcIc, F4,4 =

β3

ω2
ch2EcIc

F4,5 = m1sΩ1
− mm

Ωm

(c
Ω1
− 1), F4,6 = m1cΩ1

+
mm

Ωm

s
Ω1

F4,7 = m1shΩ1
+
mm

Ωm

(ch
Ω1
− 1), F4,8 = m1chΩ1

+
mm

Ωm

sh
Ω1

F4,9 = m2sΩ2
− mm

Ωm

(c
Ω2
− 1), F4,10 = m2cΩ2

+
mm

Ωm

s
Ω2

F4,11 = m2shΩ2
+
mm

Ωm

(ch
Ω2
− 1), F4,12 = m2chΩ2

+
mm

Ωm

sh
Ω2

F5,5 = s
Ω1
− λm1Ω3

mcΩ1
, F

5,6
= c

Ω1
+ λm1Ω3

msΩ1

F5,7 = sh
Ω1

+ λm1Ω3
mchΩ1

, F5,8 = ch
Ω1

+ λm1Ω3
mshΩ1

F6,9 = s
Ω2
− λm2Ω3

mcΩ2
, F6,10 = c

Ω2
+ λm2Ω3

msΩ2

F6,11 = sh
Ω2

+ λm2Ω3
mchΩ2

, F6,12 = ch
Ω2

+ λm2Ω3
mshΩ2

F7,5 = c
Ω1

+ κm1ΩmsΩ1
, F7,6 = −s

Ω1
+ κm1ΩmcΩ1

F7,7 = ch
Ω1
− κm1ΩmshΩ1

, F7,8 = sh
Ω1
− κm1ΩmchΩ1
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F8,9 = c
Ω2

+ κm2ΩmsΩ2
, F8,10 = −s

Ω2
+ κm2ΩmcΩ2

F8,11 = ch
Ω2
− κm2ΩmshΩ2

, F8,12 = sh
Ω2
− κm2ΩmchΩ2

F9,1 = F10,1 = −s1, F9,2 = F10,2 = −sh1
F9,6 = F9,8 = F10,10 = F10,12 = 1

F11,1 =
−αc1
Ωm

, F11,2 =
−βch1

Ωm

F12,1 = −F11,1 , F12,2 = −F11,2

The mode shapes of the conductor are deduced by using Eq. (4.28) while ignoring the

hyberbolic function terms since the tension and the span length in transmission lines are

usually very high. Assuming that A11 = 1, the conductor mode shapes for each segment

can be expressed as

Yc1(x) = sinαx1 (4.38)

Yc2(x) =
s1

s2

sinαx2 (4.39)

The mode shapes of the messenger are derived by using the shear and moment con-

ditions at each end of the messenger, Eqs. (4.32) and (4.33), and the displacement and

slope at the clamp, Eqs. (4.34) and (4.35). With reference to Eq. (4.26), the coefficients

of the mode shapes of the messenger are

B1i =
1

λi

{
F11,1F(i+4),7

F
(i+6),8

−F11,1F(i+4),7
F

(i+6),6
+ F1,1F(i+4),6

F
(i+6),8

−F1,1F(i+4),8
F

(i+6),6
−F11,1F(i+4),8

F
(i+6),7

+ F11,1F(i+4),6
F

(i+6),7

}
(4.40)

B2i = − 1

λi

{
−F1,1F(i+6),8

F
(i+4),7

+ F1,1F(i+6),8
F

(i+4),5
+ F1,1F(i+6),7

F
(i+4),8

−F1,1F(i+6),5
F

(i+4),8
−F11,1F(i+6),5

F
(i+4),7

+ F11,1F(i+6),7
F

(i+4),5

}
(4.41)

B3i = − 1

λi

{
F11,1F(i+6),8

F
(i+4),5

−F11,1F(i+6),6
F

(i+4),5
+ F1,1F(i+4),6

F
(i+6),8

−F1,1F(i+4),8
F

(i+6),6
−F11,1F(i+6),5

F
(i+4),8

+ F11,1F(i+6),5
F

(i+4),6

}
(4.42)
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B4i =
1

λi

{
−F11,1F(i+6),5

F
(i+4),7

−F1,1F(i+6),6
F

(i+4),7
+ F1,1F(i+6),6

F
(i+4),5

+F11,1F(i+6),7
F

(i+4),5
+ F1,1F(i+6),7

F
(i+4),6

−F1,1F(i+6),5
F

(i+4),6

}
(4.43)

where

λi = F
(i+6),8

F
(i+4),7

−F
(i+6),8

F
(i+4),5

−F
(i+6),6

F
(i+4),7

+ F
(i+6),8

F
(i+4),5

−F
(i+6),7

F
(i+4),8

+ F
(i+6),7

F
(i+4),6

+ F
(i+6),5

F
(i+4),8

−F
(i+6),5

F
(i+4),6

The expression of the natural frequency of the bare conductor are obtained in Ref.

[2] and is given as

fn =
n

2Lc

√
T

mc

+

(
nπ

Lc

)2
EcIc
mc

(4.44)

where fn is natural frequency in Hz and n is the mode number.

4.2.2 Orthogonality condition

Since Eqs. (4.23) and (4.24) are valid for all modes, they can be rewritten as

Y
(r)IV

ci − S2Y
(r)
′′

ci = Ω(r)4

c Y
(r)
ci (4.45)

Y
(r)IV

mi − Ω(r)4

m

(
Y (r)∗

c1
+ (−1)(i+1)Y (r)∗

′

c1
xm

)
= Ω(r)4

m Y
(r)
mi (4.46)

Multiplying Eq. (4.45) by Y
(s)
ci and integrating from 0 to Lci yield

Ω(r)4

c

Lci∫
0

Y
(r)
ci Y

(s)
ci dx =

Lci∫
0

Y
(r)IV

ci Y
(s)
ci dx− S2

Lci∫
0

Y
(r)
′′

ci Y
(s)
ci (4.47)

Applying integration by parts to Eq.( 4.47) and using boundary and matching con-
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ditions Eqs. (4.28) to (4.31) yield

Ω(r)4

c

2∑
i=1

Lci∫
0

Y
(r)
ci Y

(s)
ci dx =

Ω
(r)4

c

mc

{
−Y (s)∗

c1

2∑
i=1

[
mi

(
Y (r)∗

c1
+ (−1)(i+1)Y (r)∗

′

c1
Lmi + Y

(r)∗

mi

)

+ Y (r)∗

c1
mmLmi +mm

Lmi∫
0

Y
(r)
mi dxm + (−1)(i+1)1

2
mmY

(r)∗
′

c1
L2
mi


+ Y (s)∗

′

c1

2∑
i=1

[
mi

(
(−1)(i+1)Y (r)∗

c1
Lmi + Y (r)∗

′

c1

(
L2
mi + h2

)
+(−1)(i+1)LmiY

(r)∗

mi

)
+ Ii

(
Y (r)∗

′

c1
+ (−1)(i+1)Y

(r)∗
′

mi

)
(4.48)

+ Y (r)∗
′

c1
h2mmLmi +mm

(−1)(i+1)

Lmi∫
0

xmY
(r)
mi dxm

+(−1)(i+1)1

2
Y (r)∗

c1
L2
mi +

1

3
Y (r)∗

′

c1
L3
mi

)]

+
2∑
i=1

 Lci∫
0

Y
(r)
′′

ci Y
(s)
′′

ci dx− S2

Lci∫
0

Y
(r)
′

ci Y
(s)
′

ci dx



Similary, Eq. (4.46) can be manipulated by using the boundary and continuity con-

ditions Eqs. (4.32) - (4.35) to obtain the following:

Ω(r)4

m

2∑
i=1

Lmi∫
0

Y
(r)
mi Y

(s)
mi dx = −Ω

(r)4

m

mm

2∑
i=1

[
miY

(s)∗

mi

(
Y (r)∗

c1
+ (−1)(i+1)Y (r)∗

′

c1
Lmi + Y

(r)∗

mi

)
+ IiY

(s)∗
′

mi

(
Y

(r)∗
′

mi + (−1)(i+1)Y
(r)∗
′

ci

)
−mm

Lmi∫
0

Y
(s)
mi

(
Y (r)∗

c1
+ (−1)(i+1)xmY

(r)∗

c1

)
dxm

 (4.49)

+
2∑
i=1

 Lmi∫
0

Y
(r)
′′

mi Y
(s)
′′

mi dxm



By multiplying Eq. (4.49) by
mmΩr

c

mmΩr
c

and adding the resulting equation to Eq. (4.48)
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yields

Ω(r)4

c

2∑
i=1

 Lci∫
0

Y
(r)
ci Y

(s)
ci dx+

mm

mc

Lmi∫
0

Y
(r)
mi Y

(s)
mi dxm

 =
2∑
i=1

 Lci∫
0

Y
(r)
′′

ci Y
(s)
′′

ci dx

− S2

Lci∫
0

Y
(r)
′

ci Y
(s)
′

ci dx+
EmIm
EcIc

Lmi∫
0

Y
(r)
′′

mi Y
(s)
′′

mi dx


− Ω

(r)4

c

mc

2∑
i=1

{
Y (s)∗

c1

[
mi

(
Y (r)∗

c1
+ (−1)(i+1)Y (r)∗

′

c1
Lmi + Y

(r)∗

mi

)

+ Y (r)∗

c1
mmLmi +mm

Lmi∫
0

Y
(r)
mi dxm + (−1)(i+1)1

2
mmY

(r)∗
′

c1
L2
mi


+ Y (s)∗

′

c1

[
mi

(
(−1)(i+1)Y (r)∗

c1
Lmi + Y (r)∗

′

c1

(
L2
mi + h2

)
(4.50)

+(−1)(i+1)LmiY
(r)∗

mi

)
+ Ii

(
Y (r)∗

′

c1
+ (−1)(i+1)Y

(r)∗
′

mi

)
+ Y (r)∗

′

c1
h2mmLmi +mm

(−1)(i+1)

Lmi∫
0

xmY
(r)
mi dxm

+(−1)(i+1)1

2
Y (r)∗

c1
L2
mi +

1

3
Y (r)∗

′

c1
L3
mi

)]
+miY

(s)∗

mi

(
Y (r)∗

c1
+ (−1)(i+1)Y (r)∗

′

c1
Lmi + Y

(r)∗

mi

)
+ IiY

(s)∗
′

mi

(
Y

(r)∗
′

mi + (−1)(i+1)Y
(r)∗
′

ci

)
− mm

Lmi∫
0

Y
(s)
mi

(
Y (r)∗

c1
+ (−1)(i+1)xmY

(r)∗

c1

)
dxm



Exchanging the subscripts “s” and “r” in Eq. (4.50) and substracting the resulting
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equation from Eq. (4.50) yields

(
Ω(r)4

c − Ω(s)4

c

) 2∑
i=1

mc

Lci∫
0

Y
(r)
ci Y

(s)
ci dx+mm

Lmi∫
0

Y
(r)
mi Y

(s)
mi dxm

+ Y (r)∗

c1
Y (s)∗

c1
(mi +mmLmi) + Y (r)∗

′

c1
Y (s)∗

′

c1

[
mi

(
L2
mi + h2

)
+ Ii + h2mmLmi +

1

3
L3
mi

]
+ Y

(r)∗

mi Y
(s)∗

mi mmi + Y
(r)∗
′

mi Y
(s)∗
′

mi Ii + (−1)(i+1)miLmi

(
Y (r)∗

′

c1
Y (s)∗

c1
+ Y (r)∗

c1
Y (s)∗

′

c1

)
+mmi

(
Y (r)∗

c1
Y

(s)∗

mi + Y (s)∗

c1
Y

(r)∗

mi

)
+mm

Lmi∫
0

(
Y (r)∗

c1
Y

(s)∗

mi + Y (s)∗

c1
Y

(r)∗

mi

)
dxm

+ (−1)(i+1)1

2
mmL

2
mi

(
Y (r)∗

c1
Y (s)∗

′

c1
+ Y (s)∗

c1
Y (r)∗

′

c1

)
+ (−1)(i+1)miLmi

(
Y (r)∗

′

c1
Y

(s)∗

mi

+Y (s)∗
′

c1
Y

(r)∗

mi

)
+ (−1)(i+1)Ii

(
Y (r)∗

′

c1
Y

(s)∗
′

mi + Y (s)∗
′

c1
Y

(r)∗
′

mi

)
+(−1)(i+1)mm

Lmi∫
0

xm

(
Y (r)∗

′

c1
Y

(s)
mi + Y (s)∗

′

c1
Y

(r)
mi

)
dxm

 = 0 (4.51)

The first orthogonality relation can now be expressed as

2∑
i=1

mc

Lci∫
0

Y
(r)
ci Y

(s)
ci dx+mm

Lmi∫
0

Y
(r)
mi Y

(s)
mi dxm + Y (r)∗

c1
Y (s)∗

c1
(mi +mmLmi)

+ Y (r)∗
′

c1
Y (s)∗

′

c1

[
mi

(
L2
mi + h2

)
+ Ii + h2mmLmi +

1

3
L3
mi

]
+ Y

(r)∗

mi Y
(s)∗

mi mmi

+ Y
(r)∗
′

mi Y
(s)∗
′

mi Ii + (−1)(i+1)miLmi

(
Y (r)∗

′

c1
Y (s)∗

c1
+ Y (r)∗

c1
Y (s)∗

′

c1

)
+mmi

(
Y (r)∗

c1
Y

(s)∗

mi + Y (s)∗

c1
Y

(r)∗

mi

)
+mm

Lmi∫
0

(
Y (r)∗

c1
Y

(s)∗

mi

+Y (s)∗

c1
Y

(r)∗

mi

)
dxm + (−1)(i+1)1

2
mmL

2
mi

(
Y (r)∗

c1
Y (s)∗

′

c1
+ Y (s)∗

c1
Y (r)∗

′

c1

)
+ (−1)(i+1)miLmi

(
Y (r)∗

′

c1
Y

(s)∗

mi + Y (s)∗
′

c1
Y

(r)∗

mi

)
+ (−1)(i+1)Ii

(
Y (r)∗

′

c1
Y

(s)∗
′

mi

+Y (s)∗
′

c1
Y

(r)∗
′

mi

)
+ (−1)(i+1)mm

Lmi∫
0

xm

(
Y (r)∗

′

c1
Y

(s)
mi + Y (s)∗

′

c1
Y

(r)
mi

)
dxm

 = δrs (4.52)

where δrs is the Kronecker delta. By using Eqs. (4.50) and (4.52), the second orthogonality
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relation is obtained as

2∑
i=1

 Lci∫
0

Y
(r)
′′

ci Y
(s)
′′

ci dx− S2

Lci∫
0

Y
(r)
′

ci Y
(s)
′

ci dx+
EmIm
EcIc

Lmi∫
0

Y
(r)
′′

mi Y
(s)
′′

mi dx

 = δrs (4.53)

4.2.3 Forced vibration

The equation of motion for the forced vibration is given as

mcẅci + EcIcw
IV
ci − Tw

′′

ci = F (t)δ(x− Lc/2) (4.54)

mm

(
ẅmi + (−1)(i+1)ẅ∗

′

cixm + w∗ci

)
+ EmImw

IV
mi = 0 (4.55)

and the excitation force is expressed as

F (t) = F0 sin(2πfst) (4.56)

where F0 denotes the excitation amplitude force in N and fs is the forcing frequency in

Hz. Using mode superposition principle, the deflection of the beam is assumed as

wci =
∞∑
r=1

qr(t)Y
(r)
ci (x) (4.57)

wmi =
∞∑
r=1

qr(t)Y
(r)
mi (x) (4.58)

The excitation frequency, also referred to as Strouhal frequency [1], is given by

fs = 0.2
v

D
(4.59)

where v is the wind speed (varying from 1 to 7 m/s) and D is the diameter of the

conductor in meters.

Substituting Eqs. (4.57) and (4.58) into Eqs. (4.54) and (4.55) yields

mc

∞∑
r=1

q̈rY
(r)
ci + EcIc

∞∑
r=1

qrY
(r)IV

ci − T
∞∑
r=1

qrY
(r)
′′

ci = F (t)δ(x− a) (4.60)

mm

∞∑
r=1

q̈r

(
Y

(r)
mi + (−1)(i+1)Y

(r)∗
′

ci xm + Y
(r)∗

ci

)
+ EmIm

∞∑
r=1

qrY
(r)IV

ci = 0 (4.61)

Multiply Eqs.(4.60) and (4.61) by Y
(s)
ci and Y

(s)
mi , repsectively. Integrating the resulting
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former equation from 0 to Lci and the latter from 0 to Lmi, adding the two resulting

equations, and applying boundary and continuity conditions yield

[Mrs] {q̈r}+ [Krs] {qr} = [Fr] (4.62)

where

Mrs =
2∑
i=1

mc

Lci∫
0

Y
(r)
ci Y

(s)
ci dx+mm

Lmi∫
0

Y
(r)
mi Y

(s)
mi dxm + Y

(r)∗

c1 Y
(s)∗

c1 (mi +mmLmi)

+ Y
(r)∗
′

c1 Y
(s)∗
′

c1

[
mi

(
L2
mi + h2

)
+ Ii + h2mmLmi +

1

3
L3
mi

]
+ Y

(r)∗

mi Y
(s)∗

mi mmi

+ Y
(r)∗
′

mi Y
(s)∗
′

mi Ii + (−1)(i+1)miLmi

(
Y

(r)∗
′

c1 Y
(s)∗

c1 + Y
(r)∗

c1 Y
(s)∗
′

c1

)
+mmi

(
Y

(r)∗

c1 Y
(s)∗

mi + Y
(s)∗

c1 Y
(r)∗

mi

)
+mm

Lmi∫
0

(
Y

(r)∗

c1 Y
(s)∗

mi + Y
(s)∗

c1 Y
(r)∗

mi

)
dxm + (−1)(i+1)1

2
mmL

2
mi

(
Y

(r)∗

c1 Y
(s)∗
′

c1 + Y
(s)∗

c1 Y
(r)∗
′

c1

)
+ (−1)(i+1)miLmi

(
Y

(r)∗
′

c1 Y
(s)∗

mi + Y
(s)∗
′

c1 Y
(r)∗

mi

)
+ (−1)(i+1)Ii

(
Y

(r)∗
′

c1 Y
(s)∗
′

mi + Y
(s)∗
′

c1 Y
(r)∗
′

mi

)
+(−1)(i+1)mm

Lmi∫
0

(
Y

(r)∗
′

c1 Y
(s)
mi + Y

(s)∗
′

c1 Y
(r)
mi

)
dxm

 (4.63)

Krs =
2∑
i=1

EcIc

Lci∫
0

Y
(r)
′′

ci Y
(s)
′′

ci dx− T
Lci∫
0

Y
(r)
′

ci Y
(s)
′

ci dx+ EmIm

Lmi∫
0

Y
(r)
′′

mi Y
(s)
′′

mi dx

 (4.64)

Fr = F (t)Yci(x =
Lc

2
) (4.65)
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Using orthogonality relation Eqs.(4.52) and (4.53) yield

Mrr =
2∑
i=1

mc

Lci∫
0

Y
(r)2

ci dx+mm

Lmi∫
0

Y
(r)2

mi dxm + Y
(r)2∗

c1 (mi +mmLmi)

+ Y
(r)2∗

′

c1

[
mi

(
L2
mi + h2

)
+ Ii + h2mmLmi +

1

3
L3
mi

]
+ Y

(r)2∗

mi mmi + Y
(r)2∗

′

mi Ii

+ (−1)(i+1)2miLmiY
(r)∗
′

c1 Y
(r)∗

c1 + 2mmiY
(r)∗

c1 Y
(r)∗

mi + 2mm

Lmi∫
0

Y
(r)∗

c1 Y
(r)
mi dxm

+ (−1)(i+1)mmL
2
miY

(r)∗

c1 Y
(r)∗
′

c1 + (−1)(i+1)2miLmiY
(r)∗
′

c1 Y
(r)∗

mi

+(−1)(i+1)2IiY
(r)∗
′

c1 Y
(r)∗
′

mi + (−1)(i+1)2mm

Lmi∫
0

Y
(r)∗
′

c1 Y
(r)
mi dxm

 (4.66)

Krr =
2∑
i=1


Lci∫
0

[
EcIcY

(r)2
′′

ci − TY (r)2
′

ci

]
dx+ EmIm

Lmi∫
0

Y
(r)2
′′

mi dx

 (4.67)

Adding the conductor damping ratio (ζ) Eq.(4.62) becomes

{q̈r}+ [ωr]
2 {qr}+ 2ζ [ωr] {q̇r} = [Fr] (4.68)

where

[ωr]
2 = [Krr] [Mrr]

−1 (4.69)

4.3 Discussion

The numerical simulation is based on the tested conductor and Stockbridge damper. The

material and geometric properties are listed in Table 2.1. The length of the conductor

Lc = 27.25 m, with flexural rigidity EcIc = 1602 Nm2, and and linear mass density

mc = 1.628 kg/m. This numerical analysis comprises two parts. The first part deals

with the free vibration analysis in which the natural frequencies and mode shapes of the

system are determined. In the second, the response of the system is examined and an

optimum damping arrangement of overhead transmission lines is presented.
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Table 4.1: Validation of natural frequencies (Hz).

Mode
T = 27.84 kN T = 34.8 kN

Exp. Anal. Ref. [2] Exp. Anal. Ref. [2]
1 - 2.3953 2.3978 - 2.6780 2.6810
2 - 4.4008 4.4157 - 4.5402 4.5482
3 - 4.9556 4.9794 - 5.4390 5.4587
4 - 7.2560 7.2961 - 8.0807 8.1245
5 - 9.3722 9.4257 - 9.6785 9.7360
6 - 9.9441 10.0120 - 10.8620 10.9407
7 12.0956 12.1634 12.2593 13.0749 13.5217 13.6277
8 14.3910 14.5642 14.6818 15.5104 16.1901 16.3273
9 16.5942 16.9498 17.1010 17.5942 18.8053 18.9801
10 19.1878 19.2874 19.4680 20.8396 21.2930 21.4932
11 21.1717 21.5661 21.7955 22.7073 23.6093 23.8500
12 23.6302 23.8280 24.0862 24.5587 25.9045 26.1695
13 25.3417 26.1201 26.4206 27.0885 28.2907 28.6355
14 27.7020 28.3588 28.7044 27.7641 30.5914 30.9642
15 29.3096 30.3524 30.7484 31.4490 32.7797 33.1814
16 31.4913 32.4137 32.8581 34.0577 35.2503 35.8622
17 33.8856 34.8828 35.3717 36.5584 38.0422 38.8023
18 36.6252 37.5991 38.1732 40.0444 41.0131 41.8586
19 39.3756 40.4481 41.0821 42.6807 44.0936 45.0250
20 42.6673 43.3869 44.1125 45.7943 47.2564 48.2937

4.3.1 Free vibration analysis

The analytical natural frequencies are determined by numerically solving for the roots of

the frequency equation (Eq. (4.37)) using the bisection method in MATLAB. The first

20 natural frequencies are displayed in Table 4.1 for the two tensions (27.84 kN and 34.8

kN) employed in the experiments. The Stockbridge damper is attached at a distance Lc1

= 0.94 m and Lc1 = 0.88 m for T = 27.84 kN and T = 34.8 kN, respectively.

The first six experimental modes are not shown because the shaker used to excite

the conductor is only applicable for frequencies higher than 10 Hz. A comparison of the

analytical and experimental data shows very good agreement. Table 4.1 also shows the

results of the finite element method from Ref. [2]. These are also in good agreement with

experimentally obtained resonant frequencies, but with a 2% margin of error which is

slightly higher than those of the analytical method.

The discrepancies between the experimental and analytical results could be partly

attributed to the difficulty in replicating the boundary conditions during the experiments.

However, it suffices to mention that not only are the analytical results more accurate than

those of the finite element, the analytical procedure is less computationally intensive and

has faster execution time.
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Figure 4.3: Conductor mode shapes for T = 27.84 kN.

Figs. 4.3 and 4.4 are depictions of the first five mode shapes of the conductor for

T = 27.84 kN and T = 34.8 kN, respectively. Similarly, Figs. 4.5 and 4.6 depict the

first five mode shapes of the damper for T = 27.84 kN and T = 34.8 kN, respectively.

Figs. 4.3 and 4.4 show that the mode shapes of this system are very similar to those of a

pinned-pinned beam, but the nth mode of the former corresponds to the (n− 1)th mode

of the latter.

With respect to Figs. 4.5 and 4.6, the first mode of the Stockbridge damper remains

relatively unchanged. This implies that the systems first mode has very little partic-

ipation from the damper. The remaining four modes behave more like a cantilevered

beam. In both Figs. 4.5 and 4.6, the second mode is similar to the third except that the

former deflected upward and the latter downward. Note that only the right segment of

the messenger (Lm1) is excited by the second and third modes. This implies that the

second and third modes of the system must be closer to that of the right-side segment of

the messenger.

In light of the good agreement between the analytical and experimental results, the

model is used to parametrically investigate the influence of the damper characteristics and

location on the system natural frequencies. Unless otherwise specified, the set of material

properties are as tabulated in Table 2.1 and the damper is attached at a distance Lc1

= 0.94 m. The conductor tension T = 27.84 kN is employed in the remainder of the

numerical analysis.

At the first stage of the parametric studies, the effect of the damper counterweights

on the natural frequency is examined. The mass of each counterweight is varied from 0.5
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Figure 4.4: Conductor mode shapes for T = 34.8 kN.

Figure 4.5: Messenger mode shapes for T = 27.84 kN.
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Figure 4.6: Messenger mode shapes for T = 34.8 kN.

to 4.5 kg. The results are tabulated in Table 4.2. As expected, the natural frequencies

generally increase with decreasing total mass. However, the fundamental frequency re-

mains unchanged, which indicates that the mass of the counterweight has minimal or no

effect on the first mode.

The length of the messenger on either side is varied from 0.1 to 2 m in order to examine

the role of the messenger on the system natural frequencies. The obtained frequencies

are tabulated in Table 4.3. It is observed that the natural frequencies generally decrease

with increasing total length of the messenger as expected. This decrease in the natural

frequency is significant even for the fundamental mode.

The system natural frequencies for varying messenger flexural rigidity are tabulated

in Table 4.4. The results show that the system natural frequencies generally increase

with increasing flexural rigidity of the messenger. The role of the distance separating

the conductor and the messenger (i.e., length of the rigid link, h) is inferred from the

results tabulated in Table 4.5. It is observed that the natural frequencies decrease with

increasing rigid link length. This decrease in the natural frequencies is less significant

for the fundamental mode. Hence, the first mode is again dominated by the conductor

characteristics. Table 4.6 shows the influence of the location of the Stockbridge damper

on the system natural frequencies. The location of the damper affect all five modes, but

with no obvious trend.
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Table 4.2: Effect of counterweight masses on natural frequencies (Hz).

m
2
(kg) Mode

m1 (kg)
0.5 1.5 2.5 3.5 4.5

0.5 1 2.40020 2.39890 2.39730 2.39550 2.3932
2 4.79960 4.77770 4.69650 4.36200 3.9500
3 7.1849 6.3439 5.2991 4.9421 4.8820
4 9.0107 7.3384 7.2819 7.2706 7.2658
5 9.7874 9.6910 9.6842 9.6817 9.6804

1.5 1 2.3998 2.3985 2.3969 2.3950 2.3927
2 4.7955 4.7730 4.6905 4.3573 3.9473
3 7.1608 6.3327 5.2977 4.9415 4.8803
4 8.9226 7.3285 7.2665 7.2540 7.2487
5 9.4923 9.3299 9.3221 9.3194 9.3180

2.5 1 2.3994 2.3981 2.3965 2.3946 2.3923
2 4.7900 4.7667 4.6823 4.3512 3.9440
3 7.0752 6.3089 5.2958 4.9406 4.8778
4 7.9269 7.2867 7.2046 7.1883 7.1814
5 9.0748 7.9465 7.9421 7.9410 7.9405

3.5 1 2.3989 2.3976 2.3960 2.3941 2.3917
2 4.7818 4.7574 4.6708 4.3432 3.9399
3 6.6605 6.2365 5.2925 4.9394 4.8742
4 7.3770 7.4215 6.7693 6.7496 6.7420
5 9.0535 9.7449 7.4037 7.4005 7.3991

4.5 1 2.3984 2.3971 2.3955 2.3936 2.3912
2 4.7688 4.7428 4.6534 4.3323 3.9347
3 6.0751 5.9722 5.2862 4.9374 4.8684
4 7.2875 6.5338 6.1599 6.1329 6.1247
5 9.0472 7.3791 7.3444 7.3377 7.3348
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Table 4.3: Effect of the messenger length on natural frequencies (Hz).

Lm2
(m) Mode

Lm1 (m)
0.1 0.5 1.0 1.5 2.0

0.1 1 2.3974 2.2127 0.8142 0.4441 0.2879
2 4.7748 2.4302 2.4014 2.4006 2.4003
3 7.0904 4.8114 4.8021 4.8000 4.7963
4 9.2496 7.2121 7.2000 7.1905 5.9484
5 11.2051 9.6054 9.5864 8.7283 7.2106

0.5 1 2.3978 2.2131 0.8142 0.4441 0.2879
2 3.3700 2.4303 2.4017 2.4010 2.4006
3 4.7838 3.3705 3.3705 3.3705 3.3705
4 7.1251 4.8181 4.8093 4.8073 4.8037
5 9.3573 7.2330 7.2220 7.2132 5.9493

1 1 1.2277 1.2277 0.8142 0.4441 0.2879
2 2.3982 2.2132 1.2278 1.2277 1.2277
3 4.7821 2.4305 2.4021 2.4014 2.4010
4 7.1236 4.8170 4.8080 4.8060 4.8025
5 9.3550 7.2323 7.2212 7.2124 5.9494

1.5 1 0.6669 0.6669 0.6669 0.4441 0.2879
2 2.3982 2.2133 0.8142 0.6669 0.6669
3 4.7821 2.4305 2.4022 2.4014 2.4010
4 7.1225 4.8169 4.8080 4.8060 4.8025
5 9.1100 7.2316 7.2206 7.2118 5.9494

2 1 0.4303 0.4303 0.4303 0.4302 0.2879
2 2.3982 2.2133 0.8142 0.4441 0.4303
3 4.7819 2.4305 2.4022 2.4014 2.4010
4 6.1271 4.8168 4.8079 4.8059 4.8023
5 7.1264 6.1282 6.1282 6.1282 5.9493
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Table 4.4: Effect of the messenger flexural rigidity on natural frequencies (Hz).

Mode
EmIm (N/m2)

0.1 1.0 10.0 100.0 1000.0
1 0.2879 0.8401 2.3789 2.3960 2.3964
2 0.5584 1.7632 2.6331 4.7469 4.7648
3 1.4704 2.4011 4.8047 6.6457 7.0474
4 2.1441 4.5985 5.5119 7.7690 9.1409
5 2.4025 4.8340 7.2300 9.8956 11.1076
6 4.8084 6.6791 9.6239 12.2451 13.2615
7 7.2255 7.2749 11.9507 14.4064 15.6416
8 9.6584 9.6814 13.7546 15.7283 18.1520
9 12.1122 12.1347 15.0584 17.5826 20.7434
10 14.5919 14.6161 17.1461 19.9560 23.3944
11 17.1023 17.1291 19.1027 22.4036 26.0685
12 19.6471 19.6788 20.7019 24.8682 27.9504
13 22.2253 22.2699 22.8631 27.3596 29.1293
14 24.6928 24.9075 25.3697 29.9151 31.8609
15 25.2733 27.5963 28.0008 32.5680 34.7620
16 27.6107 30.3412 30.7104 35.3305 37.7451
17 30.3395 33.1465 33.4880 38.1991 40.8034
18 33.1390 36.0166 36.3326 41.1655 43.9358
19 36.0042 38.9553 39.2457 44.2177 47.1413
20 38.9355 41.9662 42.2303 47.3172 50.4171

Table 4.5: Effect of clamp height on natural frequencies (Hz).

Mode
h (m)

0.01 0.5 1.0 1.5 2.0
1 2.3950 2.3940 2.3907 2.3840 2.3713
2 4.3574 4.3452 4.2975 4.1569 3.7714
3 4.9415 4.9409 4.9385 4.9307 4.8745
4 7.2541 7.2371 7.0962 5.9075 5.0666
5 9.3194 9.3167 8.5572 7.4561 7.3783
6 9.9127 9.8458 9.3371 9.3269 9.3257
7 12.1632 12.0116 10.3493 10.1209 10.0857
8 14.5646 14.2654 12.5256 12.4019 12.3754
9 16.9490 16.4393 14.8943 14.8146 14.7947
10 19.2828 18.5509 17.2439 17.1882 17.1731
11 21.5550 20.3939 19.4821 19.4509 19.4421
12 23.8115 21.7886 21.6128 21.6056 21.6034
13 26.1005 23.8115 23.8115 23.8115 23.8115
14 28.3314 26.1456 26.1265 26.1246 26.1240
15 30.3150 28.3625 28.3521 28.3509 28.3505
16 32.3899 30.3337 30.3287 30.3281 30.3278
17 34.8730 32.5772 32.5357 32.5300 32.5281
18 37.5963 35.1854 35.1246 35.1158 35.1128
19 40.4486 37.9646 37.8995 37.8898 37.8866
20 43.3881 40.8243 40.7631 40.7538 40.7507
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Table 4.6: Effect of damper location on natural frequencies (Hz).

Mode
Lc1

Lc/100 Lc/10 Lc/6 Lc/4 Lc/2
1 2.3999 2.3614 2.3049 2.2288 2.1201
2 4.5444 4.0203 3.9004 3.9544 4.7092
3 4.8621 5.1583 5.3589 5.4976 4.8423
4 7.2383 7.1893 7.0885 7.0926 7.0949
5 9.6696 8.8023 9.0209 9.6194 9.6104
6 12.1225 10.3922 10.7470 12.2225 9.8972
7 14.5983 14.5833 12.2794 14.5632 12.4048
8 17.0988 16.9846 14.6115 17.0170 14.6111
9 19.6190 19.5491 17.0247 19.6732 16.8610
10 22.1239 22.2159 19.2416 21.7401 19.6731
11 24.3187 24.8734 21.6055 23.9078 21.5417
12 25.6735 25.8659 24.3172 26.7988 24.8785
13 27.8490 27.8460 27.0319 27.9871 25.7063
14 30.4769 30.5062 27.7439 30.3646 28.3762
15 33.1860 32.6745 30.3640 32.9017 30.3669
16 35.7006 34.7148 33.1236 34.7440 32.4379
17 37.1094 37.4496 34.7936 38.0303 36.0100
18 39.3438 40.4795 37.3504 41.5599 37.0541
19 42.2444 43.6002 40.5902 42.1458 41.4734
20 45.2944 46.6673 42.2288 45.5969 42.0975

4.3.2 Forced vibration analysis

In this numerical analysis, the same material and geometric properties of the tested con-

ductor and damper are employed and the conductor tension is assumed to be 20% RTS

(27840 N). The time response of the bare conductor with and without self-damping is

depicted in Fig. 4.7. The damping coefficient of the conductor is obtained by curve-fitting

the experimental data. It is observed that the vibration amplitude of the conductor with-

out self-damping can be up to eight times higher than that with conductor self-damping.

This implies that ignoring conductor self-damping can lead to erroneous prediction of the

response of the conductor. Hence the damping coefficient of the conductor is included in

subsequent numerical simulations.

In Figs. 4.8 and 4.9, the validity of the present analytical model is examined using

the experimental results. The former figure is the frequency response curve of the bare

conductor while the latter depicts the frequency response curve of the conductor with a

Stockbridge damper located at Lc1 = 0.94 m. Both figures show good agreement between

the analytical and experimental results. The present analytical results are also compared

to the finite element results and the energy balance method. The results indicate that

the present analytical results agree better with the experiments than those of the finite
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Figure 4.7: Vibration response of the conductor with and without self-damping for F0

= 22.5 N, f = 26.5 hz, ζ = 0.006.

element and energy balance method.

As mentioned in the literature review, it is observed from Fig. 4.8 that the energy

balance method overestimates the response of the bare conductor while Fig. 4.9 indicates

that the energy balance underestimates the response of the loaded conductor. The results

in Figs. 4.8 and 4.9 also show that the ratio of vibration amplitude over the excitation

force significantly decreases with increasing frequency. However, the vibration response

of the conductor with attached Stockbridge damper is much lower than that of the

bare conductor. For an excitation frequency of f = 26.5 Hz, Fig. 4.10 shows the time

response curve of the conductor for various damper location. The vibration amplitude is

significantly reduced by attaching a Stockbridge damper at the mid-span.

4.4 Summary

The conductor was modeled as a beam with a tensile load, but the Stockbridge damper

was modeled as an in-span beam with tip-mass at each end. Hamilton’s principle was

employed to derive the governing equations of motion and boundary conditions. Explicit

expressions were presented for the orthogonality conditions, mode shapes, and charac-

teristics equation. Natural frequencies of the conductor with and without damper were

obtained and the results were validated using experimental results; very good agreement
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Figure 4.8: Validation for the bare conductor.

Figure 4.9: Validation for the loaded conductor.



Chapter 4. Double-Beam System 76

Figure 4.10: Efffect of damper location for F0 = 22.5 N, f = 26.5 hz, ζ = 0.006 .

was observed with a maximum percentage error of 4%. The mass of the counterweight,

flexural rigidity of the messenger, clamp height, and location of the damper were all found

to be factors that can impact the natural frequency of the conductor-damper system.

The vibration response of the conductor with and without dampers was determined

using modal analysis method. The results were also validated experimentally. It was

demonstrated that the present method is more accurate than the energy balance method

for predicting the vibration response of a single conductor with dampers. The results

of the numerical examples indicated that the location of the damper is a major factor

in controlling the vibration response of the conductor. This important role motivates

the determination of the optimal damper location which is investigated in the following

chapter.



Chapter 5

Design Optimization of Damper

Location

5.1 Introduction

The model in the preceding chapter is employed to conduct the damper location opti-

mization since it is more thorough and accurate than the model presented in chapter

3. An explicit expression of the loop length is presented. Based on a heuristic process,

the first optimization is conducted by determining the minimum mid-span vibration dis-

placement while varying the location of the damper throughout the loop length. This

heuristic algorithm is then validated using the Matlab routine fmincon. The orienta-

tion of the counterweights is investigated to obtain the best performance of the damper.

A typical transmission line span length is then utilized to examine the symmetric and

asymmetric damping arrangement. This damper location optimization is limited to two

dampers per span which is usually the case for a suspension-suspension span of up to

500 m span length.

5.2 Damper location optimization

For a simply supported beam, the maximum vibration amplitude is expected to occur

at mid-span provided that the excitation frequency is closer to an odd mode. As such,

the optimal location is expected to be the mid-span. However, field investigations have

shown that a damper located at mid-span or further from the suspension clamp has in-

creased tendency to suffer early fatigue failure due to galloping. Therefore, it has been

recommended to position the damper closer to suspension clamps between 70 to 80% of

77
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the loop length corresponding to the highest wind speed (7 m/s) [1]. This recommenda-

tion also facilitates the installation of the dampers by construction workers because the

damper location is within a few meters from towers.

5.2.1 Heuristic algorithm

An intent of this work is to revisit the recommendation provided in [1] for determining

the optimal damper location by considering not only high wind speed but also medium

(4 m/s) and low wind speed (2 m/s). This is achieved by finding the minimum value of

the conductor response while varying the location of one damper throughout the loop

length corresponding to wind speeds of 2, 4, and 7 m/s.

The expression of the loop length is obtained by equating the natural frequency of

the bare conductor to that of the Strouhal frequency (excitation frequency) and solving

for Lc

n
. The derivation is shown below.

The natural frequency of the bare conductor was obtained in Ref. [2] and is given as

fn =
n

2Lc

√
T

mc

+

(
nπ

Lc

)2
EcIc
mc

(5.1)

where n is the mode number. And the excitation frequency is given by

fs = 0.2
v

D
(5.2)

Equating Eq. (5.1) to Eq. (5.2) and solving for Lc

n
, which is the loop length and

denoted by λ yield

λ =
1

2fs

√
T

mc

+
(π
λ

)2 EcIc
mc

(5.3)

Squaring both sides of Eq. (5.3) and isolating λ yields

λ4 − T

4mcf 2
s

λ2 − π2 EcIc
4mcf 2

s = 0
(5.4)

After some algebraic manipulation, the loop length can be expressed as

λ =

√√√√√1

2

 T

4mcf 2
s

+

√(
T

4mcf 2
s

)2

+ π2
EcIc
f 2
s

 (5.5)

The numerical simulation in this subsection is also based on the tested conductor and
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Figure 5.1: Optimal damper location for lower frequencies excitation

damper parameters. The tension is assumed to be 28.024 kN and the applied force is

F=20 N. The calculated loop length corresponding to the lowest, medium, and highest

wind speed are determined to be 4.6, 2.3, and 1.32 m, respectively. The optimization of

the damper location corresponding to the low wind speed is depicted in Fig. 5.1. The

results indicate that the optimal damper location for lower frequencies falls between 60

to 70% of the loop length corresponding to a wind speed of 2 m/s.

In Fig. 5.2 the optimization is based on medium excitation frequencies. The results

show that the vibration amplitude of the conductor is minimum when the damper is

positioned between 80 to 90% of the loop length corresponding to a wind speed of 4 m/s.

Fig. 5.3 shows the optimization of the damper location based on high frequencies. The

results indicate that the optimal location should lie between 85 to 95% corresponding to

a wind speed of 7 m/s.

5.2.2 Matlab built-in function

The optimization of the damper location herein is based on the Matlab built-in routine,

fmincon. This is a constrained optimization routine. The approach is to determine the

location of the damper corresponding to the minimum mid-span vibration displacement

(Eq. (4.57)) throughout the whole range of excitation frequency. The optimality criterion
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Figure 5.2: Optimal damper location for medium frequencies excitation

Figure 5.3: Optimal damper location for higher frequencies excitation
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is defined as

Minimize

(
wci =

∞∑
r=1

qr(t)Y
(r)
ci (Lc/2)

)
(5.6)

subject to the constraints

0 ≤ Lc1 ≤ λlow

0 ≤ Lc2 ≤ (Lc − λlow) (5.7)

where λlow is the loop length corresponding to low wind speeds. The above contraints

are use to facilitate the easy installation of the damper. Given any initial guess of Lc1

and Lc2, the routine fmincon finds the optimal damper location in such way that the

objective function in Eq. (5.6), subject to constraints given in Eq. (5.7) is minimized.

The option of using the gradient or Hessian is not provided hence by default Matlab uses

the trust-region-reflective method, a finite difference approximation method, to solve the

problem.

Because the purpose of this subsection is to verify the proposed optimization algo-

rithm, the numerical example is based on the same parameters (i.e., tested conductor

with span length of 27.25 m). The initial guess for Lc1 and Lc2 are taken to be 1.5 and

1 m from each end, respectively. The optimization is conducted over the whole range

of the vibration frequency (7 to 50 Hz). After several iterations, the fmincon command

returns the optimal damper locations, Lc1 = 2.57 m and Lc2 = 1.2 m from each end.

The optimization results obtained using the fmincon command indicate that Lc1 is

at 55.8% of the loop length, corresponding to a wind speed of 2 m/s, and that Lc2

is at 90.9% of the loop length corresponding to wind speed of 7 m/s. Comparing these

results to those obtained using the heuristic algorithm, it is observed that Lc2 falls within

the anticipated range of optimal damper location while Lc1 does not fall within the

anticipated range of optimal damper location for low vibration frequency. As such,

based on this numerical example the optimal damper location range for low vibration

frequencies should be extended to fall between 50 to 70% of the loop length corresponding

to a wind speed of 2 m/s.

A further comparison between the proposed algorithm and fmincon command is

demonstrated in the numerical simulations for a typical transmission line span length.

5.2.3 Orientation of the counterweight

To further investigate the optimal performance of the damper, the orientation of the

damper counterweights is examined to determine the difference of the damper perfor-



Chapter 5. Design Optimization of Damper Location 82

Figure 5.4: Difference in the damper performance based on the orientation of the
counterweight

mance when the bigger mass is oriented toward the suspension clamp (span-ends) and

when it is oriented toward the span center. The results are plotted in Fig. 5.4 and indi-

cate that facing the bigger mass toward the suspension clamp improves the effectiveness

of the Stockbridge damper while facing the bigger mass toward the mid-span decreases

the effectiveness of the Stockbridge damper.

5.3 Numerical analysis for a typical transmission line

A span length of Lc = 366 m is selected for the next numerical simulation. This se-

lection ensures that the ratio of the conductor sag to span length is typical of existing

transmission lines (i.e., 0.03). The equivalent wind force F0 = 370.9 N. It should be

noted that the severity of aeolian vibration is often measured by the bending strain

(ε = πDY f
√

(m/T )), which is used to examine the tendency of the conductor to expe-

rience fatigue failure.

5.3.1 Conductor with one damper

Fig. 5.5 shows the nondimensional response of the conductor (with respect to conductor

diameter) with and without damper for various forcing frequencies. This figure indicates

that the conductor response reduces when the Stockbridge damper is attached. The
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Figure 5.5: Vibration response of a typical span length of transmission line with and
without a damper

bending strain is plotted against the forcing frequency in Fig. 5.6 for a conductor with

and without a damper. Guided by suggested safe bending strain of 200 µm
m

in the

literature [24], it is evident that the calculated bending strain for a bare conductor and

that of a conductor with one damper exceed the strain limit.

It is observed that a minimum of two dampers are placed close to each end-span to

control the vibration in a typical transmission line with long span length. This can be

achieved by either symmetric or asymmetric damping arrangement. In the next numerical

analysis both damping arrangements are examined and then a comparison of the two is

conducted.

5.3.2 Symmetric arrangement

In the symmetric damping arrangement, the numerical simulation is established using

five scenarios. The first two scenarios are based on the recommendation of [1] and the

last three scenarios are based on the present optimal damper location heuristic. In the

first and second scenario each damper is placed respectively at 70 and 80% of the loop

length, corresponding to highest wind speed. The results are illustrated in Fig. 5.7. A

better damper performance is observed when the damper is placed at 80% of the loop

length which corresponds to highest wind speed.

The last three scenarios are depicted in Fig. 5.8. The third scenario is to place each
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Figure 5.6: Bending strain of a typical span length of transmission line with and without
dampers

Figure 5.7: Bending strain in symmetrically located dampers using [1] recommendation
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Figure 5.8: Damper performance based on symmetric arrangement from the heuristics
algorithm

damper at 90% of the loop length measured from the suspension clamp, corresponding to

high wind speed. In the fourth scenario each damper is placed at 85% of the loop length

measured from the suspension clamp corresponding to medium wind speed. In the fifth

scenario each damper is placed at 67% of the loop length measured from the suspension

clamps which corresponds to low wind speed.

As expected, Fig. 5.8 indicates that each scenario fares best in the range of frequencies

corresponding to its optimal location. For example the third scenario is found to be the

best to control high frequencies, the fourth scenario is the best for controlling medium

vibration frequencies, and the fifth scenario is the best for damping low vibration fre-

quencies.

To further investigate the optimal damper location, each of three scenarios of the

heuristic method (i.e., third, fourth, and fifth scenario) are compared to the best scenario

of Ref.[1] (i.e., the second scenario). The results are depicted in Figs. 5.9 to 5.11. The

same conclusions observed from Fig. 5.8 can be deduced in that each scenario performs

better in the frequency range corresponding to its optimal location. Of the five scenarios,

the second and third scenarios are in general the best. This is an indication that the best

location of the damper for a symmetric damping arrangement should involve placing the

damper between 80 to 90% of the loop length which corresponds to the high wind speed.
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Figure 5.9: Second scenario (damper location at 80% loop length corresponding to high
frequencies) vs. third scenario (damper location at 90% loop length corresponding to
high frequencies)

Figure 5.10: Second scenario (damper location at 80% loop length corresponding to
high frequencies) vs. fourth scenario (damper location at 85% loop length corresponding
to medium frequencies)
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Figure 5.11: Second scenario (damper location at 80% loop length corresponding to
high frequencies) vs. fifth scenario (damper location at 67% loop length corresponding
to low frequencies)

5.3.3 Asymmetric arrangement

The asymmetrical arrangement is based on three scenarios. The first scenario is to place

one damper at 67% of the loop length corresponding to the low wind speed and placing

another damper at 90% of the loop length corresponding to the high wind speed. The

second scenario is to place one damper at 85% of the loop length corresponding to the

medium wind speed and place another at 90% of the loop length corresponding to the

high wind speed. The third scenario is to place one damper at 85% of the loop length

corresponding to the medium wind speed and another damper at 67% of the loop length

corresponding to the lowest wind speed. The results are depicted in Fig. 5.12. Of the

three scenarios, the first scenario is found to be the best.

5.3.4 Symmetric vs. asymmetric arrangement

In this numerical analysis, a comparison between the symmetric and asymmetric damp-

ing arrangement is examined. The results are illustrated in Fig. 5.13. These results

clearly indicate that all three scenarios of the asymmetric damping arrangement perform

better than the best scenario of the symmetric damping arrangement. The symmetric

arrangement shows very good control for high frequencies, but poor control for low fre-

quencies. All three asymmetric damping arrangement scenarios show very good control
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Figure 5.12: Damper performance based on an asymmetric arrangement

for both low and high excitation frequencies. Hence the asymmetric damping arrange-

ment is recommended for the control of aeolian vibration. Therefore, an optimal damping

arrangement would involve one damper located between 50 to 70% of the loop length

corresponding to the low wind speed and another damper located between 85 to 95% of

the loop length corresponding to the high wind speed.

5.3.5 Heuristic algorithm vs. Matlab built-in routine

The Matlab built-in routine fmincon is compared to the heuristic algorithm for the typical

transmission line span length (i.e., 366 m) . The optimal damper location for the heuristic

algorithm is obtained to be 3.1 m and 1.2 m from each end. The results obtained using

the fmincon routine indicate that the optimal damper location is 2.7 m and 1.15 m from

each end. It is noted that the results of the fmincon routine translate to 58.6% of the loop

length corresponding to 2 m/s wind speed and 87.1% of the loop length corresponding to

7 m/s wind speed, respectively. This result is an indication that the proposed algorithm

agrees with the fmincon command.

A further illustration of this corroboration is demonstrated in Fig. 5.14 which shows

a negligible difference between the two methods. As such, it can be concluded that the

proposed heuristic algorithm is valid for the purpose of optimizing the damper location.
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Figure 5.13: Symmetric vs. asymmetric arrangement

Figure 5.14: Proposed heuristic algorithm vs. Matlab optimization using fmincon
routine
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5.4 Summary

The state-of-the art of damper placement is based on a rule of thumb. This was revisited

in this chapter by not only using highest wind speed but also by including the low

and medium wind speeds. An explicit expression of the loop length was presented. A

heuristic process was first used to determine the optimal damper location. The results

were compared to those obtained using a Matlab optimization routine and very good

agreement was observed.

Asymmetric and symmetric damping arrangements were examined. The results showed

that asymmetric arrangement was better for controlling conductor vibration. It was

demonstrated that the optimal location of the damper involved placing one damper be-

tween 50 to 70 % of the loop length corresponding to low wind speed (2 m/s) and another

damper 85 to 95% of the loop length corresponding to high wind speed (7 m/s). It was

also observed that orientating the bigger counterweight toward the suspension clamp

(i.e., toward the tower) improves the effectiveness of the Stockbridge damper.



Chapter 6

Conclusion and Future Work

6.1 Summary

Overhead transmission line vibration is one of the major causes of power outages. A

method to control these vibrations is to attach Stockbridge dampers on the conductor.

The performance of the damper is significantly dependent on its characteristics and

location. Hence it is necessary to develop mathematical models that can be used to

predict the conductor dynamics and determine optimal location of dampers.

The energy balance principle (EBP) and the impedance methods are the two common

methods used to study transmission line vibrations. Both methods are easy concepts

to implement with little computation. However, they do not account for some critical

parameters such as the flexural rigidity of the conductor and messenger, and the mass of

the damper. Another major drawback of these two approaches is the limitation to only

one-way coupling between the conductor and damper. Specifically, the dynamics of the

damper influenced that of the conductor but not the converse.

These shortcomings were addressed in the present dissertation using two analytical

models. In the first analytical model, the conductor was modeled as an Euler-Bernoulli

beam subjected to an axial load and the Stockbridge damper was reduced to an equivalent

discrete mass-spring-mass and viscous damping system. The viscous damping of the

Stockbridge damper was determined experimentally. The validity of the formulation was

demonstrated via comparisons with experimental results and finite element numerical

method results. The proposed simple model was effective for predicting the conductor

response and natural frequencies of the system (i.e., combined conductor and damper),

but a poor predictor of the response of the counterweights.

The numerical simulations showed significant dependency of the natural frequencies

on damper location and total mass. This was more pronounced when the damper was in

91
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the proximity of antinodes. With regard to the forced vibration, increasing the forcing

frequency significantly reduced the vibration amplitude of the conductor. The use of two

dampers was significantly superior to using a damper.

The second analytical model was based on double-beam concept. The main beam

was subjected to an axial load and was representative of the conductor. The Stockbridge

damper was modeled by an in-span beam with tip mass at each end. Explicit expression

for the damping coefficient of the conductor was obtained through experiments in con-

junction with the linear regression analysis. This model was validated using experimental

data. Expressions were presented for the frequency equation, mode shapes, and orthog-

onality relations. Numerical examples on the free vibration analysis indicated that the

mass of the counterweights, length of the rigid link, length of the messenger, and flexural

rigidity had more effect on higher modes. The first mode was dominated by the conduc-

tor characteristics. The roles of the location of the Stockbridge damper on the system

natural frequencies were inconclusive.

Parametric studies on the forced vibration analysis indicated that the response of

the bare conductor decreases significantly with increasing frequency. However for a

loaded conductor, the response can increase or decrease depending on the location of

the dampers. It was also observed that the attachment of the Stockbridge damper sig-

nificantly reduces the vibration response of the conductor. The degree of reduction was

significantly dependent on the location and number of Stockbridge dampers.

Optimization was conducted to determine the optimal damping arrangement. It was

demonstrated that optimal damping is achieved when two dampers are placed asymmet-

rically from the suspension clamps. That is, one damper should be placed at a distance

between 50 to 70% of the loop length corresponding to the lowest wind speed (2 m/s) and

another damper 85 to 95% of the loop length corresponding to the highest wind speed

(7 m/s) and that the orientation of the bigger counterweight should be toward the span

ends.

6.2 Contributions

The contributions of this thesis can be summarized in five major categories: modeling,

equivalent mass-spring-damper system, conductor self-damping coefficient, asymmetric

damping arrangement, orientation of the counterweight.
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6.2.1 Modeling

Two novel mathematical models are presented for the vibration of a single conductor

with Stockbridge dampers. Unlike the models in the literature, the proposed models

accounted for the two-way coupling between the conductor and damper as well as crucial

parameters such as the flexural rigidity of both the conductor and the damper, and mass

of the damper. Expressions were presented for mode shapes, frequency equations, and

generalized orthogonality relations. These expressions are of importance not only in

the analysis of transmission lines vibration, but also in other fields of mechanical and

structural engineering.

6.2.2 Equivalent mass-spring-damper

It was demonstrated that the Stockbridge damper can be reduced to an equivalent dis-

crete spring-mass and viscous damping coefficient. This simplified representation of the

Stockbridge was found to be good for a quick prediction of the response of the conduc-

tor. This finding can be very useful to a transmission design engineer in the analysis of

transmission lines vibration.

6.2.3 Self-damping coefficient

Expressions for the self-damping power of the conductor abound in the literature because

it is required in the energy balance principle. Other methods of analyzing vibration

require the damping coefficient. As such, the determination of an explicit expression of

the self-damping coefficient of the conductor is very crucial in the analysis of transmission

line vibrations using analytical or the finite element method.

6.2.4 Asymmetric damping arrangement

The recommendation in the literature for best damping arrangement for suspension-

spans is to symmetrically locate two dampers between 70 to 80% of the loop length

corresponding to the highest wind speed. This approach is very efficient in the control of

high frequencies excitation and the dampers are easy to install as the distance is usually

within a meter from the tower. But it underperforms at low vibration frequencies. It

was demonstrated in this thesis that the asymmetric damping arrangement is better

at controlling both high and low vibration frequencies. Three scenarios of asymmetric

damping arrangements were examined. The best was to install one damper between 50 to
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70% of the loop length (corresponding to a wind speed of 2 m/s) and the other between

85 to 95% of the loop length (corresponding to a wind speed of 7 m/s).

6.2.5 Orientation of the counterweight

The proposed model (i.e., double-beam system) predicts the difference in the performance

of the damper when the heavier counterweight is oriented toward the mid-span or span-

end. Hitherto the decision for the orientation of the counterweights was arbitrary. In this

work, it was shown that the orientation of the heavier counterweight toward the span-ends

resulted in a better damping performance than an orientation toward the mid-span.

6.3 Future work

6.3.1 Stockbridge damper nonlinearity

It was assumed in this thesis that the Stockbridge damper experienced small vibration

displacement and contact modeling was ignored. Hence the nonlinearity was not modeled.

In reality, however, the Stockbridge damper may experience finite amplitude vibrations

and relative motion between components. Therefore, it may be desirable to consider

the geometric nonlinearity due to stretching of the messenger wire and internal contacts

between the messenger and the counterweight.

6.3.2 Wind tunnel experiment

The wind force used in this work is approximated from the amount of power needed by

the shaker to excite the conductor. A more accurate model would involve a wind tunnel

experiment to determine an explicit expression for the wind force that will depend on

the vibration frequency and the amplitude of the conductor.

6.3.3 Armor Rods

Armor rods is another type of damping device used to control aeolian vibration. Some

power utilities employ a combination of both armor rods and Stockbridge damper to

protect overhead transmission lines. However, the prediction of the performance of armor

rods is currently based on experimental data. There is no analytical model of transmission

line carrying armor rods. The current work did not consider armor rods. An extension

of this work to include armor rods is worthy of consideration.
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6.3.4 Dead-end spans

The present analytical model is only applicable to suspension-suspension spans. Dead-

end towers are utilised when transmission lines change direction. These towers use hori-

zontal insulators and can resist unbalance load due to conductor tension and weight. The

span between dead-end towers is called dead-end spans. Hitherto there is no analytical

model for dead-end span. The vibration protection for dead-end span is achieved by

adding extra dampers. One major extension of this work will be to develop an analytical

model for dead-end spans by including the coupling between insulators and conductor.

6.3.5 Bundle Conductor

High voltage transmission lines (greater than 230 kV) are usually transmitted through

bundle conductors and spacer damper are employed to protect the lines from vibrations.

The placement of the spacer dampers on the conductor is however based on rule of thumb.

Therefore, it will be worthwhile to develop analytical models to predict the response of

bundle conductors to determine optimal locations for the spacer dampers.

6.3.6 Galloping

Ice accretion on transmission lines in combination with heavy wind causes conductor

galloping. Rigid and flexible interphase spacers have been used to control galloping. The

established models on conductor galloping are mostly based on empirical data. There

is no analytical model that takes into account the coupling between the conductor and

interphase spacers. A development of such a model will be helpful for a more precise

control of conductor galloping.
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