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Abstract We investigate the control of friction-
induced vibration in a precision motion stage under the
effect of the LuGre friction dynamics. We consider a
lumped parameter model of the precision motion stage
withPIDand linear time-delayed state feedback control
acting in the direction of themotion of the stage. Linear
stability analysis reveals the criticality of integral gain
in the stability and, accordingly, the existence of mul-
tiple stability lobes and codimension-2 Hopf points for
a given choice of system parameters. The nature of the
bifurcation is determined by an analytical study using
the method of multiple scales and harmonic balance.
We observe the existence of both subcritical and super-
critical Hopf bifurcations in the system, depending on
the choice of control parameters. Hence, the nonlinear-
ity due to dynamic frictionmodel could both be stabiliz-
ing or destabilizing in nature, and therefore, stick-slip
nonlinearity is essential to capture the global behavior
of the system dynamics. Furthermore, numerical bifur-
cation analysis of the system reveals the existence of
period-doubling bifurcation near the Hopf points. We
observe complicated solutions such as period-4, quasi-
periodic, large-amplitude stick-slip limit cycles along
with chaotic attractor in the system.
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1 Introduction

In machining, additive manufacturing, and semi-
conductor fabrication industries, motion stages are
intensively used for the precision positioning at macro-
and nano-levels [1–4]. These precision motion stages
can be broadly classified into four different cate-
gories: (1) flexural-based, (2) magnetic-based, (3)
fluidic-based, and (4) mechanical bearing-based [1,5–
7]. Mechanical bearing-based motion stages (MBMS)
(e.g., sliding and rolling bearings) are more popular as
compared to others in the industrial applications due
to their large motion range, high off-axis stiffness, and
cost-effectiveness [7]. However, one of the phenomena
afflicting the motion of MBMS is premotion or static
friction between the rolling bearing elements and rigid
supporting surface as themotion stage transits from rest
to fullmotion. This premotion friction adversely affects
the positioning precision, speed, long settling times,
stick-slip phenomena, and further causing large track-
ing errors [8–14]. The commonly applied controller
in the motion stage to control the motion of MBMS
includes one or a combination of proportional (P), inte-
gral (I), and derivative (D) terms [10,15,16]. On the
other hand, implementing feedback controllers leads
to self-excited limit cycles due to friction, also referred
to as friction-induced vibration [11], resulting in fur-
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ther control performance deterioration. Therefore, to
enhance the performance of precision motion stages, it
is necessary to have a complete understanding of the
dynamics of the precision motion stage based on the
different values of control parameters.

Different methods can be used to control frictional
systems and suppress self-excited friction-induced
vibrations. These methods can be broadly classified
into three categories: (1) application of advanced con-
trollers (adaptive controller, model predictive con-
troller) [17–20] (2) passive suppression of vibrations
through friction isolators or compliant joints method
[21,22], and (3) the use of time-delayed feedback con-
trollers [23–30]. A common problem of implement-
ing advanced controllers is related to algorithm com-
plexity determined by the structural model, which may
lead to unsatisfactory performance at high-frequency
controls due to hardware limitation [31,32]. Vibration
suppression realized by mechanical enhancements can
be limited by the practical range of design parameters.
Mechanical add-onsmay also introduce additional cou-
pling of dynamics, i.e., in the case of friction isolator,
the stability range of control gain selection is reduced
by multiple factors including the mass ratio and the
stiffness/damper [33,34].

In recent years, the use of time-delayed feedback
control has become prevalent to control vibration in
complex systems. For the sake of completeness, we
summarize some of the pioneeringworks here. In 2003,
Maccari [23] successfully implemented time-delayed
state feedback to control the vibration of a cantilever
beam for the case of primary resonance and observed
reduction in the amplitude peaks. Later on, Atay [24]
andMaccari [25] studied the control of free, forced, and
parametric excitation of a van der Pol oscillator using
time-delayed feedback control. Hu et al. [26] inves-
tigated the primary and subharmonic resonance of a
forced Duffing oscillator with time-delayed state feed-
back. Qian and Tang [27] used a time-delayed feed-
back controller to stabilize the vibration of a nonlin-
ear beam under moving load. Following these studies,
time-delayed feedback controllers are also successfully
implemented for the control of self-excited friction-
induced vibrations. Das and Mallik [28] were the first
ones to study time-delayed PD feedback control to sup-
press self-excited vibration in friction-driven systems.
Chatterjee [29] studied the control of different types of
friction-induced instabilities using time-delayed feed-
back. Neubauer et al. [30] investigated analytically and

experimentally the use of time-delayed feedback con-
trol to quench stick-slip vibrations in an automotive
disc brake.

One of the crucial steps inmodeling friction-induced
vibrations is the choice of the friction model. From
experimental investigations, it was observed that static
friction laws do not capture the complete dynamical
effects of friction-induced vibrations such as preslid-
ing, change in friction with time, and relative veloc-
ity. Therefore, dynamics friction model are required
to understand these dynamical effects. One of the
popular dynamic friction models is the LuGre fric-
tion model [35], which includes viscous friction, pre-
motion friction (presliding/prerolling), and hysteresis
effects together and, hence, has been considered in the
current analysis. Nevertheless, the nonlinear analysis
of friction-induced vibration with the LuGre friction
model revealed the nature of the bifurcation is subcrit-
ical, which further causes the loss of global stability of
equilibrium points near the stability boundaries [36].
However, it has been observed that with the proper
choice of control parameters in time-delayed feedback
controllers the nature of bifurcation can be changed
from subcritical to supercritical, and hence, global sta-
bility of equilibriumpoints near the stability boundaries
can be achieved.

We emphasize that although the use of time-delayed
feedback control to quench friction-induced vibration
is well-established in the literature, it has not been
implemented to control friction-induced vibration in
PID-controlled motion stages. Therefore, this work is
believed to be the first study to examine this problem, in
which we use a linear time-delayed feedback controller
in a PID-controlled motion stage. We use linear time-
delayed feedback to control the friction-induced vibra-
tions in a motion stage under the effect of the LuGre
friction model. It has been observed that for a given set
of control parameters in PID, the nature of bifurcation
can be changed with the help of a time-delayed feed-
back controller. The rest of the paper is organized as
follows. In Sect. 2, we present the completemathemati-
cal model ofMBMS. It also includes a brief description
of the LuGre model, along with the nondimensional-
ization of the governing equation of motions. Linear
stability analysis and, accordingly, the analytical forms
of the Hopf points are presented in Sect. 3. In Sect. 4,
a detailed analytical nonlinear analysis of the system
is presented using the method of multiple scales and
harmonic balance. Results from linear and nonlinear
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Fig. 1 Schematic of
precision motion stage with
PID and time-delayed
feedback controller
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analysis along with numerical bifurcation analysis are
presented in Sect. 5. In Sect. 6, some conclusions are
drawn from the findings of the analysis.

2 The mathematical model of a MBMS with
dynamic (LuGre) friction model

In this section, we briefly outline the mathematical
model used for the analysis in the current study. We
model the precision motion stage as a single degree of
freedom system, which is in frictional contact with the
rigid surface since the rail of the mechanical bearing is
fixed to the ground. Also, we consider this model with
control forces applied along the direction of the motion
of the stage only. The physical model of the system is
shown in Fig. 1, in which u1 and u2 are the feedback
control forces corresponding to PID and time-delayed
controllers, respectively.mt is themass ofmotion stage,
Ff is the frictional force between the motion stage and
rigid surface, r(t) is the setpoint/reference signal, and
X (t) is the motion of the stage.
Therefore, the equation governing the motion of the
stage can be written as

mt Ẍ = u1 + u2 − Ff , (1)

where the PID and time-delayed controller force (u1
and u2) can be calculated as

u1 = − k∗
pα − k∗

d α̇ − k∗
i

∫
α dt, (2)

and

u2 = K ∗
0

(
α(t − T ∗) − α(t)

)
. (3)

In the above expressions of u1 and u2, k∗
p, k

∗
d , and

k∗
i represent the proportional, differential, and integral
gains, respectively, K ∗

0 represents the delay gain, T ∗

represents the time delay, and α represents the tracking
error. The tracking error can be expressed in terms of
the motion of the stage, X (t), and the reference signal,
r(t), as

α = X (t) − r(t). (4)

On substituting the expressions for control forces
(Eqs. 2, 3) in equation of motion (Eq. 1) and writing in
terms of tracking error α, we get

mt α̈ + k∗
d α̇ + k∗

pα + k∗
i

∫
αdt

= K ∗
0

(
α(t − T ∗) − α(t)

)− Ff + mr̈ . (5)

The next step in the mathematical modeling is the
selection of the dynamical friction model. The LuGre
friction model incorporates viscous friction, premotion
friction (presliding/prerolling), and hysteresis effects
together and, hence, is widely used in the analysis of
real-life dynamical friction problems [35,37–39]. One
of the essential characteristics of the LuGre friction
model is that unlike other friction models, the LuGre
friction model does not only depend on the relative
velocity but also on the internal state variable. Also,
the evolution of this internal state variable with time is
governed by a differential equation. Therefore, instead
of resulting in a unique value of the friction force for
a given relative velocity during acceleration and decel-
eration, it can give different values of friction force
in these two phases depending on the evolution of the
internal state variable.

The LuGre friction model incorporates microscopic
degrees of freedom by modeling asperities of the con-
tact surfaces as elastic spring-like bristleswith damping
(as shown in Fig. 2). Therefore, the total friction force
can be represented as the sum of the forces developed
from the deflection of the bristles and the macroscopic
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Fig. 2 Schematic of the friction dynamics between the contact
surfaces

viscous friction, which is proportional to the relative
velocity between contacting surfaces. Therefore, if z
represents the average bristle deflection, which also
represents the internal state variable, the friction force
in the LuGre model can be defined as [35]:

Ff = σ ∗
0 z + σ ∗

1 ż + σ ∗
2 Vr , (6)

where σ ∗
0 and σ ∗

1 are the contact stiffness the micro-
damping of the bristle, respectively, σ ∗

2 is the macro-
scopic viscous friction between the contact surfaces,
and Vr = Ẋ = α̇ + ṙ is the relative velocity between
the two moving surfaces. Also, the evolution of the
average bristle deflection z with time is governed by
[35,40]:

ż = Vr − σ ∗
0 |Vr |
g(Vr )

z = Vr

(
1 − σ ∗

0 sgn(Vr )

g(Vr )
z

)
, (7)

where g(Vr ) > 0 describes the Stribeck effect. To cap-
ture dropping characteristic, Wit et al. [35] suggested
the use of Gaussian function model for g(Vr ) in the
form of :

g(Vr ) = f ∗
C + ( f ∗

S − f ∗
C )e−(Vr /Vs )2 , (8)

where f ∗
C is the Coulomb friction, f ∗

S is the static fric-
tion, andVs is theStribeckvelocity threshold.However,
the limitations of this model have been observed in the
analytical analysis of the system [40,41]. To overcome
this shortcoming, the positive-valued function g(Vr )
was modified and represented by an exponential func-
tion [40,41]:

g(Vr ) = f ∗
C + ( f ∗

S − f ∗
C )e−ã|Vr |, (9)

where ã is the slope parameter. Having defined the
dynamical frictional model, we note that Eqs. (5), (6),
(7), and (9) together govern the complete dynamics of
the system. Further, we introduce the following nondi-
mensional scales and parameters:

x = α

X0
, z̃ = z

X0
, X0 = g

ω2
0

, ω0 =
√

k∗
p

mt
,

τ = ω0t, ζ = k∗
d

2mtω0
, ki = k∗

i

mtω
3
0

,

T = ω0 T
∗, K0 = K ∗

0

mtω
2
0

, vr = Vr
X0ω0

,

σ0 = σ ∗
0

mtω
2
0

, σ1 = σ ∗
1

mtω0
, σ2 = σ ∗

2

mtω0
,

fc = f ∗
c

mt X0ω
2
0

, fs = f ∗
s

mt X0ω
2
0

, a = ãω0X0.

(10)

Using above-mentioned nondimensional scales and
parameters and assuming constant reference velocity
(r̈ = 0), the governing equations of motion can be
nondimensionalized as

ẍ + 2ζ ẋ + x + ki

∫
xdτ

= K0 (x(τ − T ) − x(τ ))

−
(

σ0 z̃ + σ1vr

(
1 − σ0sgn(vr )

g(vr )
z̃

)
+ σ2vr

)
,

(11a)

˙̃z = vr

(
1 − σ0sgn(vr )

g(vr )
z̃

)
. (11b)

In the above governing equations, overhead dot (.)

represents the derivative with respect to the nondimen-
sional time τ . For the sake of simplicity in the analytical
treatment of governing equations, we rewrite Eq. (11)
compactly in state-space form as:

ẋ1 = x2, (12a)

ẋ2 = −2ζ x2 − x1 − ki x3 + K0 (x1(τ − T ) − x1)

−
(

σ0x4 + σ1vr

(
1 − σ0x4

g (vr )
sgn(vr )

)
+ σ2vr

)
,

(12b)

ẋ3 = x1, (12c)

ẋ4 = vr

(
1 − σ0x4

g (vr )
sgn(vr )

)
, (12d)

where [x1, x2, x3, x4] = [x(τ ), ẋ(τ ),
∫
xdτ, z̃(τ )].

Therefore, if vrv represents the nondimensional con-
stant reference velocity, the nondimensional relative
velocity, vr , can be written as

vr = ẋ + vrv = x2 + vrv.
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Expanding
1

g(vr )
= 1

g(vrv + x2)
in a Taylor series for

small amplitude of x2 and keeping terms till third order,
we get

1

g(vrv + x2)
= g0 + g1x2 + g2x

2
2 + g3x

3
2 . (13)

In the above expansion of 1/g(vr ), gi are given by

g0 = 1

g(vrv)
= 1

g
, g1 = − 1

g2
∂g

∂vrv
,

g2 = 1

g3

[(
∂g

∂vrv

)2

− g

2

∂2g

∂v2rv
,

]

g3 = − 1

g4

[(
∂g

∂vrv

)3

− g
∂g

∂vrv

∂2g

∂v2rv
+ g2

6

∂3g

∂v3rv

]
.

(14)

On substituting Eq. (13) in Eq. (12) and simplifying
terms for pure slipping motion, i.e., vr > 0 (which
further implies sgn(vr ) = 1), we get

ẋ1 = x2, (15a)

ẋ2 = − (K0 + 1) x1 − ki x3

+
(
σ1σ0g3x

4
2

+ (σ1σ0g0 + σ1vrvσ0g1) x2

+ (σ1vrvσ0g2 + σ1σ0g1) x
2
2

−σ0 + σ1vrvσ0g0

+ (σ1σ0g2 + σ1vrvσ0g3) x
3
2

)
x4 (t)

+ K0x1(τ − T ) − σ1vrv

+ (−2ζ − σ2 − σ1) x2 − σ2vrv, (15b)

ẋ3 = x1, (15c)

ẋ4 =
(
−σ0g3x

4
2 − (vrvσ0g2 + σ0g1) x

2
2

− (vrvσ0g1 + σ0g0) x2

− (σ0g2 + vrvσ0g3) x
3
2 − vrvσ0g0

)
x4

+ x2 + vrv. (15d)

The steady states of Eq. (15) can be obtained by
setting derivatives of states as 0, i.e., ẋ1 = ẋ2 = ẋ3 =
ẋ4 = 0 to obtain

x1s = 0, x2s = 0, x3s = −g0σ2 vrv + 1

g0 ki
,

x4s = 1

σ0g0
. (16)

For the analytical treatment of the governing equations,
we introduce a small parameter ε, (ε << 1) in the
equations by shifting the origin of the solution to the
equilibrium state as

xi (t) = xis + εyi (t), for i = 1, 2, 3, 4 (17)

where yi (t)s are shifted coordinates. Thus, the govern-
ing equations of motion in shifted coordinates can be
written as

ẏ1 = y2, (18a)

ẏ2 = K0y1(τ − T ) − (1 + K0)y1 − h1y2 − ki y3

− h2y4 + ε
(
h0σ1h3y

2
2 + σ1h4y2y4

)

+ ε2
(
σ1h5y

3
2 + σ0σ1h3y4y

3
2

)
+ O(ε3), (18b)

ẏ3 = y1, (18c)

ẏ4 = −vrvg1h0y2 − vrvσ0g0y4

− ε
(
h0h3y

2
2 + h4y2y4

)

− ε2
(
h5y

3
3 + σ0h3y

2
2 y4

)
+ O(ε3). (18d)

where h0 = 1

g0
, h1 = σ2 − h0σ1vrvg1 + 2ζ ,

h2 = σ0 (1 − σ1vrvg0), h3 = (vrvg2 + g1), h4 =
σ0 (g0 + vrvg1), and h5 = h0 (g2 + vrv g3). Note
that, we have already divided the expanded equation
throughout by ε, to get the above perturbed delay dif-
ferential equation (DDE). From the above equations,
we can observe that all the nonlinear terms are appear-
ing at higher order of ε, and the unperturbed linearDDE
can be obtained by setting ε = 0. In the next section,we
present the linear stability analysis to obtain the values
of control parameters for the stable equilibrium.

3 Linear stability analysis

In this section, the linear stability analysis of our
system (Eq. 18) is presented and, accordingly, the
stability regime in the space of control parameters
(ki , ζ, K0, and T ) is obtained. Note that this linear
analysis plays an important role in the nonlinear analy-
sis of the system as it provides the solution to the unper-
turbed linear equation, which will be further used to
construct the solution for perturbed nonlinear equation
Eq. (18). The linearized coupled system of the equation
can be obtained by setting ε = 0 in Eq. (18) to obtain

ẏ1 = y2, (19a)

ẏ2 = K0y1(τ − T ) − (1 + K0)y1

− h1y2 − ki y3 − h2y4, (19b)

ẏ3 = y1, (19c)

ẏ4 = −vrvg1h0y2 − vrvσ0g0y4. (19d)
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To obtain the characteristic equation, we assume y1,
y2, y3, and y4 are synchronous with each other, and
accordingly, we set⎛
⎜⎜⎝
y1(τ )

y2(τ )

y3(τ )

y4(τ )

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
y10
y20
y30
y40

⎞
⎟⎟⎠ eλτ , (20)

into Eq. (19) and get

y10λ − y20 = 0, (21a)(
1 + K0 − K0e

−λT
)
y10 + (λ + h1) y20

+ ki y30 + h2y40 = 0, (21b)

y30λ − y10 = 0, (21c)

vrvg1h0y20 + (λ + vrvσ0g0) y40 = 0. (21d)

For the nontrivial solution of yi0 (for i = 1, 2, 3, 4),
the determinant of the coefficient matrix of Eq. (21)
must vanish. This solvability condition further leads to
the characteristic equation as

λ4 + a1λ
3 +

(
a2 + K0 − K0e

−λT
)

λ2

+
(
ki + vrvσ0g0 − K0vrvσ0g0

(
e−λT − 1

))
λ

+ kivrvσ0g0 = 0 (22)

where a1 = (h1 + vrvσ0 g0), a2 = h1vrv σ0g0 −
vrvg1h0h2 +1. Note that Eq. (22) is the transcendental
equation because of the appearance of e−λT term. The
presence of transcendental terms implies the existence
of an infinite number of roots in the complex plane
which further determines the stability. If all the roots
lie in the left half-plane (�(λ) < 0), then the system is
stable. On the other hand, the existence of even one root
in the right half-plane (�(λ) > 0) leads to instability
in the system.

When the system loses its stability, a pair of complex
conjugate roots crosses the imaginary axis (�(λ = 0)),
and hence, Hopf bifurcation occurs. Since we are con-
sidering the case ofHopf bifurcation in the current anal-
ysis, we substitute λ = iω for ω > 0 in Eq. (22) and
separate real and imaginary part to get

ω4 + (−a2 − K0 + K0 cos (ωT )) ω2

−ωK0 sin (ωT ) vrvσ0g0 + kivrvσ0g0 = 0, (23a)

and

− a1ω
3 − K0 sin (ωT ) ω2

+ (ki + vrvσ0g0 − K0 cos (ωT ) vrvσ0g0

+K0vrvσ0g0) ω = 0. (23b)

From Eqs. (23a) and (23b), we can solve for any two
control parameters in terms of others and frequency ω.
In the current analysis, we solve the above two equa-
tions for nondimensional time-delayed feedback gain,
K0, and time delay T . The control parameters K0 and
T at the Hopf point can be written in terms of other
parameters and frequency as

K0,cr =
ω8 + (

a12 − 2a2
)
ω6 + (−2vrvσ0g0a1 + a22 + 2kivrvσ0g0 − 2kia1

)
ω4

+ (
vrv

2σ0
2g02 + 2kivrvσ0g0 + ki 2 − 2kivrvσ0g0a2

)
ω2 + g02σ02vrv2ki 2

ω6 + (vrvσ0g0a1 − a2) ω4 − ω2vrv2σ02g02
(24)

and

Tcr = 1

ω

(
2nπ + arctan

{
n2
d2

,
n1
d1

})

∀ n = 0, 1, 2, ...∞ (25)

where n1, n2, d1, and d2 are the function of system
parameters and defined in ‘Appendix 1,’ n acts as a
qualifier for the different stability curves, and subscript
‘cr’ signifies values of control parameter at the Hopf
point. Also, we ensure that arctan returns a positive
value, so that Tcr remains positive. We can note from
Eq. (24) that for a finite value of K0,cr , the denominator
of Eq. (24) should not be equal to zero, i.e.,

ω6 + (vrvσ0g0a1 − a2) ω4 − ω2vrv
2σ0

2g0
2 �= 0. (26)

From the above equation, we solve for ω in terms of
other parameters and obtain

ω1 = 1

2

√
2
√

(vrvσ0g0a1 − a2)2 + 4ω2vrv2σ02g02 − 2 (vrvσ0g0a1 − a2).

(27)

Therefore, for the finite values of K0,cr and Tcr , the
permissible range of ω becomes (ω1, ω2 ] with ω1 <

ω2 < ∞. Further, the stability of steady states in the
parametric space of K0−T is determinedby calculating
the real part of the rate of change of eigenvalue, λ, with
respect to one of the parameters (K0, T ) at the Hopf
point. If the real part of the rate of change of eigenvalue
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at the Hopf point is positive, then the steady states lose
stability at the Hopf point. If it is negative, then the
steady states gain stability at the Hopf point.

Since the solution of the linearized equation of sys-
tem (given by Eq. 19) will be a periodic solution at the
Hopf point, it can be written in terms of eigenvectors
as

y(τ ) = A1r1eiωτ + A2r2e−iωτ (28)

where y(τ ) = [y1(τ ), y2(τ ), y3(τ ), y4(τ )]T , A1, and
A2 are the arbitrary complex conjugate constants (for
the real values of y(τ )), and r1 and r2 are the right
eigenvectors of characteristic matrix corresponding to
eigenvalues λ = iω and λ = −iω, respectively. The
right eigenvector r1 for our system is

r1 =

⎡
⎢⎢⎣

1
iω

−i/ω
Re1 + i Im1

⎤
⎥⎥⎦ , (29)

where Re1 and Im1 are defined in ‘Appendix 1.’ It
should be noted here that the right eigenvector r2 (cor-
responding to eigenvalueλ = −iω) is the complex con-
jugate of r1 and, hence, not reported here for the sake
of brevity. For the nonlinear analysis of our coupled
system of equations, we also require the generalized
left eigenvectors for the removal of secular terms [42].
Therefore, we also determine the left eigenvectors of
the characteristic matrix corresponding to eigenvalues
λ = iω and λ = −iω, and these are

l1 = [
1 Lre1 + i Lim1 Lre2 + i Lim2 Lre3 + i Lim3

]
(30)

corresponding to the eigenvalue λ = iω and its com-
plex conjugate as l2 for the eigenvalue λ = −iω.
Lren and Limn , for n = 1, 2, 3, are function of sys-
tem and control parameters, and they are defined in
‘Appendix 1.’ Next we present the nonlinear analysis
of our system using the method of multiple scales.

4 Nonlinear analysis using the method of multiple
scales

From the linear analysis of our system, we observe
that the steady states of the precision motion stage
remain stable for small perturbations in the linearly
stable regime (perturbations die out with time and
settle down to steady states) and becomes unsta-
ble (limit cycles/unbounded growth) in the unstable

regime.However, the evolution of the perturbationwith
time truly depends on the nonlinearities present in the
system. If all the perturbations decay with time (irre-
spective of the amplitude) and settle down to steady
states in the linearly stable regime, then the steady
states are globally stable. However, if small perturba-
tions decay to steady states and large perturbations lead
to limit cycles in the linearly stable regime, then the
steady states will no longer be globally stable in the lin-
early stable regime. Since the above-mentioneddynam-
ical phenomenon depends on the nature of nonlinearity
present in the system, it is required to carry out non-
linear analysis of our system, specifically around the
stability boundaries, to ascertain the global stability of
steady states and, hence, the nature ofHopf bifurcation.

For the nonlinear analysis, we use the method of
multiple scales (MMS) for the case of pure slipping
motion and obtain the amplitude of limit cycles emerg-
ing from the Hopf point. Following the procedure men-
tioned in [40], we first start with defining multiple
timescales as

T0 = τ, T1 = ετ, T2 = ε2τ, . . . (31)

with T0 as the fast timescale, and Ti (for i = 1, 2, . . .)
are the slow timescales. With the introduction of these
timescales, the derivative operator gets perturbed to the
following forms

d

dτ
= D0 + εD1 + ε2D2 + O(ε3), (32)

d2

dτ 2
= D0,0 + 2εD0,1 + ε2

(
2D0,2 + D1,1

)+ O(ε3),

(33)

where Dn = ∂

∂Tn
and Dm,n = ∂2

∂Tm∂Tn
. Due to the

introduction of multiple timescales in the system, the
solution of our perturbed nonlinear equation (Eq. 18)
can be assumed to be a series in powers of ε tillO(ε2)

and written as

y(τ ) = y0 (T0, T1, T2) + εy1 (T0, T1, T2)

+ ε2y2 (T0, T1, T2) = y0 + εy1 + ε2y2. (34)

Accordingly, the delayedvalueof the solutiony(τ − T )

can be written as

y(τ − T ) = y0
(
T0 − T, T1 − εT, T2 − ε2T

)

+ εy1
(
T0 − T, T1 − εT, T2 − ε2T

)
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+ ε2y2
(
T0 − T, T1 − εT, T2 − ε2T

)
, (35)

= y0,T + ε
(−D1y0,T T + y1,T

)

+ ε2
(
1

2
D1,1y0,T T 2 − D2y0,T T − D1y1,T T + y2,T

)
,

(36)

where y(τ ) = [y1(τ ), y2(τ ), y3(τ ), y4(τ )]T , ym
= ym(T0, T1, T2) = [y1,m(T0, T1, T2), y2,m(T0,
T1, T2), y3,m(T0, T1, T2), y4,m(T0, T1, T2)]T and
ym,T = ym(T0 − T, T1, T2) for m = 0, 1, 2. The
second equality in Eq. (36) is obtained by expanding it
in Taylor series for small values of ε. Now, to under-
stand the nature of Hopf bifurcation on the stability
boundaries we perturb one of the control parameters
close to the Hopf point. For the current analysis, we
choose time-delay T as the bifurcation parameter and,
accordingly, perturb T as

T = Tcr + ε2k1, (37)

where Tcr is the value of T at the Hopf point with K0 =
Kcr . The sign of k1 is chosen such that T always lies
in the unstable regime. Therefore, k1 can be negative
or positive, depending on the location of the unstable
region with respect to the Hopf point.

Next, we substitute Eqs. (32)–(37) in Eq. (18),
expand in Taylor series for smaller values of ε, and
equate the coefficients of different orders of ε to zero
to get coupled constant delay differential equations at
different orders of ε:

O(ε0):

D0
(
y1,0

)− y2,0 = 0, (38a)

D0
(
y2,0

)+ y1,0
(
1 + K0,cr

)+ h2y4,0

+ ki y3,0 + h1y2,0 − K0,cr y1,0,Tcr = 0, (38b)

D0
(
y3,0

)− y1,0 = 0, (38c)

D0
(
y4,0

)+ vrvσ0g0y4,0 + vrvg1h0y2,0 = 0. (38d)

O(ε1):

D0
(
y1,1

)− y2,1 = −D1
(
y1,0

)
, (39a)

D0
(
y2,1

)+ y1,1
(
1 + K0,cr

)+ h2y4,1

+ ki y3,1 + h1y2,1 − K0,cr y1,1,Tcr

= h0h3σ1y
2
2,0 + h4σ1y2,0y4,0

− K0,cr Tcr D1
(
y1,0,Tcr

)− D1
(
y2,0

)
, (39b)

D0
(
y3,1

)− y1,1 = −D1
(
y3,0

)
, (39c)

D0
(
y4,1

)+ vrvσ0g0y4,1 + vrvg1h0y2,1

= −h0h3y
2
2,0 + h4y2,0y4,0 − D1

(
y4,0

)
. (39d)

O(ε2):

D0
(
y1,2

)− y2,2 = −D2
(
y1,0

)− D1
(
y1,1

)
(40a)

D0
(
y2,2

)+ y1,2
(
1 + K0,cr

)+ h2y4,2

+ ki y3,2 + h1y2,2 − K0,cr y1,2,Tcr

= σ1h5y
3
2,0 − D1

(
y2,1

)
+ K0,cr

(−D0
(
y1,0,Tcr

)
k1 − D2

(
y1,0,Tcr

)
Tcr

+1/2 D1,1
(
y1,0,Tcr

)
Tcr

2
)

+ σ1h4y2,1y4,0 + σ1h4y2,0y4,1

+ 2 h0 σ1h3y2,0y2,1 − D2
(
y2,0

)
+ σ1 σ0 h3 y

2
2,1y4,1 − K0,cr D1

(
y1,1,Tcr

)
Tcr ,

(40b)

D0
(
y3,2

)− y1,2 = −D2
(
y3,0

)− D2
(
y3,1

)
(40c)

D0
(
y4,2

)+ vrvσ0g0y4,2 + vrvg1h0y2,2

= −h4y2,1y4,0 − h5y
3
2,0 − D2

(
y4,0

)
− D1

(
y4,1

)− 2 h0 h3y2,0y2,1

− σ0 h3y
2
2,0y4,0 + h4y2,0x4,1. (40d)

We note that the equations at the order of ε0

(Eq. 38) are identical to linearized unperturbed equa-
tions (Eq. 19) with the control parameters at the Hopf
point. Therefore, the solution for the equations at the
order of ε0 (Eq. 38) can be formulated as

y0 (T0, T1, T2) = A1 (T1 T2) r1eiωT0

+ A2 (T1 T2) r2e−iωT0 , (41)

where A1 and A2 instead of being complex conju-
gate constants are now complex conjugate function of
slow timescales T1 and T2. On the substitution of the
assumed formof the solution fory0 in the equations cor-
responding to ε1 (Eq. 39), we observe the appearance
of e2iωT0 , e−2iωT0 , eiωT0 and e−iωT0 on the right side of
the equations. Note that terms eiωT0 and e−iωT0 act as
resonant forcing terms, further causing an unbounded
growth in the solution for y1 and known as secular
terms. Therefore, to get the bounded solution for the y1,
the removal of these secular terms from the equations
is necessary. Removal of these secular terms requires
that the dot product of left eigenvectors corresponding
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to eiωT0 and e−iωT0 with the vectors consisting coeffi-
cient of eiωT0 and e−iωT0 set to be zero [42]. The coef-
ficient vectors u1 and u2 corresponding to eiωT0 and
e−iωT0 are

u1 = ∂A1 (T1, T2)

∂T1

⎡
⎢⎢⎢⎣

1
u11 + iu12−i

ω
u21 + iu22

⎤
⎥⎥⎥⎦ , and

u2 = ∂A1 (T1, T2)

∂T1

⎡
⎢⎢⎢⎣

1
u11 − iu12

i

ω
u21 − iu22

⎤
⎥⎥⎥⎦ , (42)

whereu11, u12, u21, and u22 are defined in ‘Appendix2.’
It should be noted here that u1 and u2 are complex con-
jugate of each other, respectively. Removal of secular
terms corresponding to eiωT0 at O(ε) leads to

l1 · u1 = 0 (43)

which further leads to

∂A1 (T1, T2)

∂T1

(
1 + Lre1u11 − Lim1u12 + Lim2

ω

+Lre3u21 − Lim3u22

+i

(
Lre1u12 + Lim1u11 − Lre2

ω

+Lre3u22 + Lim3u21)) = 0. (44)

Since the term inside the brackets is not zero for a gen-
eral value of system and control parameters, we get

∂A1 (T1, T2)

∂T1
= 0. (45)

Similarly, the secondequation corresponding to removal
of secular terms for e−iωT0 at O(ε), i.e., l2 · u2 = 0,

leads to
∂A2 (T1, T2)

∂T1
= 0. The above solutions for

A1(T1, T2) and A2(T1, T2) do not provide any addi-
tional information except that A1 and A2 do not depend
on the slow timescale T1. These results also suggest that
to get a nontrivial solutions for A1 and A2, we need to
proceed to the equations corresponding to the order of
ε2. However, before proceeding to the next order, we
need solution for y1 at O(ε1).

To get the solution at O(ε1) for y1, we use the
method of harmonic balance. After substituting the
solution for y0 inEq. (39)with the fact that the solutions
for A1 and A2 are independent of T1, we substitute the
following assumed form of the solution for y1

y1 (T0, T1, T2) = A2
1 (T2)B11e

2iωT0

+ A2
2 (T2)B22e

−2iωT0

+ A1 (T2) A2 (T2)B12, (46)

where coefficient vectorsB11,B22, andB12 are defined
as

B11 =

⎡
⎢⎢⎣
b11
b12
b13
b14

⎤
⎥⎥⎦ , B22 =

⎡
⎢⎢⎣
b21
b22
b23
b24

⎤
⎥⎥⎦ , and

B12 =

⎡
⎢⎢⎣
b31
b32
b33
b34

⎤
⎥⎥⎦ . (47)

On substituting the assumed form of the solution for y1
and doing harmonic balance,we get 12 algebraic simul-
taneous equations in terms of bmn (for m = 1, 2, 3 and
n = 1, 2, 3, 4). On solving these equations we observe
that elements of vectors B11 and B22 are complex con-
jugate of each other. Therefore, for sake of brevity we
only report coefficients ofB11 andB12 in ‘Appendix 2.’
Next, we substitute the solutions for y0 and y1 in terms
of A1(T2) and A2(T2) in the equations corresponding
toO(ε2). Again, the secular terms in the resulting equa-
tions can be removed using the solvability conditions
of l1 · V1 = 0 and l2 · V2 = 0, where V1 and V2

are the complex conjugate vectors with the coefficients
corresponding to eiωT0 and e−iωT0 , respectively. These
vectors are

V1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂A1 (T2)

∂T2
∂A1 (T2)

∂T2
v11 + v12

− i

ω

∂A1 (T2)

∂T2
∂A1 (T2)

∂T2
v21 + v22

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

V2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂A2 (T2)

∂T2
∂A2 (T2)

∂T2
v̄11 + v̄12

i

ω

∂A2 (T2)

∂T2
∂A2 (T2)

∂T2
v̄21 + v̄22

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (48)

where vmn are defined in ‘Appendix 2.’ Since v̄mn are
complex conjugate of vmn , they are not reported in the
paper for sake of brevity. Next, we switch to polar coor-
dinates by substituting
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A1(T2) = R(T2)eiφ(T2)

2
and

A2(T2) = R(T2)e−iφ(T2)

2
, (49)

into the equation resulting from l1 · V1 = 0 and sep-
arate real and imaginary parts. On separating real and
imaginary parts we get two equations and can be solved
for ∂R (T2) /∂T2 and ∂φ (T2) /∂T2 as

∂R (T2)

∂T2
= p11k1R + p12R

3, (50)

∂φ (T2)

∂T2
= p21k1 + p22R

2, (51)

where p11, p12, p21, and p22 are functions of system
parameters, control parameters at the Hopf point, and
frequency (ζ, σ0, σ1, σ2, fs, fc, a, Tcr , K0,cr , ω).
Since the functional forms of these terms are very
lengthy, these are not reported in the paper for sake of
brevity. Finally, the equation governing the evolution
of amplitude R and phase φ in the original timescale τ

can be written using Eq. (32) as

dR

dτ
= ε

∂R

∂T1
+ ε2

∂R

∂T2
= ε

(
p11k1R + p12R

3
)

∂φ

∂T2
= ε2

∂φ

∂T1
+ ε2

∂φ

∂T2
= ε2

(
p21k1 + p22R

2
)

.

(52)

Accordingly, the solution in the original variables xi (τ )

can be obtained by utilizing Eqs. (17), (34), (41), (49),
and (52). Note that Eq. (52) can also be used to deter-
mine the amplitude and stability of limit cycles origi-
nating fromHopf pointwhich further dictates the nature
of Hopf bifurcation. A detailed discussion on these
slow flow equations and verification of our analytical
approach with numerical simulation is presented in the
next section.

5 Results and discussion

In this section, we first present results on the linear
stability of the steady states of MBMS, which also pro-
vides information about the Hopf point for the results
of nonlinear analysis. Later on, we present the analyti-
cal results using the method of multiple scales, which
are verified with numerical simulations.

Table 1 Scales and nondimensional parameters used in the sim-
ulation

ω0 (rad/s) 115.5 X0 (m) 0.00073

σ0 110 σ1 1.37

σ2 0.0823 fs 0.44

fc 0.35 a 2.5

5.1 Linear stability curves

For the linear and nonlinear analysis, we have used the
parameter values given in Table 1 ([34]). Since ζ , ki , T ,
K0, and vrv vary, the numerical values of these are not
reported inTable 1. The linear stability curves produced
on the control parameter space of T − K0 are shown
in Figs. 3, 4, 5, and 6. These curves are produced using
Eqs. (24)–(25) by varying frequency, ω, in a range of
ω ∈ (ω1, ω2] (where ω1 is defined in Eq. (27) and
ω1 < ω2 < ∞). Since the effect of vrv on the stability
of such systems has been already analyzed in [40], we
focus on analyzing the effect of differential gain (ζ )

and integral gain (ki ) on the stability of steady states
for a fixed value of vrv . Thus, multiple stability curves
are produced for different combinations of ζ and ki to
get a complete understanding of the dynamics of the
system. In these stability curves, the stable regions are
marked by ‘S,’ while the unstable regions are marked
by ‘U.’

As mentioned earlier, the stability boundaries in the
control parameter space of T − K0 are obtained using
Eqs. (24)–(25) by varying ω ∈ (ω1, ω2]. For this range
of ω, multiple stability lobes exist corresponding to
different values of n = 0, 1, 2, . . . ∞ (see Eq. 25).
Furthermore, there is a huge possibility of interactions
between the multiple stability lobes corresponding to
different values of n for the given values of ζ , ki ,
and vrv . Due to the interaction of multiple lobes with
each other, the primary/overall stability boundary is
obtained by taking the union of various stability lobes
(n = 0, 1, 2...). In this scenario, the effective range of
ω, for each stability lobe, is different and leads to the
existence of codimension-2 Hopf points. For example,
in Fig. 3i for ζ = 0.05 and ki = 0.001, the first sta-
bility lobe on the primary stable regime is obtained
by varying ω in a range of [5.243, 0.9975780], while
the second stability lobe is obtained by varying ω in
[3.492, 0.9977897]. At the interaction of these two sta-
bility lobes, two frequencies, viz. ω = 0.9975780 and
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Fig. 3 Stability curves in
(T − K0) space for
σ0 = 110, σ1 = 1.37,
σ2 = 0.0823, fs = 0.44,
fc = 0.35, vrv = 0.1,
ζ = 0.05, and a = 2.5 with
different values of ki
corresponding to (i)
multiple lobes, (ii) single
lobe

Fig. 4 Stability curves in
(T − K0) space for
σ0 = 110, σ1 = 1.37,
σ2 = 0.0823, fs = 0.44,
fc = 0.35, vrv = 0.1,
ζ = 0.1, and a = 2.5 with
different values of ki
corresponding to (i)
multiple lobes, (ii) single
lobe

Fig. 5 Stability curves in
(T − K0) space for
σ0 = 110, σ1 = 1.37,
σ2 = 0.0823, fs = 0.44,
fc = 0.35, vrv = 0.1,
ζ = 0.15, and a = 2.5 with
different values of ki
corresponding to (i)
multiple lobes, (ii) single
lobe

ω = 3.492, coexist, leading to the codimension-2 Hopf
point (marked with filled circles in stability curves).
Therefore, the information about the effective range of
ω for each stability lobe is important to extract the over-
all stability boundary in parametric space. In a similar
trend, other stability boundaries corresponding to dif-

ferent values of n interact and, hence, result in multiple
codimension-2 Hopf points.

The variation of stability curves with ki for different
values of ζ is shown in Figs. 3, 4, 5, and 6. From these
stability curves, we can easily observe that for each
value of ζ , there exists a critical value of ki , say k̄i ,
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Fig. 6 Stability curves in
(T − K0) space for
σ0 = 110, σ1 = 1.37,
σ2 = 0.0823, fs = 0.44,
fc = 0.35, vrv = 0.1,
ζ = 0.2, and a = 2.5 with
different values of ki
corresponding to (i)
multiple lobes, (ii) single
lobe

below which multiple stability lobes (corresponding to
different values of n) interact and the overall stability
boundary is the combination of multiple stability lobes
(see Figs. 3a, 4a, 5a, 6a). In Figs. 3i–6i, part of stability
lobes that contributes to the overall stability region is
shown by a solid line otherwise by a dashed line, and
different codimension-2 Hopf points are shown using
filled circles. However, we also emphasize here that for
the values of ki < k̄i , stability lobe corresponding to
n = 0 does not contribute in the stable region as it
lies on the negative half-plane of T , and for practical
application of time-delayed feedback control negative
values of T are not feasible. Furthermore, as the value
of ki reaches the value of k̄i , the interaction between
the stability lobes decreases, leading to the vanishing of
codimension-2 Hopf point. We observe that for a given
value of ζ as ki approaches the value of k̄i , the stabil-
ity regime decreases as the minimum value of K0,cr

(Hopf point on the stability lobe) decreases. Therefore,
without any loss of generality we can assume that at
ki = k̄i , min(K0,cr ) will be zero. With this assump-
tion, we get an implicit equation in terms of ki , ζ , and
ω from Eq. (24) and can be solved for real values of k̄i
and ω with a given value of ζ or vice versa.

From Figs. 3ii, 4ii, 5ii, and 6ii we observe that as
ki crosses the value of k̄i , there are no interactions
between the stability lobes, and therefore, there are no
codimension-2 Hopf points in the system. Also, the
primary stability boundaries for these values of ki are
obtained by varying ω ∈ (ω1, ω2] for the stability lobe
corresponding to n = 0 as the stability lobes for higher
values of n are on the extreme right side of stability
lobe for n = 0 and, hence, do not contribute in the
overall stability of the system. However, as the value

of ki further increases, the overall stability decreases
as evident from Figs. 3ii, 4ii, 5ii, and 6ii.

Before proceeding further to ascertain the nature
of bifurcation on the stability lobes and amplitude of
limit cycles from the slow flow equations close to
Hopf point, it is required to validate analytical results
with numerical simulation. For numerical simulation,
MATLAB routine ‘dde23’ can be used; however, the
use of ‘dde23’ is restricted in the fixed-arc-length-
based continuation scheme to get the unstable branch
of solutions. Therefore, we adopt the approach devel-
oped by Wahi and Chatterjee [43] and convert the
infinite-dimensional time-delayed system to the finite-
dimensional system of ordinary differential equations
(odes) using Galerkin projection. This is presented in
the next section.

5.2 Galerkin projection of delay differential equation
(DDE)

We note that to solve our set of DDE at time τ = 0, we
need to define an initial function, let us say g(s), over
the period τ ∈ [−T, 0] such that g(s) = x(−s) for
s ∈ [0, T ]. Now, as the system evolves with time τ , we
need to keep track of the delayed value of the response
in the immediate previous interval τ ∈ [τ−T, τ ] to cap-
ture the response at time instant τ . To ease this process
Wahi and Chatterjee [43] proposed another method by
parameterizing the delay with an introduction of vari-
able ‘s’ and function F such that

x(τ − s) = F(τ, s) s ∈ [0, T ]. (53)

Now, with the introduction of variable ‘s’ and function
‘F’ we can easily observe that
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x(τ ) = F(τ, 0) and x(τ − T ) = F(τ, T ). (54)

It is a well-known fact that any smooth function can
be expressed in terms of a Fourier sine series super-
imposed on a straight line. Using this, we approximate
F(τ, s) by

F(τ, s) = a0(τ ) + a1(τ )
s

T

+
N−1∑
k=1

ak+1 sin

(
kπs

T

)
, (55)

where N represents the number of terms in the approxi-
mation and ap(τ ) represents the undetermined function
of time τ that define F(τ, s), and eventually x(τ ) and
x(τ − T ) in the following manner

x(τ ) = F(τ, 0) = a0(τ ), (56)

x(τ − T ) = F(τ, T ) = a0(τ ) + a1(τ ). (57)

The evolution of function F over the period of time can
be obtained utilizing Eq. (53)

∂F

∂τ
+ ∂F

∂s
= 0. (58)

On substituting F from Eq. (55) in the above evolution
equation for F , we get

ȧ0(τ ) + ȧ1(τ )
s

T
+

N−1∑
k=1

ȧk+1(τ ) sin

(
kπs

T

)

+
{
a1(τ )

1

T
+

N−1∑
k=1

ak+1(τ )kπ

T
cos

(
kπs

T

)}

= 0, (59)

where overhead dot represents the derivative with
respect to time τ . It is to be noted here that the above
equation is not satisfied identically and, hence, the left
side of Eq. (59) represents the residue, Re, as

Re = ȧ0(τ ) + ȧ1(τ )
s

T
+

N−1∑
k=1

ȧk+1(τ ) sin

(
kπs

T

)

+
{
a1(τ )

1

T
+

N−1∑
k=1

ak+1(τ )kπ

T
cos

(
kπs

T

)}
.

(60)

The residue, Re, can be minimized using the Galerkin
projection approach by making it orthogonal to shape

functions corresponding to ap(τ ) (for p = 1, 2 . . . N ).
This step results in N first-order odes as

∫ T

0
Resds = 0, (61)

∫ T

0
Re sin

(
kπs

T

)
ds = 0,

for k = 1, . . . , N − 1. (62)

Thesefirst-order odes, governing the evolutionofap(τ )

(for p = 1, 2, . . . N ), along with Eq. (12) (with mod-
ified definition of x(τ ) and x(τ − T )) govern the evo-
lution of our system with time τ . Since for the rest
of the analysis we will use this approach for numer-
ical simulations, it is necessary to validate it with the
solution of original equations (Eq. 12) usingMATLAB
routine ‘dde23.’ For this purpose, we choose two dif-
ferent sets of parameters in the unstable regime and
compare the steady response using phase portrait with
N = 35 terms in Galerkin approximation (for more
details about the convergence of Galerkin approxima-
tion readers are referred to [44]). This comparison is
shown in Fig. 7, and we can observe that there is
an excellent match between the results from ‘dde23’
and Galerkin projection. With this agreement, next we
present the validation of our analytical results from
MMS with numerical simulation.

5.3 Validation of analytical results from MMS

In this section, we present the validity of the solu-
tion from slow flow equations (Eq. 52) by comparing
it with numerical simulations. For this, we compare
the time response of the system using Galerkin projec-
tion with those obtained from the slow flow equation
and establish the accuracy of the MMS. To achieve
this, we choose two different sets of parameters close
to Hopf point such that one point corresponds to the
unstable regime (K0,cr = 0.5, T = 2.8716 > Tcr =
2.8715), while the other point lies in the stable regime
(K0,cr = 0.5, T = 2.8714 < Tcr = 2.8715). Accord-
ingly, we get a gradually increasing periodic response
(till it settles down to stable limit cycle) and gradu-
ally decreasing periodic response (till it settles down to
steady state). From Fig. 8, it can be easily observed that
the time response of the system obtained from MMS
matches excellently with that obtained numerically.
This observation validates our analytical approach.
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Fig. 7 Comparison of
steady responses using
phase portrait of the system
obtained from the
MATLAB routine ‘dde23’
and Galerkin projection
with (i) K0 = 0.5, T = 2.9
(ii) K0 = 0.5, T = 6, with
N = 35 terms in the
Galerkin approximation.
The other parameters are
σ0 = 110, σ1 = 1.37,
σ2 = 0.0823, fs = 0.44,
fc = 0.35, vrv = 0.1,
ζ = 0.2, ki = 0.1, and
a = 2.5

Fig. 8 Comparison of time
response of the system
obtained from the method of
multiple scales (solid line)
and numerical simulation
(dashed line) with (a) T =
2.8716 > Tcr = 2.8715, (b)
T = 2.8714 < Tcr =
2.8715. The other
parameters are σ0 = 110,
σ1 = 1.37, σ2 = 0.0823,
fs = 0.44, fc = 0.35,
vrv = 0.1, ζ = 0.2,
K0 = 0.5, ki = 0.1, and
a = 2.5

Having established this agreement, next we present the
criticality of Hopf bifurcation on the stability curves.

5.4 Criticality of Hopf bifurcation

In this section, we present the stability lobes with the
associated Hopf bifurcation as obtained analytically
using MMS. As already discussed, if either of the con-
trol parameters K0 or T changes such that they cross
the stability boundaries (Tcr and K0,cr ) and move from
stable to unstable, the system loses it stability through
Hopf bifurcation and settles down to stable vibratory
response (or stable limit cycles). The amplitude of these
stable limit cycles can be determined with the help
of slow flow equations (Eq. 52) and, eventually, the
nature of bifurcation. If stable limit cycles, close to
Hopf point, exist in the unstable regime, then the bifur-
cation is supercritical in nature, which further implies
that the system is globally stable and the nonlinearity in
the system is stabilizing in nature. However, the exis-

tence of small-amplitude unstable limit cycles in the
linearly stable regime leads to subcritical bifurcation
and, eventually, loss of global stability. Therefore, in the
linear stable regime small perturbation decays, while
sufficiently large perturbation grows to large-amplitude
solution for a subcritical bifurcation and leading to loss
of global stability.

To determine the global stability of steady states
close to Hopf point and, eventually, the nature of
Hopf bifurcation, we need to determine the steady-
state amplitude of limit cycles. The amplitude of limit
cycles close to Hopf point can be obtained by nontrivial
fixed points of the slow flow equations, i.e., by setting
Ṙ = 0 in Eq. (52). Therefore, the nontrivial fixed point
of Eq. (52) or the amplitude of limit cycles close to
Hopf point is given by

R =
√

−p11k1
p12

. (63)

It should be noted here that quantity p11k1 always
remains positive in the linear unstable regime and neg-
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ative in the linear stable regime. Therefore, the nature
of Hopf bifurcation is governed by the sign of p12 only.
If p12 is negative, then limit cycles will exist in linearly
unstable regimes only and the Hopf bifurcation will be
supercritical in nature. However, if p12 becomes posi-
tive, then the limit cycles will exist in the linear stable
regimes, and the Hopf bifurcation will be subcritical
in nature. Therefore, the set of control parameters on
the stability boundary corresponding to transition point
from subcritical to supercritical or vice versa can be
found by setting denominator to 0, i.e.,

p12(ζ, σ0, σ1, σ2, fs, fc, a, Tcr , K0,cr , ω) = 0.

(64)

We substitute Tcr and K0,cr from Eqs. (24) and (25)
in Eq. (64) and get a transcendental equation in terms
of system parameters and frequency. The resulting
transcendental equation can be solved for critical fre-
quency, ωcr , corresponding to the transition point.
However, as the analytical form of p12 is very lengthy,
it is very difficult to obtain the closed-form solution for
ωcr , and hence, we resort to numerical technique after
substitution of numerical values of the system parame-
ters and n. Accordingly, the numerical values of control
parameters K0 and T corresponding to the transition
point can be obtained utilizing Eqs. (24) and (25). For
ki < k̄i we get one positive root of the transcendental
equation, in the range of (ω1, ω2], in the primary sta-
bility boundary, for every value of n (n = 1, 2, . . .).
There is a possibility of multiple roots on the sta-
bility lobes; however, as these roots are beyond the
codimension-2 Hopf point, i.e., they lie in the unstable
region already, they do not play any role in changing
the bifurcation. Further, we observe that for ki > k̄i ,
there is only one real root of the transcendental equa-
tion for n = 0, i.e., for the primary stability boundary,
and hence, there is only one transition point from sub-
critical to supercritical or vice versa.

Next, we present the stability boundaries for two
different values of ki , viz. ki = 0.1 < k̄i ≈ 0.31 and
ki = 0.4 > k̄i ≈ 0.31 with ζ = 0.2, depicting differ-
ent regions of supercritical and subcritical bifurcation
with blue and red colors, respectively. From Fig. 9, we
observe that for ki = 0.1 (ki < k̄i ) there is a continuous
transition from supercritical to subcritical bifurcation
due to the existence ofmultiple stability lobes and even-
tuallymultiple transition points on the primary stability
curve. However, for ki = 0.4 (ki < k̄i ) there is only
one transition point existing on the primary stability,

and hence, the primary stability curve is divided into
two branches of supercritical and subcritical bifurca-
tion. It is to be noted here that the analytical results
using MMS only give information about the amplitude
of limit cycles close to Hopf point and do not provide
the overall nonlinear global behavior of our system.
Therefore, we use numerical bifurcation analysis to get
an understanding of the large-amplitude response of the
precision motion stage, and this is presented in the next
section. This step further acts as another verification of
our analytical results.

5.5 Bifurcation analysis

For the numerical bifurcation analysis, we have used
built-in MATLAB routine ‘ode45’ with high value of
relative and absolute tolerance ‘1e−8’ to solve our N+
4 first-order system of odes. The bifurcation diagrams,
showing the extrema for x1 (corresponding to x2 =
0) for two different values of ki (one corresponding
to multiple stability lobes, i.e., ki < k̄i and another
corresponding to one stability lobe, i.e., ki > k̄i ), are
shown in Fig. 10. Note that these bifurcation diagrams
can be plotted byfixing either of the control parameters,
i.e., K0 or T and varying other. Since in our analytical
analysiswe have chosen T as bifurcation parameter, we
fix the value of K0 and vary T in forward and backward
direction. However, as the nature of Hopf bifurcation is
not observable in Fig. 10, the zoomed views of different
sections of these bifurcation diagrams for ki = 0.1
(< k̄i ≈ 0.31) and ki = 0.4 (> k̄i ≈ 0.31) with
ζ = 0.2 are shown in Figs. 11 and 12, respectively.

From the zoomed view of different sections of bifur-
cation diagrams, we can observe that for ki = 0.1 there
are continuous transitions in the nature of Hopf bifur-
cation because of the existence of multiple stability
lobes and eventually, multiple transition points. How-
ever, for ki = 0.4, we get only one transition from sub-
critical to supercritical Hopf bifurcation or vice versa.
We note that both of the above-drawn observations for
ki = 0.1 and ki = 0.4 are consistent with our analyti-
cal observations using MMS. Also, the overall picture
of these bifurcation diagrams is very complex due to
the existence of alternate regions of steady and vibra-
tory response along with quasi-periodic and period-2
solutions and will be discussed later in this section.
It is to be noted here that the current choice of K0

is sufficiently far away from the codimension-2 Hopf

123



S. K. Gupta et al.

Fig. 9 Stability boundary
in the T − K0 space
depicting the supercritical
and subcritical branches via
blue and red lines,
respectively, for (a)
ki = 0.1, (b) ki = 0.4. The
other parameters for
numerical simulations are
σ0 = 110, σ1 = 1.37,
σ2 = 0.0823, fs = 0.44,
fc = 0.35, vrv = 0.1,
ζ = 0.2, and a = 2.5.
(Color figure online)

Fig. 10 Numerical
bifurcation diagram with T
as bifurcation parameter for
(i) ki = 0.1, (ii) ki = 0.4.
The other parameters are
σ0 = 110, σ1 = 1.37,
σ2 = 0.0823, fs = 0.44,
fc = 0.35, vrv = 0.1
ζ = 0.2, K0 = 0.5, and
a = 2.5

points, and hence, we do not observe complicated high-
amplitude chaotic solutions.

After establishing a qualitative match from the ana-
lytical and numerical findings, we perform the quan-
titative match as well. For this step, we have chosen
two different values of ki , viz. ki = 0.1 < k̄i ≈ 0.3
ki = 0.4 > k̄i ≈ 0.3 with ζ = 0.2. We obtained the
branch of limit cycles using fixed-arc-length continua-
tion scheme [45]. These results are shown in Figs. 13
and 14 for k1 = 0.1 and ki = 0.4, respectively. In
these figures, solid lines represent the stable steady-
state response, whereas dashed lines represent unsta-
ble steady states. From both figures, we observe that
there is a decent match between the numerical results
from the continuation method and the MMS results
for moderate amplitudes. The coexistence of unstable
limit cycles with a stable equilibrium in Figs. 13ii, iv,
and 14i indicates that Hopf bifurcation is subcritical
in nature. However, from Figs. 13i, iii, and 14ii we

can observe that a stable limit cycle with pure slip-
ping motion exists with unstable equilibrium and sig-
nifies supercritical Hopf bifurcation. It can be noted
from Figs. 13 and 14 that the subcritical branch of limit
cycles undergoes a smooth turning bifurcation result-
ing in stable limit cycleswith large-amplitude stick-slip
motion. The illustrative phase portraits for stable limit
cycles with stick-slip close to Hopf point are shown in
Fig. 15.

Further examination of numerical bifurcation for
ki = 0.1 and ki = 0.4 with varying values of T
(Figs. 10, 11, 12) reveals the existence of period-
2 solutions, quasi-periodic solutions, and eventually,
supercritical period-doubling bifurcation near theHopf
point. For an illustration, consider the stable periodic
solution for ki = 0.1 and ζ = 0.2 with K0 = 0.5
and T = 3.3457 near the first stability lobe. As we
decrease the value of T , stable stick-slip limit cycles
lose stability through supercritical period-2 bifurcation
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Fig. 11 Zoomed view of
Fig. 10i with different
ranges of T . The other
parameters are σ0 = 110,
σ1 = 1.37, σ2 = 0.0823,
fs = 0.44, fc = 0.35,
vrv = 0.1 ζ = 0.2,
K0 = 0.5, ki = 0.1, and
a = 2.5

Fig. 12 Zoomed view of
Fig. 10ii with different
ranges of T . The other
parameters are σ0 = 110,
σ1 = 1.37, σ2 = 0.0823,
fs = 0.44, fc = 0.35,
vrv = 0.1 ζ = 0.2,
K0 = 0.5, ki = 0.4, and
a = 2.5

and period-2 solutions start appearing in the system.
On continuing the numerical simulation with decreas-
ing value of T , we further observe the existence of
period-4 and quasi-periodic solutions. Furthermore,
after a certain value of T period-1 stick-slip limit
cycle again retains stability and undergoes supercritical
bifurcation. The representative phase portraits for this

dynamical phenomenon are shown in Fig. 16. From
Figs. 11, 12, and 16, we can easily observe that this
loss and gain of stability in period-1 solutions through
period-doubling bifurcation take place near every Hopf
point.

To better understand the appearance of the period-2
solutions, we study the stability of the period-1 solution
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Fig. 13 Comparison of
bifurcation diagram from
numerical simulation and
MMS with T as bifurcation
parameter (i) supercritical
bifurcation, (ii) subcritical
bifurcation, (iii)
supercritical bifurcation,
and (iv) subcritical
bifurcation. The other
parameters for numerical
simulations are σ0 = 110,
σ1 = 1.37, σ2 = 0.0823,
fs = 0.44, fc = 0.35,
vrv = 0.1, ζ = 0.2,
K0 = 0.5, ki = 0.1, and
a = 2.5

Fig. 14 Comparison of
bifurcation diagram from
numerical simulation and
MMS with T as bifurcation
parameter (i) subcritical
bifurcation and (ii)
supercritical bifurcation.
The other parameters for
numerical simulations are
σ0 = 110, σ1 = 1.37,
σ2 = 0.0823, fs = 0.44,
fc = 0.35, vrv = 0.1,
ζ = 0.2, K0 = 0.5,
ki = 0.4, and a = 2.5

(the stable stick-slip limit cycle preceding the period-2
solutions) using Floquet theory. The movement of the
various Floquet multipliers associated with the period-
1 solution with decreasing T values around the initia-
tion of the period-2 solution is shown in Fig. 17.We can
observe from this figure that the dominant Floquetmul-

tiplier crosses the unit circle at −1 on the real axis and,
hence, signifies the loss of stability of period-1 solution
through a period-doubling bifurcation [46]. However,
on further decreasing the value of T , dominant Floquet
multiplier for period-1 solution moves inside the unit
circle and becomes stable.
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Fig. 15 Phase portraits for
the stable limit cycles close
to Hopf point with stick-slip
motion. The other
parameters for numerical
simulation are σ0 = 110,
σ1 = 1.37, σ2 = 0.0823,
fs = 0.44, fc = 0.35,
vr = 0.1 ζ = 0.2,
K0 = 0.5, and a = 2.5

For sake of completeness, we also present the
numerical bifurcation for a fixed value of T with vary-
ing values of K0 as shown in Fig. 18 and the representa-
tive phase portrait are shown in Fig. 19.We observe that
as we change the value of K0, steady states lose stabil-
ity through Hopf bifurcation, and stable stick-slip limit
cycles appear in the system. Further, as we increase
the value of K0, these stable stick-slip limit cycles

become unstable and undergo period-doubling bifur-
cation. However, after a specific value of K0, period-1
stick-slip limit cycles become stable again as in the
earlier case. On further exploring the numerical simu-
lations for an increasing value of K0, we observe the
existence of quasi-periodic and high-amplitude chaotic
motions with stick-slip. These high-amplitude chaotic
motions further lead to high-amplitude stable limit
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Fig. 16 Phase portraits
showing the stability of
limit cycles with different
values of T close to Hopf
point (i) period-1 solution,
(ii) period-2 solution, (iii)
period-4 solution, (iv)
quasi-periodic solution, (v)
period-2 solution, and (vi)
period-1 solution. The other
parameters for numerical
simulation are σ0 = 110,
σ1 = 1.37. σ2 = 0.0823,
fs = 0.44, fc = 0.35,
vr = 0.1 ζ = 0.2,
K0 = 0.5, and a = 2.5

cycles in the system as K0 increases. The observation
of the existence of chaotic attractor in the system can be
further justified with the help of Lyapunov exponents.
As the real part of a Floquet exponent corresponding
to a limit cycle represents Lyapunov exponent [47], we
use the following relation to determine the Lyapunov
exponent

L.E. = �
(
log(�)

P

)
, (65)

where L.E. represents the Lyapunov exponent, φ repre-
sents the Floquet multiplier, and P represents the time
period of limit cycle. The variation of dominant L.E.
with K0 is shown in Fig. 20. In Fig. 20, zero L.E. corre-
sponds to quasi-periodic motion, while positive value
of L.E. corresponds to chaotic attractor. It can be easily
observed from Fig. 20 that K0 >≈ 1.4, the dominant
L.E. becomes positive, thus confirming the existence of
chaotic attractor. The illustrative phase portraits corre-
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Fig. 17 Floquet multiplier crossing the unit circle through
period-doubling bifurcation with blue, magenta, and red col-
ors for earlier, intermediate, and final stage of Floquet multi-
plier with different values of T (T = 3.3242, T = 3.2491, and
T = 3.2364), respectively. (Color figure online)

sponding to the transition in the stability of limit cycles,
shown inFig. 19, also confirm these observations drawn
through Fig. 20.

6 Conclusion

This paper presented for the first time the interactions
of PID and a proportionate-type time-delayed feedback
controller, to control friction-induced vibrations in a
precision motion stage. A dynamical friction model,
in particular, the LuGre model, was considered for the
analysis. It was revealed in earlier works that for the
LuGremodel the Hopf bifurcation is always subcritical
and the nature of Hopf bifurcation can be changed from
subcritical to supercritical for a particular choice of
control parameters in time-delayed control. However,
in contrary to this we observed the existence of multi-

Fig. 18 Numerical
bifurcation diagram with K0
as bifurcation parameter.
The zoomed views of (i) for
better understanding are
shown in (ii), (iii), and (iv).
The other parameters are
σ0 = 110, σ1 = 1.37.
σ2 = 0.0823, fs = 0.44,
fc = 0.35, vr = 0.1
ζ = 0.2, T = 10, and
a = 2.5
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Fig. 19 Phase portraits
showing the stability of limit
cycles with different values
of K0 (i) period-1 solution,
(ii) period-2 solution, (iii)
period-1 solution, (iv)
quasi-periodic solution, (v)
chaotic solution, and (vi)
period-1 solution. The other
parameters for numerical
simulation are σ0 = 110,
σ1 = 1.37. σ2 = 0.0823,
fs = 0.44, fc = 0.35,
vr = 0.1 ζ = 0.2,
K0 = 0.5, and a = 2.5
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ple regions of subcritical and supercritical Hopf bifur-
cation on the stability lobes for a given value of system
parameters. Furthermore, we performed a parametric
study on the linear stability boundaries and observed
that the stability of the system is very sensitive to inte-
gral gain in PID control. There exists a range of values
of integral gain for a given value of differential gain

corresponding to multiple stability lobes and, hence,
the existence of multiple co-dimension-2 Hopf points.
Furthermore, we also noticed that for a given system
parameter values, there exists a range of integral gain
which ensures the existence of larger stability regime in
the system. This observation further implies that larger
values of time delay can be used in the time-delayed
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Fig. 20 Variation of dominant Lyapunov exponent with K0. The
other parameters for numerical simulations are σ0 = 110, σ1 =
1.37, σ2 = 0.0823, fs = 0.44, fc = 0.35, vr = 0.1 ζ = 0.2,
T = 10, and a = 2.5

feedback controller to improve the stability of steady
states.

Nonlinear analysis was performed using the method
of multiple scales to capture the criticality of Hopf
bifurcation on the stability lobes. Accordingly, we
obtained different regions of supercritical and sub-
critical Hopf bifurcation on the stability curves. The
analytical results from the method of multiple scales
were further verified with numerical simulation. We
observed an excellent match between our analytical
findings and numerical simulations. More complicated
dynamics in the systemhave also been observed includ-
ing period doubling bifurcation, quasi-periodic as well
as large-amplitude chaotic motion involving stick-slip
and, eventually, large-amplitude stable stick-slip limit
cycles.

Having established the use of linear time-delayed
feedback controller in PID-controlled motion stages,
the use of nonlinear time-delayed feedback controller
and the combination of time-delayed feedback with
passive isolators have been left for future work.
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Appendix 1: Expressions used in the linear analysis

n1 = −2a1ω
6ki − ω10 − 2vrv
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2g0

2ω6a2

+ vrv
2σ0

2g0
2ω4a2
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ct = cos (ωT ) st = sin (ωT )
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Lre1 = ω3K0st − kiω2
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Appendix 2: Expressions used in the nonlinear
analysis

ct = cos (ωTcr ) st = sin (ωTcr )
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− ivrvσ0g0σ1h4Re1 + σ1h4 Im1vrvσ0g0

+ h0σ1h3ωvrvσ0g0 + 2iωσ1h4 Im1

−ih4Re1h2 + h2h4 Im1 + 2σ1h4ωRe1) /(
e2iωTcr kivrvσ0g0 + 2ie2iωTcr kiω

− 4ω2h1e
2iωTcr vrvσ0g0 − 8iω3h1e

2iωTcr

− 2iωK0vrvσ0g0 + 4K0ω
2 + 2iωe2iωTcr vrvσ0g0

− 4ω2e2iωTcr − 8iω3e2iωTcr vrvσ0g0

+ 16ω4e2iωTcr + 4eiωTcr
2
h2vrvg1h0ω

2

+2iωK0e
2iωTcr vrvσ0g0 − 4ω2K0e

2iωTcr
)

b12 = 4ω3e2iωTcr

(2iω2h0σ1h3 + h2ωh0h3

− ivrvσ0g0σ1h4Re1 + σ1h4 Im1vrvσ0g0

+ h0σ1h3ωvrvσ0g0 + 2iωσ1h4 Im1

− ih4Re1h2 + h2h4 Im1 + 2σ1h4ωRe1)/

(e2iωTcr kivrvσ0g0 + 2ie2iωTcr kiω

− 4ω2h1e
2iωTcr vrvσ0g0 − 8iω3h1e

2iωTcr

− 2iωK0vrvσ0g0 + 4K0ω
2

+ 2iωe2iωTcr vrvσ0g0 − 4ω2e2iωTcr

− 8iω3e2iωTcr vrvσ0g0 + 16ω4e2iωTcr

+ 4eiωTcr
2
h2vrvg1h0ω

2

+ 2iωK0e
2iωTcr vrvσ0g0 − 4ω2K0e

2iωTcr )

b13 = −ωe2iωTcr(
2iω2h0σ1h3 + h2ωh0h3

− ivrvσ0g0σ1h4Re1 + σ1h4 Im1vrvσ0g0

+ h0σ1h3ωvrvσ0g0 + 2iωσ1h4 Im1

−ih4Re1h2 + h2h4 Im1 + 2σ1h4ωRe1) /(
e2iωTcr kivrvσ0g0 + 2ie2iωTcr kiω

− 4ω2h1e
2iωTcr vrvσ0g0 − 8iω3h1e

2iωTcr

− 2iωK0vrvσ0g0 + 4K0ω
2

+ 2iωe2iωTcr vrvσ0g0 − 4ω2e2iωTcr

− 8iω3e2iωTcr vrvσ0g0 + 16ω4e2iωTcr

+ 4e2iωTcr h2vrvg1h0ω
2

+ 2iωK0e
2iωTcr vrvσ0g0

−4ω2K0e
iωTcr

)

b14 =
(
−4h0

2σ1h3ω
3e2iωTcr vrvg1

− 4σ1h4ω
2 Im1e

2iωTcr vrvg1h0

+ 2iω2K0e
2iωTcr h0h3 − 4ω3h1e

2iωTcr h0h3

− 4ω2h1e
2iωTcr h4 Im1 − 8iω3e2iωTcr h4 Im1

− 8iω4e2iωTcr h0h3 + e2iωTcr ki h0h3ω

+ e2iωTcr ki h4 Im1 + 2ωeiωTcr h4Re1
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− ie2iωTcr ki h4Re1 + 4iω2h1e
2iωTcr h4Re1

− 2ωK0h4Re1 + 2iωK0ed
2h4 Im1

+ 2iωe2iωTcr h4 Im1 + 2ωK0e
2iωTcr h4Re1

− 2iω2K0h0h3 − 2iωK0h4 Im1

− 8ω3e2iωTcr h4Re1

+ 4iσ1h4ω
2Re1e

2iωTcr vrvg1h0

+2iω2eiωTcr h0h3
)

ω/(
e2iωTcr kivrvσ0g0 + 2ie2iωTcr kiω

− 4ω2h1e
2iωTcr vrvσ0g0

− 8iω3h1e
2iωTcr − 2iωK0vrvσ0g0 + 4K0ω

2

+ 2iωe2iωTcr vrvσ0g0 − 4ω2e2iωTcr

− 8iω3eiωTcr vrvσ0g0 + 16ω4eiωTcr

+ 4e2iωTcr h2vrvg1h0ω
2

+2iωK0e
2iωTcr vrvσ0g0 − 4ω2K0e

2iωTcr
)

b31 = b32 = 0,

b33 = 2
ω (h2h4 Im1 + h2ωh0h3 + σ1h4 Im1vrvσ0g0 + h0σ1h3ωvrvσ0g0)

kivrvσ0g0
,

b34 = −2
ω (h4 Im1 + h0h3ω)

vrvσ0g0

v11 = iω + e−iωTcr K0Tcr v21 = Re1 + i Im1

v12 = iσ1h4A1 (T2)
2 b12A2 (T2) Im1 − 3iσ1h5ω

3A1 (T2)
2 A2 (T2)

+ iσ1h4ωA2 (T2) A1 (T2)
2 b14 + 2ih0σ1h3ωA2 (T2) A1 (T2)

2 b12

− σ1σ0h3ω
2A1 (T2)

2 A2 (T2) Re1 − σ1h4A1 (T2)
2 b12A2 (T2) Re1

− iσ1h4ωA1 (T2)
2 A2 (T2) b34 − 3iσ1σ0h3ω

2A1 (T2)
2 A2 (T2) Im1

+ ie−iωT 1cK0k1A1 (T2) ω

v22 = −2ih0h3ωA2 (T2) A1 (T2)
2 b12 − ih4ωA2 (T2) A1 (T2)

2 b14

+ ih4ωA1 (T2)
2 A2 (T2) b34 + σ0h3ω

2A1 (T2)
2 A2 (T2) Re1

+ h4A1 (T2)
2 b12A2 (T2) Re1 − ih4A1 (T2)

2 b12A2 (T2) Im1

+ 3ih5ω
3A1 (T2)

2 A2 (T2) + 3iσ0h3ω
2A1 (T2)

2 A2 (T2) Im1
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