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Abstract—Objective: This paper proposes a novel method for
real-time wrist kinematics identification. Method: We design the
wrist kinematics regression model following a novel ellipsoidal
joint formulation, which features a quaternion-based rotation
constraint and 2-dimensional Fourier linear combiners (FLC) to
approximate the coupled rotations and translational displace-
ments of the wrist. Extended Kalman Filter (EKF) is then
implemented to update the model in real-time. However, unlike
previous studies, here we introduce a sparsity-promoting feature
in the model regression through the optimality of EKF by
designing a smooth `1-minimization observation function. This
is done to ensure the best identification of key parameters, and
to improve the robustness of regression under noisy conditions.
Results: Simulations employ multiple reference models to evaluate
the performance of the proposed approach. Experiments are later
carried out on motion data collected by a lab-developed wrist
kinematics measurement tool. Both simulation and experiment
show that the proposed approach can robustly identify the wrist
kinematics in real-time. Conclusion: The findings confirm that the
proposed regression model combined with the sparsity-promoting
EKF is reliable in the real-time modeling of wrist kinematics.
Significance: The proposed method can be applied to generic
wrist kinematics modeling problems, and utilized in the control
system of wearable wrist exoskeletons. The framework of the
proposed method may also be applied to real-time identification
of other joints for exoskeleton control.

Index Terms—Wrist Kinematics, Ellipsoidal Joint, Real-time
Model Regression, Fourier Linear Combiner, Quaternion-based
Constraints, Extended Kalman Filter, `1-minimization

NOMENCLATURE

The mathematical notations used are listed as following:
‖Z ‖n n-norm of a matrix Z (n = 2 if not specified)
z̄ Conjugation of quaternion z (4× 1)
cm×n m× n matrix whose elements equal to c ∈ R (m, n

fit with neighboring blocks if not specified)
cm m× 1 column vector whose elements equal to c ∈ R
In Identity matrix of dimension n (m, n fit with neigh-

boring blocks if not specified)
diag(z) Convert a m-dimensional vector z into a m × m

diagonal matrix with elements from z
vec(Z) Reshape a matrix Z elements into a column vector
Z > 0 A square matrix Z is positive definite
Zm Elemental-wise matrix Z to the power of m
Z−T Transposed inverse of Z (since (Z−1)T = (ZT)−1)
Z1 ∗ Z2 Elemental-wise product of matrices Z1 and Z2

z1×z2 Product of quaternions z1 (4× 1) and z2 (4× 1)
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I. INTRODUCTION

The wrist is pivotal to humans in performing manipulation
tasks. The wrist possesses multiple coupled degrees of freedom
(DOF), whose primary motions are generalized as flexion-
extension (FE) and radial-ulnar deviation (RUD). The two
motions are largely generated by the radiocarpal joint and
midcarpal joint [1], [2]. The behaviors of these two joints are
distinctive, especially when the wrist is at extreme postures
[3]. Due to the complex kinematics introduced by the biome-
chanics of wrist skeletal system, the approximate rotation axes
of FE and RUD can change translationally and rotationally
during wrist movements [4], [5].

The wrist biomechanics has been extensively investigated,
which includes assessing wrist kinematics from experimental
data [6], [5], [7], [8], [9], the coupling between wrist motions
[10], and dynamical properties of the wrist [11], [12]. In
these studies, the wrist kinematics is often approximated by
sequential rotational joints, where multiple rotations take place
one after another [6], [7], [10], [11], [12], [13], [14]. These
models are uniquely defined by their rotation sequences. As
examples, the first-FE-then-RUD model [10], [13] is different
from the first-RUD-then-FE model [9]. The uniqueness of
these models can manifest significantly at extreme FE and
RUD positions. Also, translational motions in the wrist are
neglected in some models, which may fail to describe the
coupling between wrist translations and rotations [15].

An accurate wrist kinematic model can be crucial to the
development of rehabilitation robotic devices [16], [17], [18],
[19], [20]. We are developing the Tremor Alleviating Wrist
Exoskeleton (TAWE) [16] for people suffering from patholog-
ical tremors (e.g., Parkinson’s Diseases [21], Essential Tremor
[22]). As shown in Fig. 1, TAWE is designed to suppress

Fig. 1. The CAD design of the Tremor Alleviating Wrist Exoskeleton [16].
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tremors in both FE and RUD motions via an actuated 6-DOF
rigid linkage mechanism that forms a closed kinematic chain
with the wrist, whose information is crucial to the control
system of TAWE [16]. Since TAWE is wearable through
sleeves, gloves, and Velcro tapes, the closed kinematic chain
parameters may slowly change over time due to small shifts in
wearing locations. This motivates us to explore the regression
of wrist kinematics with real-time adaptability. In earlier
studies [7], [8], [9], however, the wrist kinematics modeling
were performed on offline motion data.

For general real-time signal regressions, Kalman Filters are
frequently used as optimizers to update model parameters
online [23], [24]. Also, uncertain signal features can be
approximated by various model structures such as autore-
gressive models, Fourier linear combiners (FLC), and support
vector machines [25], [26], [27], [28]. These models, however,
can introduce significantly more parameters, which increases
model complexity and may lead to overfitting. This challenge
can be resolved with sparsity-promoting technique such as `1-
minimization [29], [30], which can reduce redundant parame-
ters without significant loss of regression accuracy.

This paper presents, for the first time, a real-time wrist
kinematics identification (WKI) approach based on a novel
ellipsoidal joint formulation. The proposed method applies to
generic wrist kinematics modeling problems. The ellipsoidal
joint, unlike sequential rotational joints, employs a quaternion-
based constraint to characterize the constrained 3D rotation of
the wrist (i.e, FE and RUD motions) [31]. An advantage of the
quaternion-based constraint is that, with specific modifications
of its expression, the resulting constrained wrist rotations
are identical to the corresponding sequential rotations. The
ellipsoidal joint also introduces geometric constraints to couple
translational motions with FE and RUD motions [32], which
primarily resembles the radiocarpal joint translations.

Based on the ellipsoidal joint formulation, we further gen-
eralize the WKI regression model by using 2D Fourier linear
combiners (FLC) to approximate uncertain model features. Ex-
tended Kalman Filter (EKF) is then implemented for the real-
time nonlinear regression. We also apply sparsity-promoting
features via the optimality of EKF by designing smooth ob-
servation functions that realize `1-minimization. The sparsity-
promoting EKF (SP-EKF) ensures the correct identification
of primary wrist kinematic parameters, and can improve the
robustness towards noise. We compare the WKI performances
with different algorithm configurations through simulations
that employ various reference models. A lab-developed wrist
kinematics measurement tool (WKMT) is later used to collect
data for experimental validations.

The rest of the paper is arranged as follows. In Section II,
the ellipsoidal joint formulation and the WKI regression model
are presented. Section III introduces the WKMT design and
discusses the theories of the SP-EKF. Numerical simulations
are presented in Section IV to validate analytical findings and
study the performance of WKI algorithm. Section V discusses
experimental results of WKI algorithm based on wrist motion
data collected by WKMT. Finally, Section VI summarizes the
findings and proposes future works.

Fig. 2. The wrist kinematic chain in a right human forearm, where the Frame
R is located at the forearm, Frame 2 is located at the hand. The wrist motions
take place between the intermediate frames, i.e., Frame 0 and Frame 1.

TABLE I
PROPERTIES OF TRANSFORMATIONS BETWEEN COORDINATE FRAMES

FROM THE WRIST KINEMATIC SYSTEM SHOWN IN FIG. 2.

From To Translation (R3) Rotation (R3×3)
R 0 d0 Ω0(ξ0)
0 1 ρ Ωκ(κ)
1 2 d1 I3

II. MODELING OF THE WRIST KINEMATICS

A right human forearm is presented in Fig. 2, where the
reference frame (Frame R) is located at the forearm, and
Frame 2 is located at the hand. The wrist motions take place
between the intermediate frames, i.e., Frame 0 and Frame 1.
With respect to Frame 0, FE is defined along x direction, RUD
is defined along z direction, and y direction is approximately
the forearm pronation-supination (PS) direction.

The transformations between frames are shown in Table I,
where d0, d1 ∈ R3 are fixed translational displacements. The
rotation between two frames can be represented by a unique
rotation matrix Ω ∈ R3×3, which satisfies Ω−1 = ΩT. The
coordinate frames are defined so that rotation Ω0 between
Frame R and Frame 0 is fixed, which can also be equivalently
represented by a unit quaternion vector ξ0 ∈ R4. Also, we
assume no rotation between Frame 1 and Frame 2. The wrist
motions are characterized by translational displacement ρ =
[ρx, ρy, ρz]

T, and yaw-pitch-roll (intrinsic z-y-x) Euler angles
κ = [κx, κy, κz]

T that lead to the rotation matrix Ωκ

Ωκ(κ) = Ωz(κz)Ωy(κy)Ωx(κx) (1)

where Ωi is the rotation matrix along i axis (for i = x, y, z).
In this paper, the generalized coordinate vector for the wrist

motions is defined as q = [q1, q2]T = [κz, κx]T, where q1 >
0 is radial deviation, q1 < 0 is ulnar deviation, q2 > 0 is
extension, and q2 < 0 is flexion. Since FE and RUD motions
are the two main wrist DOFs, we assume that the rotation κy
on PS direction is constrained by q, and the translation ρ is
coupled with κ. Hence, the FE and RUD rotation axes can
shift translational with ρ and rotationally with κy . Following
these two assumptions, we propose the model interpretation
of wrist kinematics through ellipsoidal joint formulation [31].
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Fig. 3. Illustration of an ellipsoidal joint, where the origin of Frame 0 is
located at the bottom of the ellipsoidal socket, which is also the contact point
between the oval ball and the ellipsoidal socket, and Frame 1 is located at the
center of the oval ball. The normal vectors are respectively perpendicular to
the oval ball and ellipsoidal socket surfaces at the contact point. The y axis
of Frame 0 is colinear with the normal vectors.

A. Quaternion-Based Constraint on Wrist Rotation

An ellipsoidal joint is illustrated in Fig. 3, which is similar
to a ball joint except that the rotation of oval ball can be
constrained by the ellipsoidal socket. Following this idea, we
introduce the quaternion-based constraint to bind the wrist
rotation κy on forearm PS direction to q (i.e., FE and RUD).
The basic version of the constraint is written as

rκ(κ) =
[
1 01×3

]
(
[
01×2 1 0

]T × ξκ(κ)) = 0 (2)

where ξκ ∈ R4 is the quaternion vector that represents the
rotation Ωκ, which can be converted from κ. The effect of
rκ can be interpreted from the 3D axis-angle perspective [33],
i.e., the 3D rotation vector of Ωκ is constrained on the x-z
plane of Frame 0. The explicit expression of Eq. (2) is

rκ(κ) =− cos(κy/2) sin(κx/2) sin(κz/2)

− cos(κx/2) cos(κz/2) sin(κy/2) (3)

which leads to

κy = 2 arctan

(
− sin(κx/2) sin(κz/2)

cos(κx/2) cos(κz/2)

)
(4)

This shows that the constraint does not set κy = 0, which also
indicates that κz and κx are non-orthogonal rotations.

As previously mentioned, the basic quaternion constraint in
Eq. (2) can be modified with additional specific terms so that
the wrist rotation is identical to the sequential rotation joints
from previous studies. Here we present three examples.

The first example is the first-RUD-then-FE orthogonal joint
model [9], where the constraint simply set κz = 0 so that

Ωκ,1(κ) = Ωz(κz)Ωx(κx) (5)

If the quaternion-based constraint is modified into

rκ,1(κ) = rκ + sin(κx/2) sin(κz/2) = 0 (6)

then we obtain the constrained rotation Ωκ identical to Ωκ,1.
For the first-FE-then-RUD orthogonal joint [10], [13], we

define the intrinsic x-y-z Euler angles φ = [φx, φy, φz]
T that

present the same rotation Ωκ through

Ωκ(κ) = Ωφ(φ) = Ωx(φx)Ωy(φy)Ωz(φz) (7)

Similar to the previous case, the first-FE-then-RUD orthogonal
joint constrains φy to 0, and adopts φx and φz respectively as
the generalized coordinates for FE and RUD. This leads to

Ωκ,2(κ) = Ωx(φx)Ωz(φz) (8)

The equivalent quaternion-based constraint that yields the
rotation identical to Ωκ,2 can be written as

rκ,2(κ) = rκ − sin(φx/2) sin(φz/2) = 0 (9)

Finally, some studies model the wrist rotation with two
serially connected orthogonal joints, which respectively ap-
proximates the radiocarpal and midcarpal joints [34], [35].
For instance, we define the intrinsic x-y-z Euler angles ψ =
[ψx, ψy, ψz]

T that satisfies

Ωψ(ψ) = Ωx(ψx)Ωy(ψy)Ωz(ψz) (10a)
Ωκ(κ) = Ωψ(ψ)Ωψ(ψ) (10b)

where Ωψ is equivalent of a half-rotation of Ωκ. By choosing
ψx and ψz respectively as the generalized coordinates for FE
and RUD, and enforcing constraint ψy = 0, the FE-RUD-FE-
RUD joint can be written as [34], [35]

Ωκ,3(κ) = Ωx(ψx)Ωz(ψz)Ωx(ψx)Ωz(ψz) (11)

Hence, the modified quaternion-based constraint designed as

rκ,3(κ) = rκ − sin(ψx) sin(ψz)/2 = 0 (12)

yields Ωκ as the same rotation to Ωκ,3

Note that in Eq. (8) and Eq. (11), both φ and ψ can be
represented by complicated symbolic expressions of κ through
conversion respectively based on Eq. (7) and Eq. (10). Also,
provided that κy ≈ 0, when κx or κz approaches zero, we can
approximately obtain

sin(κx/2) sin(κz/2) ≈− sin(φx/2) sin(φz/2)

≈− 2 sin(ψx) sin(ψz) (13)

with φ and ψ that satisfy Ωκ(κ) = Ωφ(φ) = Ωψ(ψ)Ωψ(ψ).
On the other hand, when q is far from zeros, having κ = φ =
2ψ can lead to significant differences among Ωκ, Ωφ and Ωψ .

B. Ellipsoid-Based Translational Constraints

The translational motions in the ellipsoidal joint from Fig. 3
is coupled with rotation Ωκ. For this case, we define ρ0 ∈ R3

as a solution for ρ. Unlike a ball joint, the ellipsoidal socket
and oval ball are not always concentric. By assuming that the
oval ball and ellipsoidal socket surfaces are tangent and always
in contact, we define the origins of Frame 0 and Frame 1 at
the contact point and the center of oval ball, respectively. This
leads to a constraint based on the ellipsoid equation [32]

rρ,1(κ,ρ0) = ρT
0Ωκdiag(

[
c2ρ,1 c2ρ,2 c2ρ,3

]
)−1ΩT

κρ0 − 1 = 0
(14)

where cρ = [cρ,1, cρ,2, cρ,3] > 0 contains the radii of oval
ball. It is also assumed that, the normal vector of the oval ball
surface at contact point is normal to the socket surface. The
normal vector of oval ball surface can be calculated by

an(κ,ρ0) = 2 diag(
[
c2ρ,1 c2ρ,2 c2ρ,3

]
)−1ΩT

κρ0 (15)
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Hence, a second set of translational constraints is formed

rρ,2(κ,ρ0) =

[
1 0 0
0 0 1

]
Ωκan = 0 (16)

which ensures that the y axis in Frame 0 is colinear to the
normal vector. This constraint also fixes the contact point at
the bottom of the socket. Thus, the oval ball cannot be lifted
from the socket. The explicit solution of ρ0 as expressions
of κ solved from Eq. (14, 16) are presented in Appendix A.
Note that when cρ,1 = cρ,2 = cρ,3, we can obtain a regular
ball joint and a constant solution ρ0 = [0, cρ,2, 0].

It is also important to note that ρ0 primarily approximates
the potential translations in the radiocarpal joint, where the
proximal row of carpal bones rolls in the cavity formed by
the radius bone and the articular disk [4]. The translation in
midcarpal joint caused by the gliding between the proximal
and distal rows of carpal bones is not considered in ρ0.

C. General Model for Wrist Kinematics Identification
The wrist kinematics in real life can be much more com-

plicated than the proposed ellipsoidal joint model. Also, the
expressions of ρ0 in Eq. (A-2) is not numerically robust for
regression, since cρ approaching zeros will result in singulari-
ties. Therefore, a general regression model is designed for the
wrist kinematics identification (WKI) algorithm by referencing
the proposed ellipsoidal joint model.

To begin with, the transformation between Frame 2 and
Frame R can be calculated from Table I as

dm = d0 + Ω0ρ+ Ω0Ωκd1 (17a)
ξm = ξ0 × ξκ (17b)

where dm ∈ R3 is the translational displacement, and ξm ∈
R4 is the unit quaternion vector that represents the rotation
Ωm = Ω0Ωκ. In practice, we can only measure dm and ξm,
and ξ0, d0, and d1 are unknown fixed parameters that need
to be identified. Also, κ and its quaternion ξκ are not directly
available but instead estimated through

ξκ = ξ̄0 × ξm (18)

As previously discussed, since FE (κx) and RUD (κz) are
the main DOFs of the wrist, both κy and ρ are assumed to
be constrained by q. Also, the range of motion of the wrist
indicate that these movements are bounded within the FE-RUD
domain. Therefore, we introduce the Fourier linear combiners
(FLC) to approximate the nonlinear wrist kinematics that are
difficult to model [26], [27]. The FLC is designed based on the
2D Fourier series expansion with respect to q in the FE-RUD
domain. The 2D FLC vector af,n can be obtained from

af,n,0 =vec(
[
1 af,n,s,1 af,n,c,1

]T [
1 af,n,s,2 af,n,c,2

]
)

=
[
1 aT

f,n

]T
(19)

based on the following vectors that contain sinusoidal terms

af,n,s,1 =
[
sin(q1) sin(2q1) · · · sin(nq1)

]
(20a)

af,n,s,2 =
[
sin(q2) sin(2q2) · · · sin(nq2)

]
(20b)

af,n,c,1 =
[
cos(q1) cos(2q1) · · · cos(nq1)

]
(20c)

af,n,c,2 =
[
cos(q2) cos(2q2) · · · cos(nq2)

]
(20d)

The Fourier series expansion order n is selected based on
the trade-off between model complexity and approximation
accuracy. In this paper, we select n = 2. Hence, we approx-
imate the nonlinear and complicated real wrist translational
displacement ρ through a solution ρw designed as

ρw = ΩT
0(Dlq + Dfaf,n) (21)

where Dl ∈ R3×2 contains parameters for the q-affine linear
regression term; and Df ∈ R3×((2n+1)2−1) contains amplitude
parameters for the 2D FLC term. Adopting ρw leads to the
general regression model for wrist translational displacement

dw(κ) = d0 + Ω0Ωκd1 + Dlq + Dfaf,n ≈ dm (22)

The regression model for wrist rotational constraint is de-
signed by modifying of the basic quaternion-based constraint
from Eq. (2), which can be written as

rw(κ) = rκ(κ) + cξ sin(κx/2) sin(κz/2) + cfaf,n ≈ 0 (23)

where cξ is an unknown real parameter; and cf ∈ R(2n+1)2−1

contains amplitude parameters for the 2D FLC term. Based
on the approximation from Eq. (13), cξ can classify the
characteristics of identified wrist rotation. Specifically, cξ ≈ 1
indicates similarity to the first-RUD-then-FE joint according to
Eq. (6); cξ ≈ −1 suggests similarity to the first-FE-then-RUD
joint based on Eq. (9); and cξ ≈ −0.5 indicates similarity to
the FE-RUD-FE-RUD joint according to Eq. (12).

The WKI regression models in Eqs. (22, 23) contain many
unknown translational and rotational parameters, which are
collected in the parameter vector p written as

p =
[
ξT
0 cξ cf dT

0 dT
1 vecT(Dl) vecT(Df )

]T
(24)

where ξ0, cξ, d0, and d1 are the primary wrist kinematic
parameters. In the next section, we discuss the identification
of p via sparsity-promoting extended Kalman filter.

III. REAL-TIME WRIST KINEMATICS IDENTIFICATION

A. The Extended Kalman Filter Process

To solve the real-time parameter identification problem, the
extended Kalman filter (EKF) is employed [23]. The nonlinear
discrete-time model for EKF can be generalized as

xk = f(t,xk−1,uk,vk) (25a)
yk = h(t,xk,uk,wk) (25b)

where t = k/cf,s is the time, with k as discrete time, and
cf,s as the sampling rate of the discrete time system; xk is
the internal state vector at discrete time k (the same notation
with k applies for the other terms); u is the input; v is
the process noise; y is the observation; w is the observation
noise; f(t,xk−1,uk,vk) is the model process function; and
h(t,xk,uk,wk) is the observation function.

In this study, it is assumed that both v and w are inde-
pendently stochastic under Gaussian distributions with zero
means. The augmented state vector zk and its covariance
matrix Pa = PT

a > 0 can be constructed as [36]

zk =

xk
vk
wk

 ; Pa,k =

Pxx,k 0 0
0 Q 0
0 0 R

 (26)
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whose elements are initialized as

E(vvT) = Q; E(wwT) = R (27a)

E(x0) = x̄0; E((x0 − x̄0)(x0 − x̄0)T) = Pxx,0 (27b)

where Q and R are respectively the covariance of v and w;
and x̄ and Pxx = PT

xx are respectively the mean/posteriori
state estimate and state covariance.

EKF is a nonlinear extension of the standard Kalman filter
which estimates the mean and covariance based on the system
linearization at x̄, which is equivalent to the mean of the
current state. The predict process of EKF can be written as

x̂k = f(t, x̄k−1,uk,0); ŷk = h(t, x̂k,uk,0); (28a)

P̂xx,k = Fx,kPxx,k−1F
T
x,k + Fv,kQFT

v,k (28b)

P̂yy,k = Hx,kP̂xx,kH
T
x,k + Hw,kRHT

w,k; (28c)

P̂xy,k = P̂xx,kH
T
x,k (28d)

and the update process can be presented as

εk = yk − ŷk; Gk = P̂xy,kP̂
−1
yy,k (29a)

δk = x̄k − x̂k = Gkεk (29b)

Pxx,k = P̂xx,k −GkP̂yy,kG
T
k (29c)

where x̂ is the priori estimated state, ŷ is the priori estimated
observation; δ is the update step between the posteriori mean
x̄ and priori mean x̂; ε is the error between the measured
observation y and estimated observation ŷ; P̂yy = P̂T

yy > 0

is the priori estimated covariance of y; P̂xy = P̂T
yx is the

priori estimated cross covariance between x and y; G is the
approximated optimal Kalman gain; and the Jacobian matrices
F and H are defined as

Fx,k = ∂f(t, x̄k−1,uk,vk)/∂x̄k−1; (30a)
Fv,k = ∂f(t, x̄k−1,uk,vk)/∂vk (30b)
Hx,k = ∂h(t, x̂k,uk,wk)/∂x̂k; (30c)
Hw,k = ∂h(t, x̂k,uk,wk)/∂wk (30d)

Previous studies have demonstrated that Kalman filters can
also be used to formulate dynamic (real-time) optimizer [24],
[29], [30]. For each propagation, the update δ in Eq. (29b)
carried out with gain and error is a step towards minimizing
the cost function

J0(x̄k) =
(
(yk − h(t, x̄k,uk,0))T(P̂yy,k − P̂T

xy,kP̂
−1
xx,k

P̂xy,k)−1(yk − h(t, x̄k,uk,0))
)

+ (x̄k − x̂k)T P̂−1
xx,k(x̄k − x̂k) (31)

by optimizing the value of x̄k = argmin(J0). This is later used
to introduce sparsity-promoting features into the EKF process.

B. The 6-DOF Wrist Motion Measurement Tool

The wearable wrist kinematics measurement tool (WKMT)
is developed to collect motion data from the user for iden-
tification. As shown in Fig. 4, WKMT features a 6-DOF
rigid linkage mechanism connecting Frame R and Frame 2,
which supports any translations and rotations between the two

Fig. 4. The design of WKMT and its approximate location on the right human
forearm. The two IMUs on the base parts measures the rotations of Frame R
and Frame 2, respectively. The joints θ are marked around their rotation axes
(red dot lines), which are labeled with their sequence numbers and rotation
axes in their local frames. Encoders are installed on the first four joints.

frames within its reachable workspace. Hence, WKMT allows
unconstrained and natural wrist movements.

WKMT can adopt various sensor configurations to fully
measure the displacement dm and rotation ξm between Frame
2 and Frame R as introduced in Eq. (17), so that the input u1

for the WKI process is defined as

u1 =
[
ξT
m dT

m

]T
(32)

Here, we use two inertia measurement units (IMU)
(MPU9250) to measure the rotation between Frame 2 and
Frame R, and four absolute encoders (US Digital MAE3) to
measure the first four joints (θ1 to θ4). The WKMT kinematics
and sensor setups are explained in detail in Appendix B.

C. Wrist Kinematics Regression via Sparsity Promoting EKF

Based on the aforementioned setups, the full WKI model is
written in the EKF format as

x1 =
[
pT κT κT

I

]T
; y1 = 0; (33a)

f1(x1,u1,v1) =

 p
gκ(ξ0, ξm + v1,ξ)

κI + cIgκ(ξ0, ξm + v1,ξ)

+ v1,p (33b)

h1,1(x1,u1,w1) =
[
rw dw − dm −w1,d

]T
(33c)

h1,2(x1) =
[
‖ξ0‖ − 1 κT

I

]T
(33d)

h1,a(x1,u1,w1) =
[
hT
1,1(x1,u1,w1) hT

1,2(x1)
]T

(33e)

h1(x1,u1,w1) =

[
h1,a(x1,u1,w1) + w1,h

γ(ps) + w1,γ

]
(33f)

where ps = [cf , vecT(Dl), vecT(Df )]T; gκ(ξ0, ξm) is a
function that calculates κ from ξ0 and ξm based on Eq.
(18); v1 = [vT

1,ξ, vT
1,p]

T and w1 = [wT
1,d, wT

1,h, wT
1,γ ]T

are respectively the process and measurement noise. Notice
that f1 implies that the kinematic parameters are expected to
be time-invariant. The observation function h1,1 is collected
from Eqs. (22, 23). The additional observation function h1,2

provides better algorithm stability by ensuring that ξ0 is a
unit quaternion, and the means of κ are centered around zeros
through the discrete time integral of κ defined as κI ∈ R3. The
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integral step cI > 0 can be selected as 1/cs. h1,2 is designed
to increase the robustness of regression without significantly
affecting parameter identification governed by h1,1.

The state covariance Q1 and measurement covariance R1

for this model are designed as

Q1 =

[
Q1,ξ 0

0 Q1,p

]
; R1 =

R1,d 0 0
0 R1,h 0
0 0 R1,γ

 (34)

where Q1,ξ and Q1,p are respectively corresponding to v1,ξ

and v1,p; R1,d, R1,h and R1,γ are respectively corresponding
to w1,d, w1,h, and w1,γ . Specifically, R1,γ is a diagonal
matrix. This leads to the cost function

J1(x̄1,k) =
(
hT
1,a(x̄1,k,u1,k,0)(Hw,1,d,kR1,dH

T
w,1,d,k

+ R1,h)−1h1,a(x̄1,k,u1,k,0)
)

+ (x̄1,k − x̂1,k)TP̂−1
xx,1,k(x̄1,k − x̂1,k)

+ γT(p̄s,k)R−1
1,γγ(p̄s,k) (35)

where Hw,1,d,k = ∂h1,a(x̄1,k,u1,k,w1,k)/∂w1,d,k.
The function γ(x) in Eq. (33, 35) is designed for increasing

the sparsity of the parameters. When correctly designed and
implemented, sparse model regression can identify the basis of
a signal with the redundant states converging to zero. Sparsity
can be promoted by `-1 minimization [29], [30]. For Eq.
(35), this requires γ(x) = |x − xb|0.5 where xb is the user-
defined bias introduced because some internal states (e.g., unit
quaternions) are unable to reach zeros due to constraints.

Traditional `-1 minimization via Kalman filtering may also
require reconstructing the model [29] due to |x − xb| being
undifferentiable at x = xb. In this study, we use an alternative
γ(x), which is a non-negative scalar function designed as

γ(x) =

(∑(
α2 ∗ (x−xb)

2 +σ2)0.5−σ
)

+ σ0

)0.5

− σ0.5
0

(36)
whose partial derivative of x is

∂γ

∂x
=

(α2 ∗ (x− xb) ∗ (α2 ∗ (x− xb)
2 + σ2)−0.5)T

2(γ + σ0.5
0 )

(37)

Here, α > 0 is a constant scaling parameter vector; σ and
σ0 are small positive constant parameters. Notice that when
x = 0, Eqs. (36) and (37) both reach zeros; when σ � |α ∗
(x − xb)|, γ2(x,α,σ) is approximately identical to the sum
of |α ∗ (x − xb)|. Therefore, α is selected to scale (x − xb)
to proper magnitudes for optimization; σ and σ0 are designed
as reasonably small numbers compared to |α ∗ (x−xb)|. The
user can also design R1,γ to adjust the weight of the sparsity
promoting term in the cost function. Since Eq. (36) is a smooth
function, it can directly fit into the EKF structure.

In summary, the real-time WKI algorithm is designed based
on a sparsity-promoting EKF (SP-EKF), which is expected
to reduce the model complexity by prioritizing the primary
wrist parameters, and drives the sparse parameters ps to zeros.
SP-EKF can also potentially improve the robustness of the
regression algorithm under noisy conditions. The next section
verifies the findings in Section II and III through simulation.

Fig. 5. The solutions of the constrained rotation κy and translational
displacement ρ0 from the ellipsoidal joint model in the domain of q, where
(a) shows the solution of κy ; (b) shows the solution of ρx; (c) presents the
solution of ρy ; and (d) presents the solution of ρz . The range of q1 and q2
in these plots are respectively [−π/4, π/4] and [−3π/8, 3π/8]. The red
dot contour is the approximate wrist circumduction envelope [6].

IV. NUMERICAL SIMULATION

This section presents the numerical simulations to demon-
strate the theoretical findings and test the performance of the
WKI algorithm. The simulations are carried out in MATLAB.
The default forearm and wrist parameters are selected as [37]

cρ,1 = 3 cm; cρ,2 = 2 cm; cρ,3 = 2.5 cm (38a)

d0 =
[
1 12 −1

]T
cm; d1 =

[
−2 10 1

]T
cm (38b)

A. Solutions of the Ellipsoidal Joint Model

The solutions of the constrained rotation κy and transla-
tional displacement ρ0 respectively from Eq. (4) and Eq. (A-
2) in the domain of q are presented in Fig. 5. Notice that all
of these maps are symmetric and bounded within the domain
of q, where ρx and ρz are respectively sensitive to κz and
κx (i.e., q1 and q2), and ρy can increase along any rotation
directions due to the sliding of ellipsoid ball in the socket
as previously depicted in Fig. 3. Figure 5(a) also shows that
the rotation constrained by Eq. (2) is non-orthogonal, as the
coupling between RUD and FE becomes significant when both
q1 and q2 are large.

The wrist kinematics in real life is more complicated
than the proposed ellipsoidal joint. In the upcoming WKI
simulations, a few references are employed to test the gen-
erality of the proposed approach based on Eqs. (22, 23) in
regressing different models and uncertainties. To begin with,
three translational displacement references dr,i (i = 1, 2, 3)
are adopted as

dr,i(κ) = d0 + Ω0Ωκd1 + Ω0ρi (39a)
ρ1 = 0; ρ2 = Ωψd0,1; ρ3 = ρ0 + Dlq (39b)

so that dr,1 is the simplified reference that excludes wrist
translation ρ; dr,2 is similar as in [34], [35], where a constant
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Fig. 6. The quasi-periodic wrist motions trajectories randomly generated by
the simulation reference model, where (a) shows the x, y, and z components
of wrist rotation quaternion ξm (note that ‖ξm‖ = 1), and (b) shows the
wrist translation displacement dm (where dm = dr,1 based on Eq. (39)).

offset divides FE-RUD-FE-RUD joint into two halves (recall
Ωκ,3 = ΩψΩψ); and dr,3 features the proposed ellipsoid-
based translation in Eq. (A-1) along with a q-affine term.

We also respectively adopt three rotation references as the
sequential rotation models Ωκ,1 (first-RUD-then-FE), Ωκ,2

(first-FE-then-RUD), and Ωκ,3 (RUD-FE-RUD-FE) from Eqs.
(5, 8, 11) for different case studies. The default value of the
quaternion ξ0 that represents Ω0 is selected as

ξ0 =
[
0.9710 −0.1539 0.1499 −0.1050

]T
(40)

which is equivalent to the z-y-x Euler angle κ0 =
[−20◦, 15◦,−15◦]T. Hence, these reference models generate
the trajectories of input u1 in Eq. (32), which are used as
regression data in the following WKI simulations.

B. Parameter Identification via EKF

We use the first simulation to show that EKF is a real-
time optimizer, where translational reference is dr,1, and the
regression model from Eqs. (22, 23) is simplified to exclude
q-affine and FLC terms. Figure 6 shows an example wrist
trajectories of ξm and dm generated by the reference model
via quasi-periodic trajectories of q, which are composed
by harmonic waves of random amplitudes and phases. The
trajectories are sampled at 250 Hz with zero noise added.
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Fig. 7. Trajectories of parameter estimation errors in the regression of the
simplified model via EKF, where (a) shows the estimation error of ξ0; (b)
shows the estimation error of d0; (c) shows the estimation error of d1; and (d)
shows the estimation of cξ under different sequential rotation models Ωκ,1,
Ωκ,2, and Ωκ,3 from Eqs. (5, 8, 11).

To test if EKF can correct large initial guess errors, the WKI
simulation starts with initial estimations as zeros, except that
ξ0 = [1, 0, 0, 0]T. The covariance matrices are selected as

Pxx,0 = 10−6I14; Q1,u = 10−6I4 (41a)

Q1,p = diag(
[
10−81T

5 10−101T
12

]
) (41b)

R1,u = 10−6I3; R1,h = diag(
[
10−61T

5 1T
3

]
) (41c)

The results are shown in Fig. 7. Figures 7(a-c) is based on
the reference model whose rotation is governed by Ωκ,1. The
estimated parameters ξ̂0, d̂0, and d̂1 eventually converge to
the close vicinities of their true values. Also, the convergence
of translational parameters d̂0 and d̂1 is significantly faster
than that of the quaternion parameters ξ̂0. This is likely due
to the observation errors being less sensitive to ξ̂0. Finally, Fig.
7(d) compares the values of cξ in Eq. (23) from the rotation
constraint regressions based on different rotation references.
The values of cξ converge to approximately 1, −1, and −0.5
with respect to Ωκ,1, Ωκ,2, and Ωκ,3, which corroborates the
findings in Section II-C revealing that cξ can approximate and
classify different rotation models.

C. Characteristics of FLC and SP-EKF

The previous subsection confirms that EKF is capable of
real-time parameter identification. For the simulations involv-
ing SP-EKF, we use the full regression model in Eqs. (22,
23), which contains 119 unknown kinematic parameters. The
covariances are selected as

Pxx,0 = 10−6I119; Q1,p = diag(
[
10−81T

5 10−101T
114

]
) (42)

The regression model updated by regular EKF can obtain good
approximation of wrist kinematics. However, the FLC in the
regression model can lead to redundancy, which leads to poor
identification of primary parameters ξ̂0, cξ, d̂0, and d̂1. Hence,
the covariances and parameters introduced by SP-EKF are

R1,λ = 1; α = 10; xb = 0; σ = 10−5; σ0 = 10−5 (43)

The proposed WKI approach is tested on two reference
models. The first reference model adopts dr,2 as translation
and Ωκ,3 as rotation [34], [35], where d0,1 = [0.120] cm;
and the second reference model adopts dr,3 as translation
and Ωκ,2 as rotation, where Dl = [0, 0; 0, −2; 0, 0] cm.
For each case, the SP-EKF updates the regression models for
3 × 104 steps within 2 minutes. The norms of translational
displacement estimation error ‖dw −dm‖ and rotational con-
straint estimation error |rw| from the updated models are then
mapped in the domain of κz and κx (i.e., q1 and q2). As shown
in Fig. 8, for translational regressions, the envelopes of wrist
circumduction movements [6] are contained within the regions
of ‖dw − dm‖ ≤ 1.5 mm for the first reference (dm = dr,2),
and ‖dw−dm‖ ≤ 3 mm for the second reference (dm = dr,3).
These estimation errors are respectively within 1% and 2%
of the ranges of ‖dm‖, which are approximately 15 cm
for both cases. The results also indicate that the proposed
ellipsoid-based translation ρ0 in Eq. (A-1) is relatively more
complicated and difficult to model. For rotational regressions,
the circumduction envelopes are largely contained within the
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Fig. 8. The performance of WKI algorithm on regressing two reference mod-
els, where (a, c) and (b, d) map the norms of estimation errors in translational
displacement ‖dw − dm‖ and rotational constraint |rw|, respectively. Here,
(a, b) are results from the first reference (with dr,2 and Ωκ,3); (c, d) are
results from the second reference (with dr,3 and Ωκ,2). In the maps, the
yellow dash countour contains the region traversed by the motion trajectory
q; the red dot contour is the circumduction envelope of the wrist motions
[6]. The black dot-dash contours in (a) and (c) contains the regions where
‖dw − dm‖ ≤ 1.5 mm and ‖dw − dm‖ ≤ 3 mm, respectively; and the
black dot-dash contours in (b, d) contains the regions where |rw| < 0.01.

regions of |rw| ≤ 0.01 for both cases, which are within 5%
of the range of quaternion-based constraint |rκ| as calculated
from Eq. (3). Hence, the WKI algorithm is general and can
approximate various reference models. The second reference
(with dr,3 and Ωκ,2) is also used in the later simulations.

We then compares three different regression configurations:
the simplified regression model (with no FLC) updated by reg-
ular EKF, the full model updated by regular EKF, and the full
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Fig. 9. The comparison of regression performances using a simplified
regression model (no FLC), a full model updated by regular EKF, and
a full model updated by SP-EKF, where (a) compares the norm of the
translational displacement estimation error ‖dw − dm‖; (b) compares the
norm of estimated rotation constraint |rw| (whose true value is zero); (c) and
(d) demonstrates the norm of the primary parameter estimation errors from the
regression model with FLC respectively updated by regular EKF and SP-EKF.
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Fig. 10. The comparison of parameter sparsities (zeros versus non-zeros) of
the models respectively updated by regular EKF and SP-EKF, where (a) shows
the rotational parameter values from cf , and (b) presents the translational
parameter values from Dl and Df .

model updated by SP-EKF. From Fig. 9(a), we observe that
the full regression model excels in translational displacement
estimations. This confirms that FLC is effective in modeling
the nonlinear kinematics introduced by ρ0 from the reference
dr,3. For quaternion-based constraint regression shown in
Fig. 9(b), the benefit from FLC is not significant, since the
reference rotation Ωκ,2 can be closely approximated with
the term cξ sin(κx/2) sin(κz/2) from Eq. (23). While models
updated by regular EKF can achieve good approximation,
regular EKF cannot prioritize the identification of primary
parameters ξ0, cξ, d0, and d1 as shown in Fig. 9(c). SP-
EKF, on the other hand, ensures the convergence of these
parameters to the vicinity of their true values as shown in
Fig. 9(d). Figure 10 indicates that SP-EKF also significantly
decreases the number of the nonzero parameters, leading to
simpler models suitable for further analysis.

SP-EKF also provides robustness towards noises. To demon-
strate this, the translational and rotational motion data are over-
laid with high-frequency quasi-period noises, whose ranges
are ±2 mm and ±2◦, respectively. In Figs. 11(a, b), we
observe that SP-EKF yields better regressions under noises,
particularly in translational displacement estimations. Figures
11(c, d) show that SP-EKF can also identify primary kinematic
parameters despite the noises.
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Fig. 11. The comparison of regression performances using a simplified
regression model (no FLC), a full model updated by regular EKF, and a full
model updated by SP-EKF based on noisy motion data. The specifications of
the subplots are the same as those in Fig. 9.
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Fig. 12. The experimental setup: the author wears the WKMT via
sleeves/bands and Velcro tapes on his right forearm. The IMU sensors are
installed on the base parts attached to the forearm and hand dorsum. The
encoder locations on the WKMT are also marked. The sensor data is collected
by a microchip processor (MCU), which transmits the data to a computer.

The simulations show that the proposed regression model
in Eqs. (22, 23) can approximate various reference models.
The potentials of SP-EKF in reducing model complexity,
prioritizing identification of primary parameters, and providing
robustness towards noises are also observed. In the next
section, experiments are carried out with WKMT to further
validate the proposed WKI approach.

V. EXPERIMENTAL VALIDATION

Experimental validation of the proposed WKI algorithm is
carried out based on wrist motion data collected by WKMT.
The experimental setup is shown in Fig. 12. The wearability
of WKMT is similar to that of TAWE exoskeleton discussed
in Section I. WKMT is attached to the human body through
Velcro tapes, which indicates that wearing locations can slowly
shift over time. Therefore, the wrist kinematic parameter q
from Eq. (24) is assumed to be slowly time-varying.

The user is asked to keep randomly moving the wrist during
data collections. The WKMT samples wrist motions at a rate
of 200 Hz. The measurement noises are eliminated by a 10-Hz
low-pass filter. Note that the filter should be carefully selected
to avoid distortion of real wrist movements. An example of
the processed rotation trajectory of ξm is shown in Fig. 13(a).
The translational displacement dm of the wrist in the 3D space
is shown in Fig. 13(b, c) from different viewing aspects. It is
observed that the distribution of the translational displacements

Fig. 13. The experimental wrist motion data, where (a) shows the x, y, and
z components of ξm, and (b, c) presents the translational displacement in a
3D space from different view angles. The axis units in (b, c) are centimeters.
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Fig. 14. The estimation performance of a model with FLC terms updated
by SP-EKF based on 30 seconds of experimental motion data (sampling rate
cs = 200). The x, y, and z components of dw and their references from
dm are shown respectively in (a, b, c); the trajectory of rw is shown in (d).

are approximately located on a surface, which indicates that
it is valid to model the wrist as a 2-DOF joint.

To compare different regression setups, the data are re-
gressed offline. However, the proposed WKI algorithm is
efficient for real-time application, and can run at 1100 Hz on a
3.6 GHz Processor (AMD Ryzen 7 1800X). The configurations
of EKF and initial estimations are the same as in Section IV,
except that the covariance matrix Q1,p has been updated to
Q1,p = 10−10I119 for more steady estimations of ξ0 and cξ.

A. Regression Performance

The wrist kinematics estimation performance of a model
with FLC updated by SP-EKFs is presented in Fig. 14. After
6000 steps of update within 30 seconds, the model closely
approximates the translational displacements. The norm of
maximum translational estimation error is around 5 mm, which

Fig. 15. The norms of translational displacement estimation errors ‖dw −
dm‖ from different WKI setups based on experimental data, where (a) uses
a simplified model without FLC; (b) adopts a model with a model with a
constant offset amid the rotation (i.e., dr,2); and (c) uses the proposed model
updated with SP-EKF. For each case, three 60-second tests are carried out,
which are respectively based on models updated for 30, 60, and 90 seconds.
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Fig. 16. The norm of rotational constraint estimation errors |rw| (whose
truth is zero) from different WKI setups based on experimental data, where
(a) uses a simplified model without FLC; (b) uses the proposed model updated
with SP-EKF. For each case, three 60-second tests are carried out, which are
respectively based on models updated for 30, 60, and 90 seconds.

is below 5% of the total range of wrist translational dis-
placement. The absolute value of quaternion-based constraint
regression is contained within 0.05.

The consistency of real-time regressions as well as the
comparison of different WKI configurations are shown in Figs.
15 and 16. For each configurations, three 60-second estimation
tests are carried out, which are respectively based on models
updated for 30, 60, and 90 seconds (6000 updates between
one model and another). For translational regressions, we
respectively adopt a simplified model without FLC, a model
with a constant offset amid the rotation (i.e., dr,2 from Eq.
(39)), and the proposed model updated with SP-EKF. The first
two cases yield similar performances as shown Figs. 15(a, b),
and the proposed model excels in regression accuracy with
50% smaller estimation errors as shown in Fig. 15(c).

The rotational constraint estimation errors are compared
in Fig. 16. Similar to the simulations, FLC does not signif-
icantly improve the regression performance. In general, we
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Fig. 17. The estimated primary parameters from the model with FLC trained
by SP-EKF, where (a) shows the estimation of the x, y, and z components
of ξ0, (b) presents the estimation d̂0, and (c) shows the estimation d̂1, and
(d) presents the identification of ĉξ .

Fig. 18. The comparison between wrist rotation presented in Frame R
and Frame 0. Here, (a) shows the angle βy and κy on pronation-supnation
direction, (b) shows the RUD-FE trajectory in Frame R, (c) shows the RUD-
FE trajectory in Frame 0. (Note - +z: radial deviation, -z: ulnar deviation, +x
extension, -x: flexion).

also observe larger rotational constraint estimation errors from
experiments than from simulations. Apart from slowly varying
wrist kinematics, the observation also suggests that the real
wrist rotation may be much more complicated.

Figures 15 and 16 also show the real-time adaptability of
the WKI algorithm. In the overlapped estimation windows of
two models, the model updated with the newer data yields
different and potentially smaller estimation errors. This also
indicates that the proposed real-time WKI algorithm can keep
up with slowly varying kinematic properties.

B. Analysis of the Identified Model

Since the wrist motion data is filtered before regression,
the experiments do not distinctively show the robustness of
SP-EKF towards noise. However, SP-EKF ensures the identi-
fications of the primary wrist kinematic parameters as shown
in Fig. 17. The displacements d̂0 and d̂1 are reasonable ac-
cording to the user forearm profile, especially on the y (distal)
direction. The identified ĉξ is close to zero, which suggests no
similarity to any sequential rotations (e.g., first-RUD-then-FE
rotation Ωκ,1, first-FE-then-RUD rotation Ωκ,2).

The effect of the identified ξ̂0 is demonstrated in Fig. 18.
Here, β is the z-y-x Euler angle corresponding to ξm. Recall
from Fig.2 that β is the rotation of Frame 2 in Frame R, and
κ is the rotation of Frame 2 in Frame 0. As shown in Fig.
18(a), on the pronation-supination (PS) direction, the angle
κy measured in Frame 0 is slightly smaller than βy measured
in Frame R. The FE-RUD trajectories in Frame R and Frame
0 are respectively presented in Fig. 18(b, c). Notice that the
oblique ellipsoidal shape of the RUD-FE trajectory is also
previously witnessed in other studies [7], [38], [39]. As the
observation function h1,2 from Eq. (33) drives the mean values
of κ to zeros by converging the integral term κI , the RUD-FE
trajectory in Fig. 18(c) is shifted to center around the origin.
Note that this does not deny the correctness of Fig. 18(b),
since Figs. 18(b) and (c) respectively display the same wrist
rotation in two different frames.

C. Remarks and Limitations

In general, the experimental results corroborate the simu-
lation observations. The proposed WKI algorithm is proved
capable of identifying wrist kinematics in real-time. The re-
gression model with FLC updated by SP-EKF can approximate
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the wrist motion with good accuracy, and provide useful wrist
kinematic information for analysis.

However, wearable devices such as WKMT can introduce
soft tissue artefacts due to deformations of muscles and skins.
These model uncertainties can cause measurement errors and
affect modeling accuracy. Hence, the performance of the
proposed WKI algorithm remains to be further validated based
on alternate measurements with soft tissue artefact mitigation
(e.g., stereophotogrammetry [40], [41]).

Finally, the experiment based on WKMT emulates the future
use of the proposed method in TAWE. Wrist tremors are real
human movements governed by the wrist biomechanics of the
patient. Therefore, we hypothesize no significant difference
when the proposed algorithm is applied to a tremor-affected
user, which will be investigated in future studies.

VI. CONCLUSION AND FUTURE WORK

This paper proposed a novel method for real-time wrist
kinematics identification (WKI). We designed the regression
model based on ellipsoidal joint formulation, which features a
quaternion-based constraint that characterizes the constrained
wrist rotation. The regression model also employs 2D Fourier
linear combiners (FLC) to approximate unmodeled nonlinear
wrist kinematic features. Extended Kalman filter (EKF) was
implemented to update the model in real-time based on
wrist motion data. A sparsity-promoting EKF (SP-EKF) was
also realized through a smooth `1-minimization observation
function that utilizes the optimality of EKF. To test the WKI
algorithm and compare different regression setups, simulations
were carried out using various reference models. Observations
from simulations showed that: (1) the proposed model with
FLC can accurately approximate various reference models;
(2) the quaternion-based constraint can regress and classify
different sequential rotational models; and (3) SP-EKF can
provide accurate regression with reduced model complexity,
and robustness towards noise. We also developed a wrist
kinematic measurement tool (WKMT) to collect wrist motion
data for experimental validation. The experimental results
corroborated the findings from simulations. The experiment
also showed that the proposed real-time WKI algorithm can
adapt to slowly time-varying properties, and identify primary
wrist kinematic parameters that are useful for analysis. While
motivated by the development of TAWE exoskeleton for wrist
tremor suppression, the proposed method can be applied to
generic wrist kinematics modeling problems. The framework
of proposed method may also apply to the real-time identifi-
cations of other joints for exoskeleton control.

The experimental results showed that there is still room for
improvement in the rotation model regression. In the future, we
will explore more accurate wrist kinematic modeling through
extensive experiments. We will also integrate the real-time
WKI algorithm into the control framework of TAWE, and test
its performance in wrist tremor suppression.

APPENDIX A
EXPLICIT SOLUTION OF ρ0

The explicit solution of ρ0 in terms of κ and cρ is

ρ0 =
[
a1/a4 a2 a3/a4

]T
(A-1)

TABLE II
PROPERTIES OF TRANSFORMATIONS BETWEEN COORDINATE FRAMES IN

THE WKMT KINEMATIC SYSTEM.

From To Translation (R3) Rotation (R3×3)
R J1 dR = [0; 0; 0] cm Ωz(θ1)
J1 J2 dJ1 = [1; 4; 3.5] cm Ωy(θ2)
J2 J3 dJ2,x = −0.3 cm Ωx(θ3)
J3 J4 dJ3,z = 12 cm Ωx(θ4)
J4 J5 dJ4,y = 12 cm Ωx(θ5)
J5 J6 dJ5,z = −2 cm Ωz(θ6)
J6 2 dJ6 = [0; 0; 0] cm I3

where

a1 =−
[
c2ρ,3 cos(ζx)

(
sin(ζx) sin(ζy)− c2ρ,1 sin(ζx) sin(ζy)

+ (c2ρ,1 − c2ρ,2) sin(ζx) sin(ζy) cos2(ζz)

+ (c2ρ,2 − c2ρ,1) cos(ζy) sin(ζz) cos(ζz)
)]

(A-2a)

a2 =
(
c2ρ,3 sin2(ζx)− c2ρ,1 sin2(ζz) sin2(ζx) + c2ρ,1 sin2(ζz)

+ c2ρ,2 sin2(ζz) sin2(ζx)− c2ρ,2 sin2(ζz)

− c2ρ,2 sin2(ζx) + c2ρ,2
)0.5

(A-2b)

a3 =−
[
c2ρ,3 cos(ζx)

(
cos(ζy) sin(ζx)− c2ρ,1 cos(ζy) sin(ζx)

+ (c2ρ,1 − c2ρ,2) cos(ζy) sin(ζx) cos2(ζz)

+ (c2ρ,1 − c2ρ,2) sin(ζz) sin(ζy) cos(ζz)
)]

(A-2c)

a4 =
(
− c2ρ,3 cos2(ζx) + c2ρ,3 − c2ρ,1 cos2(ζz) cos2(ζx)

+ c2ρ,1 cos2(ζx) + c2ρ,2 cos2(ζz) cos2(ζx)
)0.5

(A-2d)

Here, ζ = [ζx, ζy, ζz]
T is the y-x-z sequenced Euler angles

that satisfies

Ωκ(κ) = Ωy(ζy)Ωx(ζx)Ωz(ζz) (A-3)

APPENDIX B
KINEMATICS OF WKMT

As WKMT has 6 joints, a total of six intermediate (Frame
J1-J6) are defined. The joint angles are defined as θ =
[θ1, θ2, θ3, θ4, θ5, θ6]. For convenience, the origins of
Frame R and Frame 2 are respectively defined to be on the
interceptions between base parts and the axes of Joint 1 and
Joint 6. The transformations between frames in the exoskeleton
kinematic chain are demonstrated in Table II, where the default
parameters of the design are also included. In the table, the
terms marked as di,j and Ωj stand for the translation and
rotation along the j axis (in Frame i), respectively.

The rotation Ωm (or equivalently the rotation quaternion
ξm in Eq.(17)) between Frame 2 and Frame R can be directly
calculated with IMU measurements through sensor fusion [42].
Encoders are installed on the first four joints to measure θ1,
θ2, θ3, and θ4. The unmeasured joint angles θ5 and θ6 can be
calculated from the equation

Ω56 =
(
Ωz(θ1)Ωy(θ2)Ωx(θ3)Ωx(θ4)

)T
Ωm

= Ωx(θ5)Ωz(θ6) (A-4)

which leads to

θ5 = arctan(−a56,2,3
a56,3,3

); θ6 = arctan(−a56,1,2
a56,1,1

) (A-5)
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where a56,i,j is the ith row, jth column element of Ω56. Hence,
with the full knowledge of θ, we can calculate the translational
displacement dm between Frame 2 and Frame R based on
kinematic transformations listed in Table II.
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