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ABSTRACT
An accurate wrist model is crucial to the understanding of

human wrist mechanics and the development of forearm reha-
bilitation devices. This paper studied the nonlinear dynamics
of the wrist through an ellipsoidal joint model. Compared to
many studies where a universal joint is used to model the wrist,
the proposed ellipsoidal model intends to better approximate
the human wrist biomechanics with the use of kinematic con-
straints. The constraint on the original 3-dimensional rotation of
the wrist is realized based on a quaternion formulation, reducing
the wrist kinematics to the coupled 2-degree-of-freedom motions
of flexion-extension and radial-ulnar deviation. The ellipsoidal
joint also introduces additional coupling from the translational
motion constraints. The multibody modeling of the wrist model
is then established. The stability and control of the model are
analyzed based on a constrained state-space model. Numeri-
cal simulations validate the analytical results and demonstrate
the coupled dynamical behavior of the wrist. The simulations
also show that the proposed model constraint is an ideal base
regression function for wrist joint parameter identification. Fi-
nally, with the involvement of nonlinear stiffness and damping,
chaotic-like behaviors and limit cycles are observed. The ap-
proach in this study is also generally applicable to a family of
ellipsoidal joint systems.

NOMENCLATURE
The mathematical notations used are listed as following:
‖Z‖n The induced n-norm of a matrix Z (n = 2 if not specified)
z1×z2 Multiplications of quaternions z1 (4×1) and z2 (4×1)
z̄ Conjugation of quaternion z (4×1)

∗Corresponding Author (Email: obarry@vt.edu)

zm×n A m×n matrix with all elements as z∈R (fits along with
its neighboring blocks if no dimension specified)

In Identity matrix of a specific dimension n (fits along with its
neighboring blocks if no dimension specified)

Z−T The transposed inverse of Z (since (Z−1)T = (ZT)−1)
Z+ The Moore-Penrose pseudo inverse of Z
Z > 0 A square matrix Z is positive definite
Zm Raises each element of matrix Z to the power of m
diag([z]) Convert a m-dimensional vector z into a m×m diag-

onal matrix with elements from z

1 Introduction
The wrist joint is pivotal to human in performing manipulation
tasks. A better understanding of the wrist biomechanics is ben-
eficial to developing rehabilitation treatments (i.e., therapy, de-
vice) [1] for patients undergoing recovery from injuries and neu-
rological diseases (e.g., stroke [2, 3], Parkinson’s Disease, Es-
sential Tremor [4–7]). The wrist joint is a highly coupled mul-
tiple degree-of-freedom (DOF) biomechanism, whose principle
motions can be generalized as flexion-extension (FE) and radial-
ulnar deviation (RUD) [8, 9]. The approximate rotation axes of
the FE and RUD motions are shown in Fig. 1. The biomechanics
of the wrist has been extensively investigated, which includes the
modeling of the wrist kinematics from experimental data [9,10],
coupling between the wrist motion [11], the stiffness and damp-
ing of wrist [12, 13].

The musculoskeletal anatomy of the wrist is presented in
Fig. 2. In Fig. 2(a), The radiocarpal (RC) joint is located be-
tween the radial-ulnar row and the proximal row (highlighted
in blue), which is a ellipsoidal/condyloid joint that possesses
two primary DOFs. The midcarpal (MC) joint located between
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FIGURE 1: The approximate location of RUD and FE rotational
axes of the wrist on a left forearm [8]

the proximal (highlighted in red) and distal row is also approx-
imately ellipsoidal. However, in many studies, the kinemat-
ics of the wrist joint is approximated by one or multiple uni-
versal joints, where the wrist motions take place in sequence
[10–12, 14, 15]. From Fig. 2(b), it is shown that the actuation of
the wrist joint is contributed by different muscle combinations.
Unlike the universal joints, there is no mechanical axes for the FE
and RUD motion. It should also be noted that the model can be
uniquely defined by the sequence of the rotational motions. For
example, the first-FE-then-RUD model [11, 15] is different from
the first-RUD-then-FE model [16]. Finally, the coupled transla-
tional motions at the wrist were inaccurately simplified as fixed
points in many models, which did not take the geometric con-
straints into consideration. [17].

In this paper, a novel ellipsoidal joint model for the wrist is
proposed. Unlike the previous universal joint models, the wrist
is first modeled as a 3-DOF rotary joint. A quaternion based
constraint is then applied to the model, reducing it to the FE

FIGURE 2: 3D model of the wrist musculoskeletal anatomy ac-
quired from OpenSim [15]. (a) shows the radial (R) bone, the
ulnar (U) bone, the proximal carpal bones (blue): S - Scaphoid,
L - Lunate, TR - Triquetrum, P - Pisiform; and the distal carpal
bones (red): TM - Trapezium, TD - Trapezoid, C - Capitate, H -
Hamate. (b) illustrates the muscles that actuates the wrist joints:
ECRB - Extensor Carpi Radialis Brevis, ECRL - Extensor Carpi
Radialis Longus, ECU - Extensor Carpi Ulnaris, FCU - Flexor
Carpi Ulnaris, FCR - Flexor Carpi Radialis. Wrist motions are
acutated by: (1) flexion: FCR and FCU; (2) extension: ECRB,
ECRL and ECU; (3) radial deviation: ECRB, ECRL and FCR;
and (4) ulnar deviation: FCU and ECU.

FIGURE 3: A right human forearm located in a fixed Cartesian
coordinate frame.

and RUD motion. Coupling from translational motion is also
introduce based on the properties of ellipsoidal joint. The model
avoids the uniqueness of sequenced rotation models, making it a
general model structure for regression and dynamical analysis.

The rest of the paper is arranged as follows. In Section 2 the
kinematics of the proposed wrist joint model and its relationship
to the existing sequenced rotation models are explained. In Sec-
tion 3, the dynamical model of the wrist is established along with
the analysis of its equilibrium and stability. Numerical simula-
tion is carried out in Section 4 to validate the analytical result and
demonstrate the dynamical behavior of the wrist model. Finally,
Section 5 summarizes the findings and leads to the future work.

2 The Kinematics of Ellipsoidal Joint Model

A right human forearm is presented in Fig. 3. With respect to
the fixed reference frame, FE is defined along y direction, RUD
is defined along x direction, and z direction is the pronation-
supination (PS) direction. As the wrist rotates, the orientation
of the hand with respect to the forearm can always be presented
by a 3×3 rotation matrix. The rotation matrix can be formulated
by Euler Angles, i.e., the yaw-pitch-roll (z-y-x) formulation of
the rotation matrix is

Rw(zθ ) = Rz(θz)Ry(θy)Rx(θx) (1)

where zθ = [θx, θy, θz]
T is the measurement of the wrist rota-

tion, and Rx, Ry, and Rz are respectively the rotational matrices
around x, y, and z axis. In the universal joint wrist models, it is
assumed that θz ≈ 0. Here, the generalized coordinate for FE and
RUD motions is defined as qw = [q1, q2]

T, where q1 > 0 is ex-
tension, q1 < 0 is flexion, q2 > 0 is radial deviation, and q2 < 0
is ulnar deviation. Therefore, the rotational matrix can also be
obtained as

Rw,1(qw) = Rw = Ry(q1)Rx(q2) (2)

which is the first-FE-then-RUD sequenced rotation. In other
models, the first-RUD-then-FE sequenced rotation is adopted as

Rw,2(qw) = Rw = Rx(q2)Ry(q1) (3)
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FIGURE 4: Illustration of an ellipsoidal joint [17], where the blue
and red vectors at the contact points are respectively normal to
the green oval surface and the blue cavity surface.

where the rotation sequence has been reverted. Some mod-
els also adopted two serially connected universal joint models
that respectively represent the radiocarpal and midcarpal mo-
tions [14, 15]. An example of this can be written as

Rw,3(qw) = Rw = Ry(q1/2)Rx(q2/2)Ry(q1/2)Rx(q2/2) (4)

Note that given a 3D displacement d in the rotated frame, the
above rotation matrices will result in distinctive Rw,id (i= 1,2,3)
due to the uniqueness of sequenced rotation. This has led to the
exploration of a more general wrist kinematic model.

2.1 Quaternion Based Constraint on Wrist Rotation

An ellipsoidal joint is illustrated in Fig. 4 [17], which is similar
to a ball joint except that the cavity prevents the spinning motion
around z axis. In the wrist, the PS motion is largely constrained.
The proposed rotation model is constructed based on the rotation
matrix Rw in Eq.(1). A constraint can be introduced onto zθ as

rzθ
(zθ ) =

[
1 01×3

]
(
[
01×3 1

]T× (p̄0×p(zθ )))

= cos(θz/2)sin(θx/2)sin(θy/2)
− cos(θx/2)cos(θy/2)sin(θz/2)

= 0 (5)

where p is the quaternion that represents the rotation Rw (note
that Rw is independent of zθ ), p0 is quaternion of an arbitrary
fixed frame, which is set as p0 = [1, 01×3]

T in this study. As a
result, rzθ ,1 can be interpreted as: the rotation p is constrained on
the z direction of the coordinate frame defined by the orientation
p0. It should be noted that in this constraint, θz is not set to zero
due to the coupling between q1 and q2. This indicate that the
proposed model does not assume the FE and RUD motions as
orthogonal [18, 19]. However, the rotation axis (imaginary part)
of p does not contain the z component.

The relationship between the proposed model and the exist-
ing models can also be explained by the quaternion constraint.
By measuring zθ (here zθ is not selected as qw), the constraint
for Rw,1 can be redesigned as

rzθ ,1(zθ ,qw) = rzθ
− sin(q1/2)sin(q2/2) = 0 (6)

for Rw,2, the constraint can be written as

rzθ ,2(zθ ,qw) = rzθ
+ sin(q1/2)sin(q2/2) = 0 (7)

and for Rw,3, the constraint is

rzθ ,3(zθ ,qw) = rzθ
− sin(q1/2)sin(q2/2)/2 = 0 (8)

From these equations, it is interesting to notice that the proposed
model is the intermediate of Rw,1 and Rw,2. Also, Rw,3 is more
similar to the proposed model than Rw,1. All of these models
have similar results when the FE and RUD angle are small. In
summary, by using the constraint in Eq.(5), the effect of rotation
sequence is avoided while Euler Angle measurements can still
be used to quantify the degree of FE and RUD. Even if the wrist
joint behave like a universal joint, Eq.(6) and (7) can be used to
identify the rotation sequence of the universal joint.

2.2 Translational Constraints in the Wrist
Translational displacement of a point on the hand during wrist
motion is not simply affected by Rw. As pointed out in Fig. 4,
unlike a ball joint, the cavity and the oval shape are not always
concentric. By defining the contact point as the origin of the fixed
reference frame and the center of the oval shape as the origin of
the rotated frame (Frame 1), the contact point on the oval surface
satisfy the ellipsoidal equation constraint

rd,1(zθ ,qd) = qT
d Rwdiag(

[
c2

a c2
b c2

c
]
)−1RT

wqd−1 = 0 (9)

where qd = [qx, qy, qz]
T is the generalized coordinate of the cen-

ter of the oval shape in the fixed frame, and ca, cb, cc are the ra-
dius parameters of the ellipsoid. In this study, it is also assumed
that the oval shape created by the carpal bones will slide back
into the cavity formed by the radial and ulnar bones. Thus, the
normal vector of the oval surface at the contact point is also nor-
mal to the cavity surface. The normal vector to the ellipsoidal
surface in Frame 1 can be calculated as

vn = 2 diag(
[
c2

a c2
b c2

c
]
)−1RT

wqd (10)

Therefore, the second set of translational constraints can be
formed as

rd,2(qd ,zθ ) =
[
I2 02×1

]
Rwvn = 0 (11)

which fixes the normal vector of the ellipsoidal surface at the
contact point with the z axis in the fixed frame [17].

By combining all the constraints together as

r =
[
rθ rd,1 rT

d,2
]T

= 04×1 (12)

the constraints Jacobian Jr can be calculated from the derivative
of r as

ṙ = Jr
[
żT

θ
q̇T

d

]T
= 0 (13)

Here, by selecting generalized coordinate qw as qw = [q1, q2]
T =

[θy, θx]
T, we obtain

q̇r =
[
θ̇ T

z q̇T
d

]T
=−J−1

r,2 Jr,1q̇w (14)
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with

Jr =
[
Jr,1 Jr,2

]
(15)

where Jr,1 is the 4×2 Jacobian matrix corresponding to qw, and
Jr,2 is the one for the remaining terms. Equation (14) will be used
to form the minimal-order state-space model used for analysis in
the upcoming sections.

3 Dynamical Modeling and Analysis
This section introduces the dynamic modeling of the forearm
based on the proposed wrist kinematic model. As mentioned pre-
viously, the fixed reference frame is located at the contact point,
which will also be selected as the global frame for the modeling.
The inertial frame (Frame 2 in Fig. 3) of the wrist is translation-
ally displaced by d0 from the rotated frame located at the center
of the oval shape. Therefore, by setting q0 = [zT

θ
, qT

d ]
T, the ab-

solute translational position and velocity of the inertial frame is

dm = Rwd0 +qd ; ḋm = Jd q̇0 (16)

Provided that the angular velocity of the body (in Frame 2) is

ω =
[
ωx ωy ωz

]T
= Jω q̇0 (17)

the inertia matrix M0(q0) can be calculated as

M0 =
[
JT

ω JT
d

][ Φ 03×3
03×3 mI3

][
Jω

Jd

]
(18)

and the Coriolis and centripetal force matrix C0(q0, q̇0) can be
calculated as

s(ω) = skew(ω) =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 ;

C0 =
[
JT

ω JT
d

][ Φ 03×3
03×3 mI3

][
J̇ω

J̇d

]
−JT

ω s(Φω)Jω (19)

where m and Φ are the mass and the 3×3 rotational inertia ma-
trix, respectively. Based on this setup, the unconstrained dynam-
ical model can be established as

M0(q0)q̈0 =−C0(q0, q̇0)q̇0 +Ju,0(q0)
Tu0 (20)

In this formulation, the stiffness, damping, and other terms are
assumed to come from the external input, which can be provided
by the muscles.

The minimal-order state-space model can be formulated
simply by having

q̇0 = Jr,wq̇w =

[
I2

−J−1
r,2 Jr,1

][
0 1
1 0

]
q̇w (21)

which leads to

M = JT
r,wM0Jr,w; C = JT

r,wC0Jr,w−JT
r,wM0J̇r,w; Ju = Ju,0Jr,w

Mq̈w =−Cq̇w +Juu0; q̇r =−J−1
r,2 Jr,1q̇w (22)

where q̇r can be considered as the nonholonomic state of the sys-

tem. The state-space form of the system can be written as

x =
[
qT

0 q̇T
w
]T

ẋ = f (x,u0) =

[
Jr,wq̇w

−M−1Cq̇w +M−1JT
u u0

]
(23)

The expression of Eq.(23) is too complicated to be pre-
sented. For the convenience of analysis, a set of simplified sys-
tem parameters c = [c0, kc, l0, φ0, kφ ] is then selected to replace
the original system parameters

ca = cc = c0; cb = kcc0;

d0 =
[
0 0 l0

]T ; Φ = diag(
[
φ0 φ0 kφ φ0

]
) (24)

The input u0 and its Jacobian Ju,0 are designed as

u0 =−Kpεw−Kd ε̇w +uc; Ju,0 =

[[
0 1
1 0

]
02×4

]T

(25)

where Kp, Kd > 0 are respectively the proportional and deriva-
tive control gain matrices; uc is the additional control input; and
the error ε is defined as

εw =
[
ε1 ε2

]T
= (qw−ρ) = (qw−

[
ρ1 ρ2

]T
) (26)

with ρ as the reference. Note that the stiffness and damping ma-
trices are not necessarily diagonal or symmetric, as it is pointed
out by studies that shows the principle components of the wrist
stiffness are not necessarily along the FE and RUD axes [20].
Therefore, when uc = 0 and |θx|, |θy|, |θz| < π/2, the equilib-
rium x0 of the minimal state-space system that satisfies the con-
straint r can be obtained as

zθ ,0 =
[
ρ2 ρ1 θz,0

]T ; qd,0 =
[
cd,x/cd,0 cd,y/cd,0 cd,z

]T
x0 =

[
zT

θ ,0 qT
d,0 01×2

]T
(27)

where

θz,0 = 2arctan(sin(ρ1/2)sin(ρ2/2)/cos(ρ1/2)cos(ρ2/2))

cd,0 =(−k2
c cos(ρ2)

2 cos(ρ1)
2 + k2

c cos(ρ1)
2

+ cos(ρ2)
2 cos(ρ1)

2− cos(ρ1)
2 +1)1/2

cd,x =− (c0 cos(ρ1)(k2
c −1)(cos(θz,0)sin(ρ1)cos(ρ2)

2

+ sin(ρ2)sin(θz,0)cos(ρ2)− cos(θz,0)sin(ρ1)))

cd,y =(c0 cos(ρ1)(k2
c −1)(cos(θz,0)sin(ρ2)cos(ρ2)

− sin(ρ1)sin(θz,0)cos(ρ2)
2 + sin(θz,0)sin(ρ1)))

cd,z =c0(k2
c sin(ρ2)

2− k2
c sin(ρ2)

2 sin(ρ1)
2

+ sin(ρ2)
2 sin(ρ1)

2− sin(ρ2)
2 +1)1/2 (28)

The stability of the system at the fixed point is guaranteed
for |θx|, |θy|, |θz| < π/2 and any symmetric Kp,Kd > 0. By
constructing the Lyapunov Function V as

V = 0.5ε̇
T
wMε̇w +0.5ε

T
wKpεw (29)

Copyright © 2020 ASMEV001T08A001-4

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/D

SC
C

/proceedings-pdf/D
SC

C
2020/84270/V001T08A001/6622157/v001t08a001-dscc2020-3127.pdf by Virginia Polytechnic Institute and State U

niversity user on 03 February 2021



FIGURE 5: The 3D model of the wrist joint model in the MAT-
LAB simulation. The red line indicate the displacement between
the Ref. Frame and Frame 1, and the blue line shows the dis-
placement between Frame 1 and Frame 2.

the derivative of V is obtained as

V̇ = 0.5ε̇
T
wṀε̇w + ε̇

T
wMε̈w + ε

T
wKpε̇w

= 0.5ε̇
T
wṀε̇w− ε̇

T
w(−Mρ̈ +Cq̇w +Kpεw +Kd ε̇w

+JT
u uc)+ ε

T
wKpε̇w (30)

Note that the formulation in Eq.(22) still preserves the multibody
property of M and C. Therefore, Ṁ−2C is a skew matrix, result-
ing in ε̇T

w(Ṁ−2C)ε̇w = 0 [21]. By having uc = J−T
u (Mρ̈−Cρ̇),

the derivative of V can be calculated as

V̇ =−ε̇
T
w(Kpεw +Kd ε̇w)+ ε

T
wKpε̇w =−ε̇

T
w(Kd ε̇w)<= 0 (31)

which reaches zero only when εw = 0 (asymptotic stability).

4 Numerical Simulation

This section presents the numerical simulations of the novel wrist
joint model. The simulation is carried out in MATLAB [22] as
shown in Fig. 5. Based on human body structures [23], the de-
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FIGURE 6: The control simulation of the wrist joint model,
where (a) and (b) shows the tracking performance of q1 and q2,
respectively; and (c) and (d) shows the coupled motion of θz and
qd , respectively.

FIGURE 7: Fixed point values of θz and qd , where the red line is
the reference trajectory defined in Eq.(33).

fault model and control parameters are selected as

c0 = 2 cm; kc = 1.5; l0 = 10 cm;

m = 1 kg; φ0 = 3×10−3 kg ·m2; ks = 0.5;
Kp = I2 N/m; Kd = I2 Ns/m (32)

4.1 Kinematics of the Wrist Joint
In the first simulation, the wrist model is controlled to track the
reference trajectory designed as

ρ =
π

8
[
2sin(πt)+ cos(3πt) 0.5cos(πt)−0.5sin(2πt)

]T (33)

The result is shown in Fig. 6, which demonstrates that the con-
troller design is valid. It is easy to observe the coupling behavior
between the model. While θz is not constantly zero, its amplitude
is significantly smaller than that of the θx (q2) and θy (q1). The
translational displacements of the center of the wrist also varies
while the contact point remains on the ellipsoidal surface.

The maps of the fixed point values of θz and qd calculated
from Eq.(28) is shown in Fig. 7. These maps are also the kine-
matics solutions of the system based on qw. Notice that as a
result of the model parameter selections, Fig. 7(c) and 7(d) are
symmetric, while the signs of the values in Fig. 7(a) and 7(b) are
reversed with respect to θy = q1 = 0. The values on the reference
trajectory of θx and θy match with the above control simulation
results.

4.2 Comparison with Other Wrist Models
The previously used wrist joints mentioned in Section 2 are also
modeled for comparison with the proposed model. Here, the
rotation constraint rzθ ,1, rzθ ,2, and rzθ ,3 are adopted and tested,
while translational constraints r1,d and r2,d are preserved. It
should be noted that a conversion is made so that

Rw(zψ) = Rz(ψz)Rx(ψx)Ry(ψy) (34)
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FIGURE 8: The comparison between quaternion based con-
straints, where (a), (b), and (c) shows the effect of rzθ ,1, rzθ ,2,
and rzθ ,3, respectively; and (d) compares the trajectories of rzθ

from the three cases.

where zψ =
[
ψx, ψy, ψz

]T is the z-x-y Euler Angle. The con-
straint rzθ ,2 is rewritten as

rzθ ,2(zθ ,zψ) = rzθ
+ sin(ψy/2)sin(ψx/2) = 0 (35)

so that qw remain as qw = [θy, θx]
T. Similarly, for rzθ ,3, it is

converted to

Rw(zθ ) = Rw(zκ/2)Rw(zκ/2) (36)

where zκ =
[
κx, κy, κz

]T so that rzθ ,3 is rewritten as

rzθ ,3(zθ ,zκ) = rzθ
− sin(κy/2)sin(κx/2)/2 = 0 (37)

These constraints are modified based on rzθ
to model the univer-

sal joints. The constraints are designed to fix θz, ψz, and κz as
zero. The result is shown in Fig. 8, where it is clearly shown
that the quaternion based constraints can be used to successfully
model the universal joint models, since the rotation angle around
z in Fig. 8(a-c) are constantly zero. Figure 8(d) presents the tra-
jectories of the original constraint function rzθ

in the three cases,
which corroborate the observation in Section 2.1. Hence, the
quaternion based constraint function rzθ

is a suitable function ba-
sis for the structural identification of the wrist joint in practice.

FIGURE 9: The map of ratio between elements of M with respect
to the qw.

4.3 Nonlinear Dynamical Behaviors

A significantly coupling effect between qw is introduced by the
inertia matrix. Here, the elements of the inertia matrix M are
explicitly defined as

M =

[
φ1,1 φ1,2
φ2,1 φ2,2

]
(38)

where φ1,2 = φ2,1. As shown in Fig. 9, the element ratios are
significantly affected by the change of qw. The ratio change is
especially significant when either q1 or q2 is large. This nonlin-
earity can significantly affect the system dynamics during high
frequency or large range motions.

If Kp or Kd are not positive definite, the unstable fixed
points may result in periodic or chaotic solutions. To showcase
such system behaviors, uc is designed as

uc = Kp,3ε
3 +Kd,3ε̇

3 (39)

where Kp,3 and Kd,3 are cubic stiffness and damping. There-
fore, by adding a small perturbation in q̇w, under different pa-
rameters, the system demonstrates periodic and chaotic-like so-
lutions, whose examples are as shown in Fig. 10. The cause
of these solutions can be investigated through parametric stud-
ies, which will provide insights into how self-excited mechanical
or neural-feedback oscillations may occur in human body due to
physiological and pathological tremors [24, 25].

FIGURE 10: The phase portraits of the system, where a chaotic-
like solution is shown (a) and a limit cycle solution is shown in
(b) [24, 25]. The red dot line is shows the last 5% of the tra-
jectory. For (a), the control gaines are selected as: Kp = −3I2.
Kd = 10−3I2, Kp,3 = 100I2, Kd,3 = 02×2; and for (b), the con-
trol gaines are selected as: Kp = I2. Kd =−0.5I2, Kp,3 = 02×2,
Kd,3 = 100I2.
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5 Conclusion and Future Work
This paper presented a novel ellipsoidal joint to model wrist kine-
matics. Unlike the previous wrist joints modeled as universal
joints, the proposed model was designed based on quaternion-
based rotation constraints and ellipsoid-contact-based transla-
tional constraints. Dynamical modeling was carried out to obtain
a minimal-order state-space model. The equilibrium and stabil-
ity of the wrist joint were analyzed, leading to the design of an
asymptotically stable controller. The simulation of the wrist dy-
namics validated the analytical results. The comparison with the
universal joints also showed that the proposed wrist joint model
is an ideal candidate for identifying and regressing the true kine-
matic structure of the wrist. Finally, with the involvement of
negative and nonlinear stiffness/damping, the chaotic and peri-
odic nonlinear solutions were discovered.

The proposed ellipsoidal joint is a generalized model, which
can be used for future studies. The continuation of this work
will include the nonlinear and bifurcation analysis of the wrist
dynamics. The ellipsoidal wrist model will also be used in the
kinematic identification of the true wrist joint, as well as the de-
sign of better upper limb rehabilitation devices [6].
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