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Abstract This paper examines the role of stiffness nonlinearity on a periodic
one-dimensional chain with multiple local resonators. The cells of the chain consist
of lumped masses connected through nonlinear springs. Each cell is embedded
with multiple local resonators having different parameters. In one case the local
resonators are assumed to be linear and in another case they are nonlinear.
The dispersion equation for the system is derived analytically by the method of
multiple scales (MMS). The results are validated via comparison with those in the
literature and numerically via Matlab. The nonlinearity shows enhancement in the
bandgap regions, especially with increasing number of local resonators.
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1 Introduction

The study of metamaterials has gained lots of attention in recent years due to
their exceptional material properties and characteristics and their wider engineering
applications. Metamaterials are a new class of artificial composites that derive
their unique dynamic properties from both engineered local configurations and
material constituents [1]. They were originally developed for electromagnetic
and optical wave propagation and later the technology was extended to acoustic and
mechanical waves. Most if not all metamaterials required the presence of periodic
features with the potential of exhibiting interesting dynamic phenomena such as
resonance or instability within the host structure. These interesting dynamic features
can be judiciously employed for suppressing noise and vibration, harvesting energy,
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non-destructive testing structures for defects, improving image resolution, and
ameliorating the performance of antennas and many other engineering structures
and devices [3].

Numerous investigators have examined the linear behavior of metamaterials
focusing on acoustic-induced vibration suppression. Some metamaterials can be
represented as discrete or continuous systems with embedded local mechanical
resonators consisting of mass-spring-damper systems. These mechanical locally
resonant metamaterials exhibit bandgap formation at wavelengths much larger than
the lattice size [2]. The bandgaps can be made wider by embedding multiple
resonators inside the cells [4, 5]. Beyond their linear interesting properties, nonlinear
metamaterials may show superior performance in terms of wave propagation
properties [6]. The weakly nonlinear discrete periodic structures shift the dispersion
curves. This shift may result in wider bandgaps associated with softening or
hardening nonlinearity [7]. The derivation of nonlinear dispersion equations can
be carried out using different perturbation techniques [8] such as the Lindstedt–
Poincare or multiple scales techniques [9].

In this work, we study the effect of stiffness nonlinearity on one-dimensional
wave propagation in a periodic structure (i.e., spring-mass chain) with multiple local
resonators. The parameters of the local resonators are different in order to realize
multiple bandgap formations. We investigate two different cases of nonlinearity:
cubic spring nonlinearity connecting the chains and cubic spring nonlinearity in
the local resonators. We also study both hardening and softening nonlinearities
and investigate their roles on bandgap formations. Closed-form expressions are
presented for the nonlinear dispersion equation for any number of local resonators.
This is achieved using the method of multiple scales (MMS) to solve the weakly
nonlinear system of governing equations of motion. The obtained expressions can
serve as a benchmark for predicting the bandgap formations of weakly nonlinear
acoustic metamaterials. This work also provides general guidelines for exploiting
nonlinearity in order to achieve better vibration mitigation.

2 Derivation of the Dispersion Equation

Figure 1 shows a schematic diagram of the proposed nonlinear acoustics metama-
terial that is represented by a chain of mass-spring systems with embedded local
resonators. Each unit cell consists of a rigid mass, m, connected to other cells
through linear and nonlinear spring coefficients, k, and εΓ , respectively. Inside
each cell, there are multiple local resonators with a mass, mi , and linear or nonlinear
spring with linear coefficient, ki , and nonlinear coefficient, εΓi . The nondimensional
free oscillation equations for each cell with s number of local resonators can be
expressed as
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Fig. 1 The nonlinear acoustics metamaterial
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where the dimensionless parameters are

τ = ωnt; Γ̄ = Γ

ω2
nm

; k̄i = ki

ω2
nm

(3)

and ωn and ωdi are defined as ωn = √
k/m and ωdi = √

ki/mi .
Using MMS, we can assume expansions for the displacements in the form of

un(t, ε) = un0(T0, T1) + ε un1(T0, T1) (4)

vni(t, ε) = vni0(T0, T1) + ε vni1(T0, T1), (5)

where T0 = τ is the fast time scale and T1 = ετ is the slow time scale. Since the
time is expressed in two independent variables, the time derivative can be presented
by using the chain rule as

(¨) = D2
0 + 2εD0D1 + · · · , (6)

where Dn = ∂
∂Tn

.
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2.1 Nonlinear Chain

In this case, we are only interested to study the effect of spring nonlinearity
connecting the cells (i.e., the case of nonlinear resonator is discussed in the next
section since its dispersion relation is different from that of the nonlinear chain
case). Consequently, we set Γ̄i = 0 (i.e., nonlinear springs in the local resonators
are zero). Substituting Eqs. (4)–(6) into Eqs. (1)–(2) and collecting the similar
coefficients of ε, one can get

Order ε0

D2
0un0 + 2un0 − u(n−1)0 − u(n+1)0 +

s∑

i=1

k̄i (un0 − vni0) = 0 (7)

ω2
n

ω2
di

D2
0vni0 − (un0 − vni0) = 0 (8)

Order ε

D2
0un1 + 2un1 − u(n−1)1 − u(n+1)1 +

s∑

i=1

k̄i (un1 − vni1)

= −2D0D1un0 − Γ̄ ((un0 − u(n−1)0)
3 + (un0 − u(n+1)0)

3) (9)

ω2
n

ω2
di

D2
0vni1 − (un1 − vni1) = −2

ω2
n

ω2
di

D0D1vni0. (10)

At order ε0 the problem is linear; therefore, the solution can be expressed as

un = Aei(nk−ωT0) + c · c (11)

vni = Bie
i(nk−ωT0) + c · c, (12)

where c · c denotes complex conjugate, k = qa is the dimensionless wave number,
and q represents the wave number. A and Bi stand for the wave amplitude of the
outer and inner masses, respectively. By substituting Eqs. (11)–(12) into Eqs. (7)–
(8), the linear dispersion equation can be expressed as

−ω2 + (2 − 2 cos k) +
s∑

i=1

k̄i (1 − Kωi) = 0, (13)

where Kωi = 1
1−ω2

nω2/ω2
di

. This linear dispersion equation represents both cases;

however, the nonlinear dispersion relations are different. For nonlinear problem, we
need to study the equations at order ε.
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By rearranging the equations at order ε, we obtain
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i=1(ω

2
n/ω

2
diD

2
0 + 1). Introducing Eqs. (11)–(12) into Eq. (14) yields

X(D2
0un1 + 2un1 − u(n−1)1 − u(n+1)1) +
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2
di
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=
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−12Γ̄ A2Ā(1 − cos k)2

]
ei(nk−ωT0) + NST, (15)

where NST denotes non-secular terms, A′ = dA
dT1

, and Ā is the complex conjugate

of A. We note here that X becomes X = ∏s
i=1(1 − ω2ω2

n/ω
2
di) after applying the

operator D0. The left-hand side of Eq. (15) has a nontrivial solution; therefore, the
secular terms on the right-hand side must be eliminated by solving the solvability
conditions [8] defined as the coefficients of ei(nk−ωT0).

Substituting the polar form A = 1
2αeiβ into the solvability condition and

separating the real and imaginary part, the modulation equations for the amplitude
and phase can be expressed as

ω

s∑

i=1

k̄iXω2
n/ω

2
di

1 − ω2
nω

2/ω2
di

α′Kωi + Xωα′ = 0 (16)

− ω
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k̄iXω2
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2
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2/ω2
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αβ ′Kωi − Xωαβ ′ − 3

2
XΓ̄ α3(1 − cos k)2 = 0. (17)

From the amplitude equation above, one can find that α is constant (i.e., α = α0).
From the phase equation, we can obtain

β = − 3Γ̄ α2(1 − cos k)2

2ω

(
1 + ∑s

i=0
k̄iω

2
n/ω2

di

1−ω2
nω2/ω2

di

Kωi

)T1. (18)
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Since T1 = ετ , the nonlinear frequency, ωnl , associated with k is

ωnl = ω + εβ ′. (19)

2.2 Nonlinear Local Resonators

For this case, we are only interested in the nonlinearity from the local resonators
hence we ignore the nonlinear spring coefficient of the cells (i.e., Γ̄ = 0). Following
the techniques described in the previous section, one can express the phase as

β = −
∑s

i=1

[
3
8α2(1 − Kωi

)3Γ̄i

(
k̄i

1−ω2
nω2/ω2

di

− 1

)]

ω

(
1 + ∑s

i=1
k̄iω

2
n/ωdi

1−ω2
nω2/ω2

di

Kωi

) T1. (20)

Unlike the case of nonlinear chain, one should note here that the correction β is not
explicitly a function of wave number. Moreover, the expression is different from that
obtained in [10]. This is because the contribution of the resonators on the left-hand
side from the equations at order ε was taken into account [6, 7].

3 Results and Discussion

For the numerical simulations, we select ω0 = ωd1 = 103 for the case of single
resonator. For the case of two local resonators we set ωd2 = 1.5 ω0 to obtain
multiple bandgaps. The values of the nondimensional stiffness of the resonator are
chosen to be k̄i = ω2

di/ω
2
0. Also, the numerical simulation is based on εα2Γ̄ =

εα2Γ̄i = 0.06. The band structure can be obtained by numerically integrating a
chain (i.e., 100 cells were used in the simulation) excited at the middle (i.e., at
n = 50) by a harmonic force. Then, we determine the wave number by picking the
maximum value of the 2-D spectrum; such that the wave number is associated with
the spatial frequency at the excitation frequency. Since the expression is derived for
plane waves, the end condition is chosen to be a perfectly matched layer (PML);
such that no reflected waves exist in the simulation. Following [9], this can be
achieved by defining a linear viscous damping in the chain such as

c(n) = Cmax

( n

N

)3
, (21)

where N is the number of simulated cells.
Figure 2a compares the results of the multiple scales method to those obtained

using direct numerical integration, as well as, to those obtained in the literature using
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(a) (b)

Fig. 2 Bandgap structure for single local resonator. (a) A chain connected by nonlinear spring.
(b) Nonlinear resonators

Lindstedt–Poincare (L–P). The results show good agreement between the dispersion
curves obtained by MMS and the results obtained by Lindstedt–Poincare (L–P) [6].
The comparison of the MMS results to the numerical results also shows a very good
agreement in terms of detecting the boundaries of the bandgaps. But MMS fails
to capture the rich dynamic region (i.e., inside the red patch), which is referred to
pseudo-gap region [6]. It should be noted that pseudo-gap region here appears for
different ranges as that observed in [6] because the input here is not wave packet.
The wave indeed propagates through the structure, but the output appears at different
multiple frequencies due to nonlinear interaction of the cells.

Figure 2b shows the analytical approximation (i.e., MMS) and numerical results
of the band structure for the case of a single nonlinear local resonator. We can
observe that the two methods slightly differ; particularly, when the frequency of
the local resonator ω = ωd1. Also, the comparison in terms of wider bandgap
formation between nonlinear and linear local resonators is inconclusive in Fig. 2b.
Higher order approximations or different analytical approximation methods such as
the complexification averaging or the homotopy method may be required to obtain
better accuracy and help provide better insight into the performance of the nonlinear
local resonators.

Figure 3a shows the band structure of a chain connected by nonlinear springs
with multiple local resonators. The results indicate that the MMS is a good predictor
of the bandgap boundaries for multiple local linear resonators embedded in cells
with nonlinear spring connections. The accuracy of the MMS approximation can
even be further improved if higher order perturbation is considered. The results
in this figure also show that the pseudo-gap almost vanishes; however, a narrow
rich dynamic region still exists. For the case of multiple nonlinear local resonators,
the same conclusion from Fig. 2b can be drawn. In that, Fig. 3b also reveals that
the MMS is not very accurate in predicting the bandgap boundaries at frequencies
confined between the resonators frequencies. The first order approximation of the
MMS fails to predict the dynamic in the case of multiple nonlinear local resonators
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(a) (b)

Fig. 3 Bandgap structure for two local resonators. (a) A chain connected by nonlinear spring.
(b) Nonlinear local resonators

(a) (b)

Fig. 4 Utilizing nonlinear chain toward vibration attenuation. (a) Softening nonlinearity. (b) Fre-
quency shift

embedded in cells with linear spring connections. Hence, higher order perturbations
or other analytical methods may be required to provide better approximations.

Finally, Fig. 4a shows that softening nonlinearity in the spring connecting the
chain with multiple local linear resonators can be used to widening the bandgap.
Therefore, the type of nonlinearity can be utilized in tuning the bandgap boundaries.
Although softening nonlinearity is more desirable for vibration attenuation, solitary
waves can only be realized with hardening nonlinearity [11]. In Fig. 4b, we can
observe how the wave can appear at different secondary resonances due to softening
or hardening nonlinearity. This frequency shift can be exploited in designing
acoustics diode or acoustics rectifier [6, 12].

In the present study, we only handled the cubic type of nonlinearity. For other
types of nonlinearities, one can approximate the nonlinearity by using Taylor
expansion and rewrite the equation in terms of cubic polynomial. Similar procedures
can then be used to derive the corresponding dispersion relations.
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4 Conclusion

In this paper, we derived closed-form expressions of the dispersion equations
describing the wave propagation in one-dimensional nonlinear acoustics metama-
terial using the method of multiple scales. The obtained equations can be used in
studying the dispersion curves for multiple local resonators unlike the one in the
literature, which is limited to a single local resonator. The numerical simulations
showed that these closed-form expressions accurately predict the band structure in
the case of a chain with nonlinear spring connections and linear local resonators;
whereas they fail to accurately predict the case of nonlinear local resonators
embedded in cell with linear spring connection, particularly near the local resonator
frequency. Numerical examples also demonstrate that wider forbidden regions can
be achieved with multiple local resonators. This is an indication that superior
vibration mitigation can be realized by the proposed softening or hardening
nonlinearity.
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