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Abstract

Considerable attention has been given to nonlinear metamaterials because they

offer some interesting phenomena such as solitons, frequency shifts, and tunable

bandgaps. However, only little is known about the spectro-spatial properties

of a wave propagating in nonlinear periodic chains, particularly, a cell with

multiple nonlinear resonators. This problem is investigated here. Our study

examines both hardening and softening nonlinearities in the chains and in the

local resonators. Explicit expressions for the nonlinear dispersion relations are

derived by the method of multiple scales. We validate our analytical results

using numerical simulations. The numerical simulation is based on spectro-

spatial analysis using signal processing techniques such as spatial-spectrogram

and wave filtering. The spectro-spatial analysis provides detailed information

about the interactions of dispersive and nonlinear phenomena of waveform in

both short and long-wavelength domains. Furthermore, we validate and demon-

strate the theoretically obtained bandgaps, wave distortion, and birth of solitary
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waves through a computational study using finite element software, ANSYS. The

findings, in both theoretical and computational analyses, suggest that nonlin-

ear resonators can have more effect on the waveform than the nonlinear chains.

This observation is valid in both short and long wavelength limits.

1. INTRODUCTION

Introducing unique dynamic properties artificially from engineering configu-

rations and material constituent leads to promising materials with exceptional

characteristics in different engineering applications. These materials, which

are called metamaterials, have attracted many researchers because of their

wider applications in different fields. They were first introduced in electro-

magnetic and optical wave propagation and later extended to mechanical waves

applications[1, 2].

Mechanical metamaterials are often fabricated from periodic cells arranged

carefully. The earliest study of periodic structure was in the 1900s [3–8]. These

structures form bandgaps due to Bragg scattering at wavelengths near their

lattice constant. This enables, for example, vibration attenuation at low fre-

quencies located inside the bandgap. However, the condition associated with

Bragg scattering makes this application limited to large structures.

Attaching local resonators on the crystal allows a bandgap formation at

wavelengths much larger than the lattice constant [9]. This enables the vibra-

tion control of small structures at low frequencies, thus widening the possible

applications of metamaterials. Further investigation on the comparison between
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Figure 1: A schematic diagram for the nonlinear acoustics metamaterial

local resonator and Bragg scattering concepts can be found in [10]. Multiple

bandgaps at different frequency ranges can also be developed by using multiple

resonators with different parameters [11, 12].

Beyond vibration suppression, nonlinear metamaterials offer a wide pool of

applications including gap solitons [13], dark solitons, envelope and dark soli-

tons [14], wave non-reciprocity [15], and altering band structure limits [16].

Weakly nonlinear acoustics metamaterials were investigated analytically by

using different perturbation techniques [17, 18]. For instance, Narisetti et al.

[19], employed the Lindstedt-Poincare method in deriving the dispersion rela-

tions for nonlinear chain and validated the results numerically. The method of

multiple scales can deal with more complicated nonlinear systems like multiple

waves interaction or nonlinear resonators [20, 21].

Early considerations of nonlinear continuum phononic media can be found

in [22, 23]. Furthermore, enhancing the vibration attenuation performance can

be realized using chains with two coupled nonlinear resonators [24, 25].

Wave non-reciprocity can be used in uni-directional acoustic wave propa-

gation (e.g. acoustics diode). This can be obtained by coupling linear and
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nonlinear mediums [15, 26, 27], bifurcation in granular structures [28], or non-

linear hierarchical internal structures [29]. Moreover, an acoustic rectifier can

be obtained by a cubic weakly nonlinear oscillator attached to a linear periodic

lattice such that the operation frequencies of the rectifier coincide with the sec-

ondary resonances of the nonlinear oscillator [30].

Analyzing nonlinear metamaterials is often performed by tracking the change

in the temporal state properties and discussing the existence of solitary waves,

and dispersion characteristics. However, Ganesh and Gonella [31] have studied

the spectro-spatial wave packet propagation features of nonlinear periodic chains

by utilizing some signal processing tools. This allows detecting wave localiza-

tion (birth of solitons), and reconstructing dispersion curves. However, although

their analytical expressions could predict the shift in dispersion curves, many

other nonlinear phenomena could not be inferred. Zhou et al. [32], extended

Ganesh and Gonella’s work by including local linear resonators and studying the

spectro-spatial wave features of nonlinear acoustic metamaterial. In both stud-

ies [31, 32], the effect of nonlinearity in the chain was limited to short wavelength

region only. None of the studies included the nonlinearity in local resonators or

determined how nonlinear resonators affect dispersion characteristics or propa-

gation of solitary waves in both long and short-wavelength domains. None of

the past works included the nonlinearity in the local resonators to study their ef-

fect on the wave propagation in both long and short-wavelength domains. The

goal of the current study is to fill this knowledge gap by studying a nonlin-

ear metamaterial consisting of nonlinear chains with multiple local resonators.
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The present study is performed using different analytical and computational

techniques in order to show the ability of obtaining interesting nonlinear wave

propagation phenomena at all wavelength limits.

Seeking a nonlinear system that offers interesting wave propagation phenom-

ena in all wavelength regions, which is a rare find, we recently investigated the

nonlinear vibration of a nonlinear chain with multiple nonlinear local resonators

analytically and numerically [33–35]. In order to validate the observed nonlinear

wave propagation features, we extend our conference paper in [35] by reporting

a thorough theoretical and computational studies. The nonlinearity is assumed

to be weakly cubic type with softening or hardening nonlinear coefficients. In

one case, we study the effect of nonlinearity attributed to the nonlinearity in

the chain only. In another case, we examine the nonlinearity effect caused by

the local resonator only. We employ the method of multiple scales to generate

approximate close form expressions for the dispersion curves of a nonlinear (or

linear) chain with any number of linear (or nonlinear) resonators. We follow this

by numerical simulations of the metamaterial subjected to a wave packet input

impulse. The results are used to check our analytical model in predicting the

cut-off frequency. We then use multiple signal processing tools in order to in-

vestigate the spectro-spatial properties of the nonlinear acoustic metamaterial.

Furthermore, we study the effect of both hardening and softening nonlinearities

in the chain and in the local resonators. Finally, we conduct a computational

study using finite element software ANSYS to validated the bandgaps, birth of

solitary waves, and other spectro-spatial properties. The findings suggest that

VIB-20-1031, Barry 5

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

Journal of Vibration and Acoustics. Received January 16, 2020;
Accepted manuscript posted September 10, 2020. doi:10.1115/1.4048557
Copyright © 2020 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/vibrationacoustics/article-pdf/doi/10.1115/1.4048557/6568496/vib-20-1031.pdf by Virginia Polytechnic Institute and State U

niversity, Jiam
in W

ang on 29 Septem
ber 2020



very interesting dispersion characteristics and propagation of solitary wave can

be realized in both long-wavelength and short-wavelength domains using non-

linear chain with multiple nonlinear local resonators. These interesting wave

propagation characteristics can be employed to design superior vibration isola-

tion and acoustic diode devices.

The remainder of the paper is organized as follows. The next section de-

scribes the system of interest and presents explicit expressions for the nonlinear

dispersion relations. The obtained analytical expressions are validated through

direct numerical simulations and results from the literature. Spectro-spatial

analysis is then carried out to explain the relation between topological/physical

(space-time domain) and spectral domains. Finally, we present a computational

study using ANSYS to further validate and demonstrate the interesting wave

characteristics observed from the analytical and numerical results. Our findings

are then summarized in the conclusion.

2. SYSTEM DESCRIPTION AND MATHEMATICAL MODELING

A schematic diagram for the acoustic metamaterial chain is depicted in

Fig. 1. The chain consists of periodic cells. Each cell is represented by a mass,

m, and it is connected to the other cells by a linear or nonlinear spring with

linear coefficient, k, and nonlinear coefficient εΓ. There are s number of local

resonators in each cell. The ith resonator consists of a mass, mi and connected

to the nth cell by a linear or nonlinear spring with linear coeficient, ki, and a

nonlinear coefficient, εΓi. It is noteworthy here that the system is reduced to a
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linear system if ε = 0.

The equations of motion for the nth cell can be expressed as follows [19, 32]

mün +K(2un − un−1 − un+1)+

εΓ((un − un−1)3 + (un − un+1)3)+

s∑
i=1

ki(un − vni) +

s∑
i=1

εΓi(un − vni)3 = 0

(1)

miv̈ni + ki(vni − un) + εΓi(vni − un)3 = 0 (2)

For the case of nonlinear chain only, we set Γi = 0 while we set Γ = 0 in the

case of nonlinear resonator only.

Eqns. (1)-(2) can be written in the non-dimensional form as

ün + 2un − un−1 − un+1 + εΓ̄((un − un−1)3+

(un − un+1)3) +

s∑
i=1

k̄i(un − vni) +

s∑
i=1

εΓ̄i(un − vni)3 = 0

(3)

ω2
n

ω2
di

v̈ni + (vni − un) + εΓ̄i(vni − un)3 = 0 (4)

where the dots here denote the derivative in terms of the non-dimensional time

τ = ωnt, Γ̄ = Γ
ω2

nm
, k̄i = ki

ω2
nm

, ω2
n = K/m, and ω2

di = ki/mi.

2.1. Approximate Analytical Solution by the Method of Multiple Scales

For weakly nonlinear systems like the one presented in Eqns. (3)-(4), per-

turbation techniques can be employed to obtain approximate analytical solution

of the dispersion curves. Here we use the method of multiple scales to present

explicit expressions for the dispersion relations. The method of multiple scales
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is advantageous over other techniques due to the simplicity of handling and

collecting the secular terms in multiple equations or complicated systems. The

approximate solution can be represented up to second order approximation as

[18]

un(t, ε) = un0(T0, T1) + εun1(T0, T1) (5)

vni(t, ε) = vni0(T0, T1) + εvni1(T0, T1) (6)

where T0 = τ is the fast time scale and T1 = ετ is the slow time scale. The system

can now be represented by two independent variables (scales) and applying

the full derivative is not valid any more. Instead, we can represent the time

derivative by the chain rule as

(¨) = D2
0 + 2εD0D1 + ... (7)

where Dn = ∂
∂Tn

.

Using Bloch theory for infinite periodic medium [36] (also known as Floquet

theory for 1-dimensional medium [37]), the solution of the linear system can be

expressed as

un = Aej(nk̄−ωT0) + c.c (8)

vni = Bie
j(nk̄−ωT0) + c.c (9)

where k̄ = aq is the nondimensional wavenumber, and c.c is the complex conju-

gate. For convenience, we drop the bar from k̄ in the subsequent analysis since

the linear stiffness of the chain k does not appear any more in the normalized

VIB-20-1031, Barry 8

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

Journal of Vibration and Acoustics. Received January 16, 2020;
Accepted manuscript posted September 10, 2020. doi:10.1115/1.4048557
Copyright © 2020 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/vibrationacoustics/article-pdf/doi/10.1115/1.4048557/6568496/vib-20-1031.pdf by Virginia Polytechnic Institute and State U

niversity, Jiam
in W

ang on 29 Septem
ber 2020



parameters.

Substituting Eqns. (5)-(7) into Eqns. (3)-(4), collecting the coefficients of

ε0&ε, and then substituting Eqns. (8)-(9), one can write the linear dispersion

relation for all cases of nonlinearity as

−ω2 + (2− 2 cos k) +

s∑
i=1

k̄i(1−Kωi) = 0 (10)

where Kωi = 1
1−ω2

nω
2/ω2

di
. To derive the nonlinear solution, the vibration am-

plitude should be written in the polar form as

A =
1

2
αeiβ (11)

Solving for the amplitude α, reveals that α = α0, where α0 is a constant, for

both cases of nonlinearity. The phase can be written for each case as [34? ]

• Nonlinear chain Γ̄ 6= 0

β = − 3Γ̄α2(1− cos k)2

2ω(1 +
∑s
i=0

k̄iω2
n/ω

2
di

1−ω2
nω

2/ω2
di
Kωi)

T1 (12)

• Nonlinear resonator Γ̄i 6= 0

β = −

∑s
i=1[ 3

8α
2(1−Kωi

)3Γ̄i(
k̄i

1−ω2
nω

2/ω2
di
− 1)]

ω(1 +
∑s
i=1

k̄iω2
n/ωdi

1−ω2
nω

2/ω2
di
Kωi)

T1 (13)

Therefore, the nonlinear dispersion curves can be written as

ωnl = ω + εβ′ (14)
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where β
′

is the derivative in terms of the slow time scale.

From Eqn. (12), it can be observed that the nonlinear frequency in the

nonlinear chain case is a function of wavenumber. In fact, the correction factor

β ∼ 0 when k is very small and hence the effect of chain nonlinearity (β)

is negligible for long wavelength limit (k ∼ 0) at both acoustic and optical

modes. On the other hand, for the case of the nonlinear resonator (Eqn. (13)),

the wavenumber does not explicitly appear in the expression of the correction

factor and hence the only wavenumber dependence in this case is through the

linear dispersion relation (i.e. Eqn. (10)). Also note the appearance of a new

term (1 − Kωi)
3 in the numerator of Eqn. (13), which can have a significant

effect on the correction factor β and hence on the nonlinear frequency when the

resonator is tuned to the excitation frequency regardless of the wavenumber. It

is noteworthy here that the derived expression for, β in Eqn. (13), is correct and

different from that obtained in [16], since the latter omitted the contribution of

the resonators on the left hand side from the equations at order ε [19, 20] (for

more information refer to [38]).

3. VALIDATING ANALYTICAL RESULTS

To validate the dispersion relations obtained by the method of multiple scale,

we compare the current results with those obtained in the literature for a nonlin-

ear chain single linear resonator system obtained by Lindstedt-Poincare methods

and with those obtained numerically. For this part, we select ωn = ωd1 = 1000

rad/sec, k̄i = 1, s = 1, εΓ̄α2 = 0.06, and εΓ̄iα
2 = 0.
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Figure 2: Validating the results of nonlinear chain with single linear resonator, εΓ̄α2 = 0.06,

εΓ̄1α2 = 0.

Figure 3: Validating the results of nonlinear chain with two linear resonators, εΓ̄α2 = 0.06,

εΓ̄1α2 = εΓ̄2α2 = 0.
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Figure 4: Validating the results of linear chain with two nonlinear resonators, εΓ̄α2 = 0,

εΓ̄1α2 = 0.06, εΓ̄2α2 = 0.

For numerical simulations, we simulate a chain consisting of 500 cells and

attached to it s number of resonators (e.g. s = 1 in the first part of the val-

idation, then we set s = 2). The boundaries of the chain are assumed to be

a perfectly matched layer (PML) in order to absorb and dissipate incoming

waves, as well as, to minimize wave reflections at each end [19]. The system

is excited by a transient wave packets signal at different wavenumbers. The

velocity of the wave packet is selected to limit the motion of the signal in one

direction and suppress any waves traveling in the opposite direction [31]. The

numerical integration is carried out using MATLAB built in integrator ODE45

( Runge-Kutta). After running the simulation at a specific wavenumber, 2-D

Fast Fourier Transform is applied on the displacement matrix and the frequency

and wavenumber corresponding to the maximum amplitude value are collected.
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(a) (b)

(c) (d)

Figure 5: Analytical dispersion curves for acoustics metamaterial and two local

resonators with different types and sources of nonlinearities: (a) Softening chain

nonlinearity εΓ̄α2 = −0.06, εΓ̄1α2 = εΓ̄2α2 = 0; (b) Hardening resonator non-

linearity εΓ̄2α2 = 0.06, εΓ̄1α2 = εΓ̄α2 = 0; (c) Softening resonator nonlinear-

ity εΓ̄1α2 = −0.06, εΓ̄α2 = εΓ̄2α2 = 0; (d) Softening resonator nonlinearity

εΓ̄2α2 = −0.06, εΓ̄1α2 = εΓ̄α2 = 0.

These values represent the point in the dispersion curve corresponding to the

wavenumber of excitation signal [20]. The wavenumber is then swept to recon-

struct other points in the dispersion curves. These wave packets excitation can

be defined as:

um(0) =
1

2
(H(m− 1)−H(m− 1−Ncy2π/k))(1−

cos(mk/Ncy)) sin(mk)

(15)
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(a) (b)

(c) (d)

(e) (f)

Figure 6: Spatial profile of the wave packet for different types and sources of non-

linearities at frequencies in the upper branch of dispersion curve: (a) Linear chain

εΓ̄α2 = εΓ̄1α2 = εΓ̄2α2 = 0; (b) Hardening chain nonlinearity εΓ̄α2 = 0.03, εΓ̄1α2 =

εΓ̄2α2 = 0; (c) Softening chain nonlinearity εΓ̄α2 = −0.03, εΓ̄1α2 = εΓ̄2α2 = 0; (d)

Hardening resonator nonlinearity εΓ̄2α2 = 0.03, εΓ̄1α2 = εΓ̄α2 = 0; (e) Softening

resonator nonlinearity εΓ̄2α2 = −0.03, εΓ̄1α2 = εΓ̄α2 = 0; (f) Hardening resonator

nonlinearity εΓ̄1α2 = 0.03, εΓ̄2α2 = εΓ̄α2 = 0.
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Figure 7: Spatial spectrograms of the wave packet for different types and sources of

nonlinearities at frequencies in the upper branch of dispersion curve: (a) Hardening

chain nonlinearity εΓ̄α2 = 0.03, εΓ̄1α2 = εΓ̄2α2 = 0, k = π/9; (b) Hardening

resonator nonlinearity εΓ̄2α2 = 0.03, εΓ̄1α2 = εΓ̄α2 = 0, k = π/9; (c) Softening

resonator nonlinearity εΓ̄2α2 = −0.03, εΓ̄1α2 = εΓ̄α2 = 0, k = π/9; (d) Hardening

resonator nonlinearity εΓ̄1α2 = 0.03, εΓ̄2α2 = εΓ̄α2 = 0, k = π/9; (e) Hardening

resonator nonlinearity εΓ̄2α2 = 0.03, εΓ̄1α2 = εΓ̄α2 = 0, k = 7π/9; (f) Hardening

resonator nonlinearity εΓ̄1α2 = 0.03, εΓ̄2α2 = εΓ̄α2 = 0, k = 7π/9.
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u̇m(0) =
1

2
(H(m− 1)−H(m− 1−Ncy2π/k))

(−ωnω/Ncy sin(mk/Ncy) sin(mk)− ωnω(1−

cos(mk/Ncy)) cos(mk))

(16)

vmi(0) = Kωium(0) (17)

v̇mi(0) = Kωiu̇m(0) (18)

where H(x) is the heaviside function and Ncy is the cycles number and set in

the current study to Ncy = 7.

Fig. 2 presents a comparison between our results, the literature results, and

the numerical results. Our multiple scales results show very good agreement for

the case of nonlinear chain with single linear resonator.

For the case of nonlinear chain with multiple linear resonators, we validate

our analytical results using numerical simulation only since the literature lacks

simulations for similar nonlinear systems. The results are shown in Fig. 3 for

the case of two resonators where ωd1 = ωn and ωd2 = 1.5ωn. The results show

that the method of multiple scales can accurately predict, in general, dispersion

curves and the trend of this type of nonlinearity. However, it fails to predict

any other nonlinear dynamics phenomena such as solitons and the presence of

secondary resonances as we will show in the following sections.

Furthermore, the numerical and analytical results of the nonlinear resonator

are plotted in Fig. 4. We can observe that the method of multiple scales is a
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good predictor of the upper and lower branches of the dispersion curve, but a

poor predictor of the middle branch when the natural frequency of the system

is ωd1 = ωn. Therefore, this region should be handled by a different approach.

4. THE EFFECT OF DIFFERENT TYPES OF NONLINEARITIES

ON THE BANDGAP BOUNDARIES

After checking the obtained solution for each case, we examine the effect of

nonlinearity on the wave propagation in various wavelength regions. In addition

to Figs. 3-4, we present the analytical dispersion curves for different kind and

source of nonlinearities in Fig. 5.

We can observe from Fig. 3 and Fig. 5.(a) that the nonlinear chain affects

mainly the short wavelength region (k ∼ π). The effect of nonlinearity in the

long wavelength region (k ∼ 0) is almost negligible; however, a significant shift

of the dispersion curves is observed at high wavenumbers. On the other hand,

Fig. 4 and Figs. 5.(b)-(d) show that systems with nonlinear resonators have

significant impact on the dispersion curves in the long wavelength region.

Moreover, it is demonstrated that the effect of nonlinear resonators becomes

more pronounced at frequencies near the resonator frequency. For instance, in

Fig. 4 and Fig. 5.(c), a significant shift occurs near the resonance frequency of the

nonlinear resonators ωd1 = ωn. However, making the second resonators ωd2 =

1.5ωn nonlinear, shifts the effect of nonlinearity to other frequency regions.

It is also demonstrated that tuning the bandgap can be done by changing

the type of nonlinearity. In Fig. 5.(a) and Figs. 5.(c)-(d), softening nonlinearity
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shifts the dispersion curves lower, thus increasing the size of the bandgap. On

the other hand, hardening nonlinearity shifts the dispersion curves up as shown

in Figs. 3-4 and Fig. 5.(b).

5. SPECTRO-SPATIAL ANALYSIS

Although the cut-off frequencies can be predicted by the method of multiple

scales, other nonlinear wave propagation features cannot be characterized. This

merits the use of spectro-spatial analysis to characterize the wave propagation

in the proposed metamaterial. It should be noted that all the following simu-

lations are based on the optical branch because this branch is more affected by

nonlinearity than the acoustic branch. Also the numerical simulation for the

optical mode is much faster. Moreover, Figs. 6-7 are plotted at the end of the

numerical simulations. The numerical simulations lasted for t = 8 sec.

The spatial profile of the wave packet is depicted in Fig. 6 for different types

of nonlinearities. For the linear case (Fig. 6 (a)), the output profile of the long

wavelength limit is a mirror image of the input signal profile. However, in-

creasing the wavenumber gradually turns the input wave into a dispersive wave

(i.e, the output wave get stretched over the chain and the wave amplitude be-

comes smaller). In addition, we observe that the nonlinear chain gives rise to

travelling localized wave (i.e. solitary waves) with increasing wavenumber when

the nonlinearity is hardening (Fig. 6.(b)) and wave dispersive (i.e., the wave is

stretched over the chain) when the nonlinearity is softening (Fig. 6.(c)). This

can be explained by the change in the dispersion curve slope (i.e., see discus-
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sions on Fig. 8). For instance, hardening nonlinear chain has a fixed linear

slope instead of a variable slope in the dispersion curve. This is an indication of

solitary (localized) waves [23]. On the other hand, Figs. 6.(a)-(c) indicate that

nonlinear hardening chain has no effect on the wave profile in long wavelength

region for both types of nonlinearities (i.e., the input signal has the same profile

as the output signal at long wave length region). The opposite is observed in

Figs. 6.(d)-(f) when the system is changed to linear chains with nonlinear lo-

cal resonators. It is evident that the wave profile is distorted in all wavelength

domains unlike the nonlinear chain case. In Fig. 6.(d), a hardening resonator ex-

hibits dispersive wave at long wavelength and travelling localized wave at short

wavelength. On the other hand, a softening resonator shows an interesting be-

havior at long wavelength limit since the wave profile has travelling localized and

dispersive components. However, the travelling localized component vanishes

with reducing wavelength (i.e. increasing wavenumber) as shown in Fig. 6.(e).

Therefore, unlike the case of nonlinear chain, wave distortion can be obtained at

all wavelength limits in the case of nonlinear resonator. This effect of resonator

nonlinearity depends significantly on the frequency of the nonlinear resonator.

For example, tuning the nonlinear resonator away from the upper dispersion

curve results in significant reduction in the effect of nonlinear wave propagation

phenomena, specifically, in the short wavelength region as shown in Fig. 6.(d).

It is noteworthy that, albeit the analytical dispersion curves fail to predict the

cut-off frequency and other important wave propagation features, they accu-

rately predict how the nonlinearities in both the chains and resonators affect
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the wave propagation across all wavelength domains. In that, their predictions

about the effect of nonlinearities agree with the spatial profile plots. For ex-

ample, both Fig. 3 and Fig. 6.(b) show hardening chains to have no effect in

long-wavelength domain and significant effect in short wavelength domain.

Fig. 7 shows the spectrograms of the wave propagating through the metama-

terial in both short and long-wavelengths. As we observed before, the nonlinear

chain has no effect on the structure in the long wavelength limit. This is clearly

shown in Fig. 7.(a), the output wave profile is exactly the same as the input

signal. However, as shown in Figs. 7.(b)-(c), a significant distortion (i.e., the

output wave is split into multiple components and/or there are other forms of

deformation resulting from resonator and chain nonlinearity) to the input signal

is observed when we change the nonlinearity from chain to local resonator. The

signal becomes clearly dispersive (i.e, the output wave get stretched over the

chain) along the chain with significant equal amplitude when the nonlinearity is

hardening as shown in Fig. 7.(b). When the nonlinearity is of softening type, we

observe multiple localized signals, as well as, dispersive components (Fig. 7.(c)).

The dispersive components are generated at a wide range of wavenumbers out-

side the initial signal wavenumber content. In the short wavelength region, the

effect of nonlinear resonator is similar to that of nonlinear chain: the output

signal is localized unlike in the linear case where the signal at this limit is com-

pletely dispersive. As we will show in the below discussions, this indicates that

soliton formation is also possible in the case of nonlinear resonator as shown in

Fig. 7.(e). In Fig. 7.(d) and Fig. 7.(f), it is observed that a nonlinear resonator
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with frequency away from the excitation frequency has less effect on the wave

profile, specifically in the short wavelength limit where it is completely linear.

Therefore, a properly tuned nonlinear resonator can distort the output wave at

all wavelength limits. The output signal appears at frequencies different than

the input frequency. This indicates that nonlinear resonators can be utilized in

designing acoustics diodes that can be operated at all wavelength limits.

Furthermore, we present the effect of nonlinear resonators in the image of

2-D fast Fourier transform depicted in Fig. 8. The linear signal is similar to

the nonlinear signal as shown in Fig. 8.(a), thus confirming that the nonlinear

chain has no effect in this limit. In Fig. 8.(b)-(c), the nonlinear resonator shows

a wider distribution of the signal along both the frequency and wavenumber

ranges in the long wavelength limit for both types of nonlinearity. This obser-

vation suggests that such nonlinear acoustic metamaterial can be suitable for

applications such as acoustic diode. Fig. 8.(e) demonstrates that the nonlinear

resonator is also effective in the short wavelength limit since it localizes the sig-

nal and stretches it over a wider region. Moreover, the results indicate that the

energy content is concentrated in fixed slope dispersion curve unlike the case of

linear chain. This is an indication that solitary localized waves can be observed

at this wavelength limit with properly tuned hardening resonators. However,

it is also demonstrated in Fig. 8.(d) and Fig. 8.(f) that the effect of nonlin-

ear resonator vanishes when it is not tuned carefully. Overall, both spectral

(wavenumber-frequency domain) and topological/physical (space-time domain)

analyses provide good insight about the nonlinear effect on wave propagation
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across all wavelength regions. But only the topological analysis can provide de-

tail information about the physical features of wave propagation such as solitons

formation.

Finally, we check the limitation of our analytical solution in weakly nonlin-

ear systems for nonlinearity in the chain and the resonator. In Fig. 9, we plot

the analytical solution for the linear and nonlinear dispersion curves against the

images of 2D FFT for the numerical simulations. For the nonlinear chain case,

our solution shows a good agreement with the numerical results for small value

of nonlinearity (εΓ̄ ≤ 0.06) as shown in Fig. 9 (a). The figure also indicates

that the solitary nonlinear component with high energy content (shown in Fig.

8 (e)) coincides with the nonlinear dispersion curve while the linear component

with low energy content coincides with the linear dispersion curves. Increasing

the nonlinearity further (εΓ̄ ≥ 0.06) gives rise to a new component between the

linear and nonlinear dispersion curves in addition to the previously observed

linear and nonlinear components. Nevertheless, the nonlinear component still

coincides with the nonlinear dispersion curves, which indicates that the ana-

lytical solution is still accurate in terms of the bandgap boundaries. This new

component has a fixed slope with energy content lower than the energy content

of the main nonlinear component. Yet its energy content increases with increas-

ing nonlinearity. However, for values beyond (εΓ̄ ≥ 0.15), a discrepancy between

the analytical and numerical solutions can be observed although the main nu-

merical nonlinear component is still closer to the analytical nonlinear dispersion

curve than the linear dispersion curves as shown in Fig. 9 (c). Moreover, the

VIB-20-1031, Barry 22

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

Journal of Vibration and Acoustics. Received January 16, 2020;
Accepted manuscript posted September 10, 2020. doi:10.1115/1.4048557
Copyright © 2020 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/vibrationacoustics/article-pdf/doi/10.1115/1.4048557/6568496/vib-20-1031.pdf by Virginia Polytechnic Institute and State U

niversity, Jiam
in W

ang on 29 Septem
ber 2020



(a) (b)

(c) (d)

(e) (f)

Figure 8: 2-D Fourier transform of the response for different types and sources of

nonlinearities at frequencies in the upper branch of dispersion curve: (a) Hardening

chain nonlinearity εΓ̄α2 = 0.03, εΓ̄1α2 = εΓ̄2α2 = 0, k = π/9; (b) Hardening

resonator nonlinearity εΓ̄2α2 = 0.03, εΓ̄1α2 = εΓ̄α2 = 0, k = π/9; (c) Softening

resonator nonlinearity εΓ̄2α2 = −0.03, εΓ̄1α2 = εΓ̄α2 = 0, k = π/9; (d) Hardening

resonator nonlinearity εΓ̄1α2 = 0.03, εΓ̄2α2 = εΓ̄α2 = 0, k = π/9; (e) Hardening

resonator nonlinearity εΓ̄2α2 = 0.03, εΓ̄1α2 = εΓ̄α2 = 0, k = 7π/9; (f) Hardening

resonator nonlinearity εΓ̄1α2 = 0.03, εΓ̄2α2 = εΓ̄α2 = 0, k = 7π/9. Dashed lines

represents linear frequency bands.
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new component is more dominant and has higher energy content due to the in-

crease of nonlinearity. For the nonlinear resonator case, Fig. 9 (d) demonstrates

that the analytical solution fails to predict the nonlinear dispersion curve at fre-

quencies close to the nonlinear resonator frequency and the numerical results

completely coincide with the analytical linear dispersion curve instead of the

nonlinear dispersion curve. However, at frequencies away from the nonlinear

resonator frequency, the analytical solution can accurately predict the numeri-

cal results for small values of nonlinearity (εΓ̄ < 0.15) as shown in Fig. 9 (e).

Beyond that both solutions start departing from each other as shown in Fig.

9 (f) and the analytical solution does not predict the actual dispersion curves

accurately.

6. COMPUTATIONAL STUDY USING ANSYS APDL

In order to further validate and demonstrate the analytical bandgaps and

the interesting nonlinear wave propagation phenomena obtained by the theoret-

ical analysis, we conduct a computational study using finite element software,

ANSYS. This computational analysis is based on a long nonlinear chain with

linear resonator, as well as, a long linear chain with nonlinear resonator.

The geometry of the metamaterials is first created by a group of nodes and

elements in the preprocessor section of ANSYS Parametric Design Language

(APDL). The number of nodes is equal to the number of cells. Three types

of elements are defined as: COMBIN14 for the stiffness of the linear spring,

MASS21 for the mass of the chain and resonator, and COMBIN39 for the stiff-

VIB-20-1031, Barry 24

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

Journal of Vibration and Acoustics. Received January 16, 2020;
Accepted manuscript posted September 10, 2020. doi:10.1115/1.4048557
Copyright © 2020 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/vibrationacoustics/article-pdf/doi/10.1115/1.4048557/6568496/vib-20-1031.pdf by Virginia Polytechnic Institute and State U

niversity, Jiam
in W

ang on 29 Septem
ber 2020



(a) (b)

(c) (d)

Linear

Nonlinear

(e) (f)

Figure 9: Comparison between the analytical solution and images of 2D FFT of

the numerical simulations for a chain with two resonators: (a) Hardening chain

nonlinearity εΓ̄α2 = 0.06, εΓ̄1α2 = εΓ̄2α2 = 0, k = 7π/9; (b) Hardening chain

nonlinearity εΓ̄α2 = 0.09, εΓ̄1α2 = εΓ̄2α2 = 0, k = 7π/9; (c) Hardening chain

nonlinearity εΓ̄α2 = 0.18, εΓ̄1α2 = εΓ̄2α2 = 0, k = 7π/9; (d) Hardening resonator

nonlinearity εΓ̄2α2 = 0.03, εΓ̄1α2 = εΓ̄α2 = 0, k = π/9; (e) Hardening resonator

nonlinearity εΓ̄2α2 = 0.06, εΓ̄1α2 = εΓ̄α2 = 0, k = 7π/9; (f) Hardening resonator

nonlinearity εΓ̄2α2 = 0.15, εΓ̄1α2 = εΓ̄α2 = 0, k = 7π/9.
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(a) (b)

Figure 10: (a) A schematic of a cell in ANSYS Workbench; (b) equivalent diagram

in APDL.

ness of the nonlinear spring. The values of the linear spring and mass are

assigned to their elements by command “R”. For the nonlinear spring (in the

nonlinear chain or the nonlinear resonator cases), we define the weak nonlin-

earity by a force-displacement curve. These values were then assigned to the

element COMBIN39 by command “R”.

Each rigid chain and resonator is created by one node using commands “N”

and “*REPEAT”. Next, element MASS21 is assigned to its corresponding node

using commands “TYPE” and “REAL”. Fig. 10 shows the schematic of a cell in

ANSYS workbench (Fig. 10. (a)) and its equivalent diagram in ANSYS APDL

(Fig. 10. (b)). In Fig. 10.(a), two linear springs each with a stiffness of k1/2

connect in parallel the chain to the resonator. These two springs are merged

into one element defined as COMBIN14 with an equivalent stiffness of k1.
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6.1. Band Structures

In order to determine the passband and bandgap, we excite the metamaterial

by a harmonic force and monitor the output amplitude at each frequency in

the frequency sweep range. Following [39], we excite the second chain in the

metamaterial and record the response of the last cell of the chain at the other

end.

For the single resonator case, we plot the frequency response curve for dif-

ferent sources of nonlinearities in Fig. 11. (a)-(c). In Fig. 11. (a)-(b), the

results indicate that the wave does not propagate through the structure for

frequencies inside the bandgap in the linear and nonlinear chain cases. These

frequency limits show a very good agreement with those obtained analytically

(marked by the dashed lines in Fig. 11). Moreover, the results demonstrate that

both methods (i.e., computational and analytical) can capture the shift in the

bandgap boundaries due to the nonlinearity in the chain. On the other hand,

the wave propagates in the passband (outside the bandgap) since the amplitude

of the system is much higher as compared to the amplitude inside the bandgap.

However, for the nonlinear resonator case (Fig. 11. (c)), the results indicate

that our analytical solution over estimates the bandgap boundaries. This error

in bandgap appears mainly close to the nonlinear resonator frequency within

the end of the acoustics branch and at the beginning of the optical branch.

For the case of two resonators, we plot the frequency response curve of the

system for different types of nonlinearities in Fig. 11 (d)-(f). The computational

results obtained by ANSYS reveal a good agreement with the analytical solution
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for the linear and nonlinear chain cases as shown in Fig. 11 (d)-(e). However,

the analytical results fails again in matching the computational results for the

nonlinear resonator case, especially at the nonlinear resonator frequencies, as

shown in Fig. 11. (f). The different regions (i.e., passband and bandgap)

between the dashed lines separate the regions of high amplitude response and

the zero amplitude response in the system.

6.2. Spectro-Spatial Analysis of ANSYS Results

In this section, we demonstrate the presence of solitary waves based on AN-

SYS computational simulations. We excite the chain by a wave packet and plot

the spatial profile of the output wave, the spectrograms of the wave propagation,

and the 2DFFT images in Figs. 12- 14.

For the spatial profile, we observe that a nonlinear chain has no effect on

the wave profile at long wavelength limit while the nonlinear resonator distorts

the signal significantly as shown in Fig. 12. (a). This distortion can lead to a

significant frequency shift (i.e., the output signal appears at frequencies differ-

ent than the frequency of the input signal) and shows a good agreement with

the theoretical results obtained in the previous section. The wave profile for the

linear chain is a mirror image of the nonlinear chain case. On the other hand,

in Fig. 12. (b), the nonlinearity in the chain and resonator shows a birth of

localized solitary waves at short wavelength limit and the profile of the linear

chain is different from that of the nonlinear chain since it is completely disper-

sive. These findings were also observed in the numerical analysis in the previous

section, except that in the computational simulation the localized component in
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the nonlinear resonator case is not sharp as compared to the numerical results.

In Fig. 13 (a)-(b), spatial spectograms further demonstrate the wave distor-

tion and wave number/frequency shift due to the nonlinear resonator at long

wavelength limit. In particular, some of the energy content for the output signal

appears outside the input wavenumber/frequency band as shown in Fig. 13 (b).

This distortion cannot be obtained in the nonlinear chain case (Fig. 13 (a))

since its spectrogram is a mirror image of the linear chain case. On the other

hand, the spatial spectrogram plots in Fig. 13 (c)-(d) indicate that all energy

content of the output wave is concentrated in one component inside the input

wavenumber/frequency band with high energy. This observation suggests the

birth of localized wave at short wavelength limit. Although, the wave in Fig. 13

(d) looks dispersive, the wave still has localized component that preserves high

energy content.

Finally, we show the images of 2DFFT in Fig. 14 to demonstrate the effect

of nonlinearity on the dispersion curve based on the results obtained in ANSYS.

In the long wavelength limit, the results indicate that the nonlinearity in the

chain doe not distort the wave since its profile (shown in Fig. 13 (a)) is exactly

the same as the profile of the linear chain. On the other hand, the nonlinearity

in the resonator distorts the output wave since the wave (Fig. 14. (b)) ap-

pears at frequency different than the input frequency which is identical to the

undistorted wave of the linear and nonlinear chain shown in Fig. 13 (a). In the

short wavelength limit, the image of the nonlinear chain (Fig. 14. (c)) shows

that the energy content of the output wave appears on two main components.
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One with variable slope and coincides with the linear dispersion curve, the other

has fixed slope and appears above the linear dispersion curve due to the type

of hardening nonlinearity. The latter represents a solitary wave [23]. For the

nonlinear resonator case (Fig. 14. (d)), distinguishing the two energy compo-

nents is harder since the this region is not affected by the resonator nonlinearity

as compared to the nonlinear chain. Yet the hardening resonator nonlinearity

shifts the dispersion curves up toward the fixed slope case which indicates the

birth of solitary wave.

7. CONCLUSION

In this paper, a nonlinear acoustics metamaterial with multiple local res-

onators was investigated theoretically and computationally. In one case, we

examined the nonlinearity in the chains and in another we investigated the

nonlinearity in the resonators. Closed-form expressions were presented for the

nonlinear dispersion relations using the method of multiple scales. These expres-

sions are more general since they can be applied for nonlinear chains with any

number of nonlinear local resonators. The analytical results were validated via

comparison with those in the literature, those obtained numerically, and those

obtained by finite element software, ANSYS. The validation revealed that the

analytical results can predict the cut-off frequency in both cases; however, the

analytical approach fails to predict the dispersion curve near the resonator fre-

quency. This failure suggests that higher perturbation or more robust analytical

techniques may be required to accurately predict the dispersion relations of such
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a nonlinear metastructure. The analytical dispersion equation for the case of

nonlinear resonator shows a significant frequency shift at all wavelength limits,

particularly when the excitation frequency is near the resonator frequency. This

finding is an indication that nonlinear resonators in the present system, unlike

nonlinear chains, affect wave propagations in the long wavelength domain. This

observation was consistent with the topological (space-time domain) analysis

conducted based on numerical and computational simulations. In the spectro-

spatial analysis, we demonstrated that the effect of hardening nonlinearity ap-

pears as localizing the wave, whereas, that of softening nonlinearity appears as

dispersing the wave. This effect depends on the nonlinear resonator frequency

and how close it is to the input wave frequency. Spectrograms and images of

2-D short term Fourier transform also confirmed these observations. They also

showed that the nonlinear resonator has output signal stretching over a wider

range of frequencies and wavenumbers in the long wavelength region. In addi-

tion, the nonlinear resonators and nonlinear chains exhibited similar waveform

characteristics in short wavelength region when the nonlinear resonator was

tuned properly. These observations suggest that such a nonlinear metamaterial

(i.e, metamaterial investigated in the current study), consisting of a nonlinear

(or linear) chain and multiple linear (or nonlinear) resonators, are suitable for

various applications including acoustic diodes and broadband vibration isola-

tion and energy harvesting. The current findings can be further supported or

generalized upon investigating similar systems using various analytical and ex-

perimental techniques and employing these observations in various applications
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like acoustics diode in the future.
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[36] F. Bloch, Über die quantenmechanik der elektronen in kristallgittern,

Zeitschrift für physik 52 (7-8) (1929) 555–600.
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k = π/9; (d) Hardening resonator nonlinearity εΓ̄1α
2 = 0.03,
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2 = εΓ̄α2 = 0, k = π/9; (e) Hardening resonator nonlinear-

ity εΓ̄2α
2 = 0.03, εΓ̄1α

2 = εΓ̄α2 = 0, k = 7π/9; (f) Hardening

resonator nonlinearity εΓ̄1α
2 = 0.03, εΓ̄2α

2 = εΓ̄α2 = 0, k = 7π/9. 15

8 2-D Fourier transform of the response for different types and
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2 = εΓ̄α2 = 0,
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9 Comparison between the analytical solution and images of 2D

FFT of the numerical simulations for a chain with two resonators:

(a) Hardening chain nonlinearity εΓ̄α2 = 0.06, εΓ̄1α
2 = εΓ̄2α

2 =

0, k = 7π/9; (b) Hardening chain nonlinearity εΓ̄α2 = 0.09,

εΓ̄1α
2 = εΓ̄2α

2 = 0, k = 7π/9; (c) Hardening chain nonlinear-

ity εΓ̄α2 = 0.18, εΓ̄1α
2 = εΓ̄2α

2 = 0, k = 7π/9; (d) Harden-

ing resonator nonlinearity εΓ̄2α
2 = 0.03, εΓ̄1α

2 = εΓ̄α2 = 0,

k = π/9; (e) Hardening resonator nonlinearity εΓ̄2α
2 = 0.06,

εΓ̄1α
2 = εΓ̄α2 = 0, k = 7π/9; (f) Hardening resonator nonlinear-

ity εΓ̄2α
2 = 0.15, εΓ̄1α

2 = εΓ̄α2 = 0, k = 7π/9. . . . . . . . . . . 25

10 (a) A schematic of a cell in ANSYS Workbench; (b) equivalent

diagram in APDL. . . . . . . . . . . . . . . . . . . . . . . . . . . 26

11 Frequency response curves for a linear and nonlinear metamate-

rial with marking the boundaries of the analytical bandgaps by

dashed lines: (a) Linear chain single resonator εΓ̄α2 = εΓ̄1α
2 = 0;

(b) Nonlinear chain single resonator εΓ̄α2 = 0.06; εΓ̄1α
2 = 0; (c)

Nonlinear resonator single resonator εΓ̄α2 = 0; εΓ̄1α
2 = 0.06; (d)
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2 = 0; (e)
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12 Spatial profile in short and long wavelength limits in the upper

optical mode (a chain with two resonators) for linear chain, non-

linear chain, and nonlinear resonator: (a) k = π/9; (b) k = 7π/9. 43

13 Spatial spectrograms for nonlinear metamaterial with two local

resonators in short and long wavelength limits: (a) Nonlinear

chain, εΓ̄α2 = 0.03, εΓ̄1α
2 = εΓ̄2α

2 = 0, k = π/9; (b) Nonlin-

ear resonator, εΓ̄2α
2 = 0.03, εΓ̄1α

2 = εΓ̄α2 = 0, k = π/9; (c)

Nonlinear chain, εΓ̄α2 = 0.03, εΓ̄1α
2 = εΓ̄2α

2 = 0,k = 7π/9; (d)

Nonlinear resonator, εΓ̄2α
2 = 0.03, εΓ̄1α

2 = εΓ̄α2 = 0, k = 7π/9. 44

14 Images of 2-D Fourier transform and nonlinear metamaterial with

two local resonators in short and long wavelength limits : (a)

Nonlinear chain, εΓ̄α2 = 0.03, εΓ̄1α
2 = εΓ̄2α

2 = 0, k = π/9; (b)

Nonlinear resonator, εΓ̄2α
2 = 0.03, εΓ̄1α

2 = εΓ̄α2 = 0, k = π/9;

(c) Nonlinear chain, εΓ̄α2 = 0.03, εΓ̄1α
2 = εΓ̄2α

2 = 0, k = 7π/9;

(d) Nonlinear resonator, εΓ̄2α
2 = 0.03, εΓ̄1α

2 = εΓ̄α2 = 0, k =

7π/9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
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Figure 11: Frequency response curves for a linear and nonlinear metamaterial with

marking the boundaries of the analytical bandgaps by dashed lines: (a) Linear chain

single resonator εΓ̄α2 = εΓ̄1α2 = 0; (b) Nonlinear chain single resonator εΓ̄α2 =

0.06; εΓ̄1α2 = 0; (c) Nonlinear resonator single resonator εΓ̄α2 = 0; εΓ̄1α2 = 0.06;

(d) Linear chain two resonators εΓ̄α2 = εΓ̄1α2 = εΓ̄2α2 = 0; (e) Nonlinear chain

two resonators εΓ̄α2 = 0.06; εΓ̄1α2 = εΓ̄2α2 = 0; Nonlinear resonator two resonators

εΓ̄α2 = εΓ̄2α2 = 0; εΓ̄1α2 = 0.06.
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(a) (b)

Figure 12: Spatial profile in short and long wavelength limits in the upper optical

mode (a chain with two resonators) for linear chain, nonlinear chain, and nonlinear

resonator: (a) k = π/9; (b) k = 7π/9.
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(a) (b)

(c) (d)

Figure 13: Spatial spectrograms for nonlinear metamaterial with two local resonators

in short and long wavelength limits: (a) Nonlinear chain, εΓ̄α2 = 0.03, εΓ̄1α2 =

εΓ̄2α2 = 0, k = π/9; (b) Nonlinear resonator, εΓ̄2α2 = 0.03, εΓ̄1α2 = εΓ̄α2 = 0,

k = π/9; (c) Nonlinear chain, εΓ̄α2 = 0.03, εΓ̄1α2 = εΓ̄2α2 = 0,k = 7π/9; (d)

Nonlinear resonator, εΓ̄2α2 = 0.03, εΓ̄1α2 = εΓ̄α2 = 0, k = 7π/9.
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(a) (b)

(c) (d)

Figure 14: Images of 2-D Fourier transform and nonlinear metamaterial with two

local resonators in short and long wavelength limits : (a) Nonlinear chain, εΓ̄α2 =

0.03, εΓ̄1α2 = εΓ̄2α2 = 0, k = π/9; (b) Nonlinear resonator, εΓ̄2α2 = 0.03, εΓ̄1α2 =

εΓ̄α2 = 0, k = π/9; (c) Nonlinear chain, εΓ̄α2 = 0.03, εΓ̄1α2 = εΓ̄2α2 = 0, k = 7π/9;

(d) Nonlinear resonator, εΓ̄2α2 = 0.03, εΓ̄1α2 = εΓ̄α2 = 0, k = 7π/9.

VIB-20-1031, Barry 45

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

Journal of Vibration and Acoustics. Received January 16, 2020;
Accepted manuscript posted September 10, 2020. doi:10.1115/1.4048557
Copyright © 2020 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/vibrationacoustics/article-pdf/doi/10.1115/1.4048557/6568496/vib-20-1031.pdf by Virginia Polytechnic Institute and State U

niversity, Jiam
in W

ang on 29 Septem
ber 2020


	INTRODUCTION
	SYSTEM DESCRIPTION AND MATHEMATICAL MODELING
	Approximate Analytical Solution by the Method of Multiple Scales

	VALIDATING ANALYTICAL RESULTS
	THE EFFECT OF DIFFERENT TYPES OF NONLINEARITIES ON THE BANDGAP BOUNDARIES
	SPECTRO-SPATIAL ANALYSIS
	COMPUTATIONAL STUDY USING ANSYS APDL
	Band Structures
	Spectro-Spatial Analysis of ANSYS Results

	CONCLUSION

