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ABSTRACT
Understanding the dynamics of pathological tremors (e.g.,

Parkinson’s Disease, Essential Tremor) is crucial to developing
effective treatments for these neurological disorders. This paper
studies the data-driven modeling of periodic and quasiperiodic
tremors. A general neuromusculoskeletal model is proposed to
serve as the theoretical basis of this study. The Parkinsonian
tremor data is first observed in terms of periodicity, frequency
composition, and chaotic characteristics, which confirm tremor
is a nonlinear dynamics problem. Two data-driven models are
then proposed to predict the nonlinear dynamics of tremor: (1) a
model-free approach via long short-term memory recurrent neu-
ral network, and (2) a model-based approach via extended dy-
namical mode decomposition. These models are compared to
existing models and the results show that the proposed models
outperform existing models for long term prediction of tremor.

NOMENCLATURE
The mathematical notations used are listed as following:
‖Z‖n The induced n-norm of a matrix Z (n = 2 if not specified)
z1×z2 Multiplications of quaternions z1 (4×1) and z2 (4×1)
z̄ Conjugation of quaternion z (4×1)
zm×n A m×n matrix with all elements as z ∈R (fits along with

its neighboring blocks if no dimension specified)
In Identity matrix of a specific dimension n (fits along with its

neighboring blocks if no dimension specified)
Z−T The transposed inverse of Z (since (Z−1)T = (ZT )−1)
Z+ The Moore-Penrose pseudo inverse of Z
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INTRODUCTION

Activities of daily life such as writing, eating, and object manip-
ulation are extremely difficult for patients suffering from patho-
logical tremors. Parkinson’s Disease (PT) [1] and Essential
Tremor (ET) [2] are the two most common disorders marked by
tremors and affect millions of people around the world. Tremors
are generally summarized as involuntary, rhythmic, and oscilla-
tory movements [3]. The common frequency of PT and ET are
3∼6 Hz [1] and 4∼12 Hz [2], respectively. Research has indi-
cated that the observed tremorous movements may contain com-
ponents from the central neural oscillator, the peripheral neural
feedback/reflex resonance, and the mechanical resonance [3, 4].

A thorough understanding of the dynamics of pathological
tremors will facilitate the classification and diagnosis between
different tremors [5], as well as improve the design of predic-
tion algorithms adopted in electrical stimulation [6, 7] and re-
habilitation orthoses [8–10] for tremor suppression. Existing
real-time tremor prediction algorithms are developed based on
harmonic/frequency and time delay models such as Weighted-
Frequency Fourier Linear Combiner (WFLC) [11], Band-limited
Multi-frequency Fourier Linear Combiner (BMFLC) [12], and
Autoregressive model (AR) [13]. However, the structures of
these models are too general and simple to accurately predict
tremors in the long term. On the other hand, many studies con-
ducted the modeling the musculoskeletal systems [14,15], neuro-
muscular systems [16, 17], and the combination of both [18, 19].
However, particularly in tremor studies [19, 20], either some of
the adopted models are simplified, or the approaches are limited
to linear models and analyses. These unsolved problems have
motivated us to explore a better model for accurate long term
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tremor prediction and nonlinear analysis.
In this paper, we studied the data-driven modeling of peri-

odic and quasiperiodic tremor signals. A general neuromuscu-
loskeletal model has been proposed as the fundamental setup for
the analysis. Acquired from a PT database [21], the tremor data
measured in movements has been examined numerically in peri-
odicity/chaoticity and frequency composition. The observations
confirmed that tremor is a nonlinear problem. The limitations
of the existing tremor prediction algorithms led to our explo-
ration of data-driven modeling of the PT tremor. Under certain
model assumptions, the regression and prediction of periodic and
quasiperiodic tremors are carried out with model-free and model-
based methods. The modeling results based on different methods
are compared and discussed. Finally, the conclusion section sum-
marizes the findings and discusses future research directions.

A GENERAL NEUROMUSCULOSKELETAL MODEL
Neuroscience studies have shown that the motor cortex signal can
be decoded to predict hand movement [22]. Therefore, if tremor
signal originates anew in the cortical neural system, the result-
ing tremorous movement can be considered as a system response
from an excitation source. Previous works also indicate the in-
volvement of feedback/reflex loop (e.g., Golgi Tendon Organs,
Renshaw Cells, Spindle Organs) in pathological tremor [19].
These subsystems in the nervous system are highly coupled. The
dynamics of tremor may be related to the time delay of signals
in the system as well [23]. It is noticed that the PT tremor may
involve limit cycle behaviors resembling the effects of time de-
lay [24,25]. To thoroughly investigate the role of these factors in
pathological tremor dynamics that involve excitation, feedback
loop, and delay, a general nonlinear dynamical model of the hu-
man forearm can be established as

x =


q
q̇
τ

η

ξ

 ; ẋ = f (xt,i,γ,w) =


q̇

fa(q, q̇,τ,u,ξ ,wa,θa)
fτ(q, q̇,τ,η ,wτ ,θτ)

fη(q, q̇,τ,η ,γ,wη ,θη)
fξ (q, q̇,τ,ξ ,θa)

 (1)

with

fτ = fτ,0(q, q̇,τ,η ,wτ ,θτ)+∑
m
i=1 fτ,i(qt,i, q̇t,i,τt,i,θτ)

fη = fη ,0(q, q̇,τ,η ,γ,wη ,θη)+∑
n
i=1 fη ,i(qt,i, q̇t,i,τt,i,ηt,i,θη)

where fa, fτ , and fη are respectively defined as the multibody
system (MBS) that contains the forearm skeletal system and ex-
oskeleton system, the neuromuscular system (NMS), and the pe-
ripheral nervous system (PNS) [19]; q is the generalized coordi-
nates in MBS; τ is the torque that also reflects the musculotendon
dynamics; η is the neuromuscular signal; γ is the cortical neural
signal; ξ is the internal state from human tissue and soft material;
u is the exoskeleton actuation input; w is the perturbation and dis-
turbance vector; and various θ are the model parameters. Note
that the states with the subscript are defined as xt,i = x(t − ti),
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FIGURE 1: Archimedean spiral drawing from (a): a health sub-
ject, and (b): a PT patient subject. The blue dot lines are the
reference, and the red solid lines are the trajectories.

where ti is the time delay that occurs in the neural signals.
A detailed study of this general model will provide a better

understanding of the mechanism of tremor. Identifying such a
system requires observation and data collection of the states over
a period of time. As some of the studies have pointed out that
the behaviors of tremor signals are affected by the posture and
movement [20], an exclusive dynamical model regression can be
very challenging. However, in cases such as voluntary motion
is static or slowly periodic, model assumptions can be made to
simplify the scope of the problem. Further explanation of the
assumptions will be provided in later sections.

TREMOR DATA AND OBSERVATIONS
In this study, we evaluated the data from the tremor database
in [21]. The tremorous motion data sets were recorded from
PT patients with a pair of tablet and stylus. The data was col-
lected when the patients were performing Archimedean spiral
drawing (shown in Fig.1) and point tracking (holding the sty-
lus above a static point without touching the tablet). When the
stylus is touching the tablet, the natural human movements will
be constrained. The resolution of the translational position mea-
surement is also lower than that of the stylus attitude - the angle
between the stylus and normal vector of the tablet screen. There-
fore, we mainly focused on the stylus attitude data from point
tracking tests. Note that by giving the orientations of the pen and
the tablet respectively as quaternion vectors ξ1 ∈R4 and ξ2 ∈R4

in the global frame, the attitude measurement can be expressed
as

y = 2arccos(
[
1 01×3

]
(ξ1× ξ̄2)) (3)

which contains the coupled information of the 3D rotations.
Even when the measurements do not provide the full infor-

mation of 3D rotation, they still demonstrate the signature fea-
tures of PT tremor. Figure 2 demonstrates the tremorous motion
in the attitude from four of the point tracking tests. The sampling
rates of these measurements are approximately 140 Hz. The data
has also been low-pass filtered by a zero-phase 5th order infinite
impulse response (IIR) filter at 20 Hz. The oscillations demon-
strate some repetitive patterns and resembling features. We also

Copyright © 2020 ASMEV002T02A030-2

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/ID

ETC
-C

IE/proceedings-pdf/ID
ETC

-C
IE2020/83914/V002T02A030/6586091/v002t02a030-detc2020-22147.pdf by Virginia Polytechnic Institute and State U

niversity, Jiam
in W

ang on 10 N
ovem

ber 2020



0 2 4 6 8
0

0.5

1
(a)

0 5 10
0

0.5

1
(b)

0 10 20 30
0

0.5

1
(c)

0 5 10 15 20
0

0.5

1
(d)

FIGURE 2: Demonstration of tremors in y1 collected from point
tracking tests involving PT patients. Time series in (a), (b), (c),
and (d) are collected from different experimental trails.

notice that there is distortion in amplitude, period, and frequency
composition between each similar segment. For instance, we
specifically examined the trajectory in Fig.2(b). The signal here
is further high-pass filtered at 3 Hz. The results are shown in
Fig.3. It can be clearly noticed that the green (t ∈ [4.8, 6.2] sec-
onds) and cyan (t ∈ [6.2, 7.5] seconds) parts of the tremor signal
in Fig.3(a) share a periodic-like pattern. The autocorrelation in
Fig.3(b) indicates such pattern appears approximately every 1.33
seconds. Finally, in Fig.3(c), the spectrogram of the signal re-
veals that tremor consists of multiple harmonic components that
shift in frequency and magnitudes. The dominant frequency is
around 4∼ 5 Hz.

As preparation for tremor modeling and analysis, we have
also produced periodic and quasiperiodic tremor signals. By
replicating the green signal segment (t ∈ [4.8, 6.2] seconds in
Fig.3(a)) in the time domain, two tremor signals y1 and y2 are

FIGURE 3: Analysis of the tremor trajectory in Fig.2(b), where
(a) demonstrates the periodic-like pattern in the red part of the
signal in the range of t ∈ [2, 8.5] seconds, which is especially
noticeable between the green (t ∈ [4.8, 6.2] seconds) and cyan
(t ∈ [6.2, 7.5] seconds) part; (b) shows the autocorrelation plot
of the red part; and (c) shows the spectrogram of the red part.
The horizontal axis in (a) is time in seconds.
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FIGURE 4: The time trajectories of the stochastic periodic signal
y1 in (a), and the stochastic quasi-periodic signal y2 in (b).

generated based on the equation

yi(t) = ga(t)y0(t)+wy(t); (4)

where i is the labeling number; y0 is the extended green sig-
nal, which is periodic; ga is the amplitude shift function that
scales the tremor signal; and wy is normally distributed ran-
dom noise. The trajectories of the signals are shown in Fig.4.
Note that y1 is set to be stochastic periodic by having ga(t) = 1,
and y2 is set to be stochastic quasiperiodic by having ga(t) =
sin(
√

(2)t)+ cos(2t). This is to ensure that y1 and y2 preserve
their dynamical features shown in the original signal. The scope
of the current study is limited to periodic and quasiperiodic re-
sponses, since true chaotic behaviors are sensitive to initial con-
ditions, and cannot be generated by transforming y0 from Eq.(4)
into a time-dependent periodic signal.

It cannot be confirmed from the current numerical data
whether tremor is also chaotic. We attempt to numerically ex-
amine the Lyapunov exponent of both the original tremor signal
and the stochastic periodic signal y1, based on the algorithm by
Rosenstein [26]. In brief, the algorithm estimates the maximal
Lyapunov exponent (MLE) from the infinitesimally close trajec-
tories of a discrete-time signal in its time-delayed phase space.
The average logarithmic divergence of the original signal and y1
is shown in Fig.5. MLE can be estimated as the slope from the
linear regression of a single plot, where a positive MLE indicates
chaos. However, the algorithm appears to be sensitive to noise,
and incapable of distinguishing chaoticity from stochastic peri-
odicity. This is indicated in Fig.5(b), demonstrating that y1 is
chaotic. Also, in both subfigures, none of the plots calculated
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FIGURE 5: The plots of average logarithmic divergence calcu-
lated from the algorithm by Rosenstein [26], where (a) shows
the plots for the original tremor signal, and (b) shows the plots
for the stochastic periodic signal y1. In each of the subfigures,
the eight plots ranked from high to low in divergence have em-
bedding dimension ranging from 3 to 10, respectively.
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at different embedding dimensions demonstrate a steady diver-
gence or convergence over time.

The above observations confirm that tremor is a complicated
nonlinear dynamics problem. The later section will discuss the
data-driven modeling of tremor based on the signals in Fig.4.

DATA-DRIVEN MODELING OF TREMOR
As mentioned in the Introduction section, a variety of algorithms
has been developed for tremor prediction. The algorithms con-
structed on general harmonic or time delayed models are mainly
designed for real-time prediction. The discrete-time formulation
can be expressed as

θk = θk−1 +wθ ,k;
yk = hz(t,θk,yk−i)+wz,k, (i = 1,2, · · · ,n) (5)

where k is the discrete time, θ is the model parameter that is in-
corporated as the states, which are assumed to be constant; and
w are disturbance/noise in the state and measurement. The ex-
tended Kalman filter (EKF) [27] for parameter update can then
be written as

εy,k = yk−hz(t,θk,yk−i) (6)

Gk = Pk−1HT
k (HkPk−1HT

k +R) (7)
θk = θk−1 +Gkεy,k (8)

Pk = (I−GkHk)Pk−1 +Q (9)

where εy is the estimation error; Q and R are the process and
measurement noise covariance; P is the predicted covariance es-
timate; and Hk = ∂hz/∂θk−1 is the Jacobian of the nonlinear ob-
servation with respect to the parameters.
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FIGURE 6: Online tremor regression and prediction with BM-
FLC, NARNN, and AR models implemented with EKF, where
(a) shows the one-step prediction error of quasiperiodic signal
y2; (b) demonstrates the norm of parameter updates along time;
and (c) presents the integral of long term prediction error norm
in 2 seconds.

Simulations are carried out to demonstrate the performance
of one-step predictions from existing models (AR [13] and
BMFLC [12]), and a nonlinear autoregressive neural network
(NARNN) designed by the authors. The BMFLC covers a band
between 1 ∼ 15 Hz with a resolution of 0.1 Hz; the AR and
NARNN use time-delayed measurements yk−i with i up to 5; and
the NARNN has one feedforward hidden layer with 3 neurons.
The result in Fig.6(a) shows that all three models are effective
in the one-step prediction. It should also be noted that BMFLC
has two advantages - it does not require filtering the signal, and it
can be directly included in an adaptive controller [10]. However,
BMFLC only works well when its bandwidth precisely covers
the frequency components of a periodic/quasiperiodic signal.

For real-time prediction, it is preferable that the dynamics
of the signal is precisely described by a simple model. However,
from Fig.6(b), it is clearly shown that none of the models can
accurately regress the tremor signal in the long run since their
model parameters are constantly changing due to underfitting.
Figure 6(c) shows that an unstable prediction model may even
lead to unbounded prediction error if its parameters are not adap-
tive. Long term prediction, however, can significantly improve
tremor suppression performance in applications, since they can
compensate the time lag during signal communication and cal-
culation process. The limitation of existing models also prevents
them from being used for nonlinear analysis.

Hence, there exists a need for developing better dynamical
models for pathological tremors. Recall that Eq.(1) presents a
multi-dimensional system that involves external input and time-
delay. While the existing measurement only reveals very limited
information, the following assumptions are made for modeling:

(A1) During the point tracking motion, human intention is con-
sidered fixed. In this case, γ is approximated as γ ≈
γ?(x,w), which is a feedback term of x and w. This leads to
a time-delayed self-excited system ẋ ≈ f (x,γ?(x,w),w) =
f ?(x,w), which is stochastically automatic.

(A2) The signal y1 and y2 are respectively the periodic and
quasiperiodic solutions of ẋ = f ?(x,w) under certain state
and parameter conditions.

Particularly, assumption (A1) is considered for the cases of rest-
ing and postural tremors [1,2], where it is presumed that the cor-
tical signals γ are affected by the neuromusculoskeletal states x
and disturbance w [28]. These assumptions allow us to study the
modeling of tremor in a limited scope based on y1 and y2. The
model-free and model-based regression of tremor dynamics are
then carried out, which are discussed in the upcoming subsec-
tions.

Model-free regression of tremor dynamics is useful for pre-
diction. These models are hard to analyze since it is hard to in-
terpret the physical meaning of the dynamic terms. The benefit
of the model-free approach is that it does not require the knowl-
edge of any specific structure. If a time series is successfully
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FIGURE 7: The structure of LSTM-RNN.

regressed, the scale of the model can also serve as an indication
of the complexity and dimensionality of the system.

Long short-term memory recurrent neural network (LSTM-
RNN) is suitable for time series regression since they are good
at processing data sequences [29]. The structure of the neural
network model implemented in this study is shown in Fig.7. The
structure contains an LSTM layer with n hidden units and a fully
connected layer. The sequential input xNN of the model is a m+1
dimensional time-delayed vector

zNN =
[
yk yk−1 yk−2 · · · yk−m

]T (10)

and the output is yNN = yk+1.
The performance of LSTM-RNN is shown in Fig.8. Dif-

ferent hidden unit and input dimensions are used for periodic
and quasiperiodic signals - for y1, m = 30 and n = 100 ; and for
y2, m = 300 and n = 700. For both trajectories, the networks
can capture the dominant features and perform long term pre-
dictions. The maximum errors of the predictions are all below
1.35× 10−2. An important observation is that for quasiperiodic
signals, the complexity of the model is significantly higher since
the signal has more features. In this case, if the input sequence
is not long enough, the network will end up producing a periodic
signal.

The two regression models also indicate that if the signal y1
or y2 is the self-excited solutions of a system, the systems will
likely have dozens of dimensions that include the neuromuscu-
loskeletal states and their delays. However, since the features
learned by LSTM-RNN is likely latent, the network cannot eas-

1 2 3 4 5 6 7 8 9 10
-0.1

0

0.1
(a)

Truth Prediction Error

1 2 3 4 5 6 7 8 9 10

-0.1

0

0.1 (b)

Truth Prediction Error

FIGURE 8: Prediction of tremor trajectory with LSTM-RNN in
a 10-second window, where (a) and (b) shows the prediction and
error of y1 and y2, respectively.

TABLE 1: EDMD modeling setups, where Dim. is the total state
dimension, and Rd. Order is the state order after model reduc-
tion.

Label Signal m Dim. Rd. Order Energy
EDMD y1 750 3750 50 91.1%
DMD y2 3750 3750 100 99.9%

EDMD-1 y2 750 3750 100 96.1%
EDMD-2 y2 900 4500 100 91.5%

ily imply physically meaningful information.

To explore the dynamical model of tremor analytically,
we employed extended dynamic mode decomposition (EDMD)
[30]. EDMD is the nonlinear version of dynamic mode decom-
position (DMD) developed based on Koopman analysis, which
is applicable to the reduced order modeling of periodic and
quasiperiodic systems, in particular, nonlinear partial differen-
tial equations (PDE) systems [30]. EDMD adopts a rich set of
state observation at time t that can be written as

zk =
[
yk yk−1 yk−2 · · · yk−m ẏk ẏk−1 ẏk−2 · · · ẏk−m

]T
Zk =

[
zk zk−1 zk−2 · · · zk−n

h(zk) h(zk−1) h(zk−2) · · · h(zk−n)

]
(11)

where h(zk) is the nonlinear observer function of zk (which is
omitted in DMD). Note that since we have little knowledge of
the time-delayed properties, Z is constructed by treating f ? as a
delay differential equation, which is also a class of PDE with a
discrete time delay dimension of m. In the current study, h(zk) is
selected as the square and cube terms of zk, so that the model co-
efficients corresponding to h(zk) can be interpreted as nonlinear
stiffness and damping.

When m is large, Z will become an extremely large ma-
trix with over thousands of columns. However, the energy in
the majority of the states may not be dominant. Proper orthogo-
nal decomposition (POD) based on singular value decomposition
(SVD) is then carried out to reduce the order of the model while
keeping most of the energy:

Z =V ΣW T ≈ V̌ Σ̌W̌ T (12)

where V̌ , Σ̌, and W̌ are respectively the reduced order left singu-
lar vectors, singular value matrix, and right singular vectors. The
SVD-based EDMD [31] is then carried out as

Zk+1 = KZk; Ǩ = V̌ T Zk+1W̌ Σ̌
−1 = V̌ T KV̌ (13)

ǨE = EΛ; Φ = V̌ E (14)

b0 = Φ
+
[
zT

0 h(z0)
T ]T ;

[
zT

k h(zk)
T ]T = ΦΛ

kb0 (15)

where K is the approximated Koopman operator, which is equiv-
alently the state matrix; E and Λ are the eigenvectors and eigen-
values of Ǩ, respectively. Hence, the model of y1 and y2 can be
established with Eq.(13-14), and the prediction is carried out by
Eq.(15). For regression of both periodic and quasiperiodic sys-
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FIGURE 9: Prediction of tremor trajectory with EDMD in a 10-
second window, where (a) and (b) shows the prediction and error
of y1 and y2, respectively; and (c) shows the comparison of three
different modeling setup in integral of error norm over time.

tems, 37.5% of the signal data is used for modeling. The model-
ing setups of a total of four different tests are listed in Tab.1. In
particular, different setups are compared for modeling y2, which
includes a linear DMD, and two EDMD with different delay di-
mensions. Note that DMD and EDMD-1 have the same total
dimension, but DMD covers a larger delay domain.

The results shown in Fig.9 indicate that EDMD effectively
regresses both y1 and y2. The reduced-order modes have cap-
tured the dominant features in the periodic and quasiperiodic sig-
nals. Figure 9(c) shows that the integral of prediction error norm
over time is significantly smaller compared to those in Fig.6(c).
It is also shown that DMD outperforms EDMD-1 in the inte-
gral of prediction error norm over time, which is likely a re-
sult of EDMD-1 having a small delay dimension m. However,
by slightly increasing m, EDMD-2 is able to obtain a prediction
performance similar to that of DMD. This shows that by involv-
ing nonlinear measurements that potentially match the nonlinear
dynamics of tremor, EDMD can achieve good prediction perfor-
mance with a smaller delay domain. Similar to LSTM-RNN, the
results again indicate that such periodic and quasiperiodic solu-
tions can only be acquired in high order systems. The EDMD
also provides more physically meaningful information, since the
approximated Koopman operator also contains the modes and
frequencies of the dynamical system.

Conclusion and Future Work
This paper studied the data-driven modeling of periodic and
quasiperiodic pathological tremor. The observations on the pe-
riodicity, frequency component, and chaotic properties of the
tremorous movement data confirmed the nonlinearity of the sig-
nal. The limitations of the existing tremor prediction model
have also been observed from simulations. Based on the general
model setup in Eq.(1) and assumption (A1), (A2), the modeling

FIGURE 10: The design of TAWE - a tremor alleviating wrist
exoskeleton developed by our team [10].

of the tremor signal y1 (periodic) and y2 (quasi-periodic) were
carried out with LSTM-RNN and EDMD. The results showed
that both methods can effectively regress and predict the peri-
odic and quasiperiodic tremor signals in long term, unlike previ-
ous methods employed in the literature (e.g., BMFLC and AR),
which are only effective for short term prediction.

However, both LSTM-RNN and EDMD are complex and
computationally expensive. Also, the data used in this study
have very limited information. As such, for future work, we plan
to collect more data from experiments and then used these data
to construct simpler and more accurate models of pathological
tremors. The measurements will include EEG and EMG signals,
which respectively correspond to the observations of γ and η

from Eq.(1). Also, better multi-dimensional movement measure-
ments will be collected using the tremor suppression exoskele-
tons developed by our team as shown in Fig.10 [10].

As for data-driven modeling, we will focus on model-based
regression and adopt sparsity-based modeling techniques. Note
that the complexity of the LSTM-RNN and EDMD is due to a
large number of parameters. Sparsity based methods [32] can
lead to a simpler model with fewer parameters, which is more
feasible for nonlinear analysis. The ultimate goal is to obtain
a precise neuromusculoskeletal model that can be used for both
nonlinear analysis and real-time long term tremor prediction.
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