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Abstract Recent focus has been given to spectro-
spatial analysis of nonlinear metamaterials since they
can predict interesting nonlinear phenomena not acces-
sible by spectral analysis (i.e., dispersion relations).
However, current studies are limited to a nonlinear
chain with single linear resonator or linear chain with
nonlinear resonator. There is no work that examines
the combination of nonlinear chain with nonlinear
resonators. This paper investigates the spectro-spatial
properties of wave propagation through a nonlinear
metamaterials consisting of nonlinear chainwithmulti-
ple nonlinear local resonators. Different combinations
of softening and hardening nonlinearities are examined
to reveal their impact on the traveling wave features
and the band structure. The method of multiple scales
is used to obtain closed-form expressions for the dis-
persion relations. Our analytical solution is validated
via the numerical simulation and results from the lit-
erature. The numerical simulation is based on spectro-
spatial analysis using signal processing techniques such
as spatial spectrogram,wavefiltering, and contour plots
of 2D Fourier transform. The spectro-spatial analysis
provides a detailed information about wave distortion
due to nonlinearity and classify the distortion into dif-
ferent features. The observations suggest that nonlin-
ear chain with multiple nonlinear resonators can affect
the waveform at all wavelength limits. Such nonlin-
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ear metamaterials are suitable for broadband vibration
control and energy harvesting, as well as other applica-
tions such as acoustic switches, diodes, and rectifiers,
allowing wave propagation only in a pre-defined direc-
tion.
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analysis · Perturbation techniques · Dispersion
relations · Solitary waves

1 Introduction

The study of metamaterials has gained lots of atten-
tion in recent years due to their exceptional material
properties characteristics and their wider engineering
applications. Metamaterials are a new class of artificial
composites that derive their unique dynamic properties
from both engineered local configurations and mate-
rial constituents [1]. They were originally developed
for electromagnetic and optical wave propagation, and
later the technology was extended to acoustic and elas-
tic waves [2].Metamaterials can be constructed as peri-
odic structures (i.e., phononic crystals in the presence
or absence of local resonator) or in random arrange-
ments (usually in the presence of local resonator).How-
ever, locally resonant metamaterials draw their inter-
esting dynamic phenomena because of the presence of
local resonators rather than periodicity [3]. These inter-
esting dynamic features can be judiciously employed
for suppressing noise and vibration, harvesting energy,
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nondestructive testing structures for defects, improving
image resolution, and ameliorating the performance of
antennas and many other engineering structures and
devices [4].

The study of periodic structures reveals the develop-
ment of a frequency bandgap where the wave does not
propagate through the structure, instead it gets reflected
[5–10]. These frequencies are associated with wave-
length near the size of lattice constant. The wave atten-
uation is caused by Bragg scattering and offers a good
vibration control in low-frequency region. However,
the restriction on the lattice size limits the advantage
of Bragg scattering to large structures applications.

Due to the crucial need for extending these phe-
nomena to control much smaller-size structures (e.g.,
MEMS), Liu et al. [11] suggested embedding smaller
resonators inside crystals to form locally resonant
metamaterials. Locally resonant metamaterials form a
bandgap at wave lengths much larger than the lattice
constant. Indeed, the bandgap formation results from
the combination of Bragg scattering and local reso-
nance when the frequency of the local resonator is not
very low. Nevertheless, the parameters of the resonator
govern the dominant effect of the bandgap forma-
tion [12]. Yet, very low-frequency local resonators can
still be excited by long wavelength waves, and hence,
bandgap can be formed due to hybridization of the
local resonances only and without the need for Bragg
scattering [3]. Controlling different frequency regions
requires using different resonators inside the lattice
[13,14], such that wave attenuation can be observed in
the vicinity of different local resonances. Intentionally
introducing nonlinearity can reveal additional interest-
ing wave propagation phenomena which widens the
applications of metamaterials. Some of those, but not
limited to, are gap solitons [15], envelope and dark
solitons [16], asymmetric wave propagation [17], and
adjusting band structure limits [18].

Based on the magnitude of nonlinearity, the meta-
material can be classified as a strongly or weakly non-
linear. The latter may be asymptotically converging,
and an explicit approximate solution can be presented
by perturbation techniques [19,20]. For instance, dis-
persion relation of nonlinear chain (metamaterial) can
be obtained by Lindstedt–Poincare method [21]. How-
ever, formore complicated or interacting nonlinear sys-
tems, the method of multiple scales is more convenient
since the associated algebra requires much less effort
[22,23]. Yet dispersion curves in nonlinear continu-

ous metamaterials can be approximated by using the
transfer matrix method [24]. Studying nonlinear dis-
persion curves can reveal important information about
the effect of nonlinearity on the wave propagation (e.g.,
dispersive and solitary waves) [25].

Recent trends in nonlinear metamaterials focus on
wave non-reciprocity such that unidirectionwave prop-
agation can be utilized to passively develop acoustic
diodes, switches, and rectifiers. For example, acous-
tic diodes can be obtained by coupling nonlinear and
linear chains [17,26,27]. This requires tuning the sec-
ondary resonances of nonlinear chain to the passband
of a linear chain. For instance, exciting weakly non-
linear oscillator with cubic nonlinearity can develop a
signal with subharmonic resonance. If this secondary
resonance lies in the passband of coupled wave while
the original excitation frequency lies in the bandgap,
waves can only propagate in the direction from non-
linear to linear chain [28]. Similarly, bifurcation due
to defects in granular chains can allow the wave to
propagate only in one direction [29]. Nonlinear energy
sink can also formwave non-reciprocity in hierarchical
internal structures [30].

Nonlinear metamaterials are often analyzed by
tracking the change in the temporal state properties and
discussing the existence of solitary waves and disper-
sion characteristics. Dispersion relations do not, how-
ever, reveal enough detailed information on the wave
distortion features. On the other hand, spectro-spatial
analyses can provide better understanding of the phys-
ical features of wave propagation such as frequency
shift and wave localization or dispersion in a nonlin-
ear medium. Ganesh and Gonella [31] were the first to
study the spectro-spatial wave packet propagation fea-
tures of nonlinear periodic chains using signal process-
ing tools to highlight new important nonlinear wave
propagation properties. Their analysis provided more
detailed information about the wave distribution such
as conditions related to the birth or inhalation of soli-
tary wave at different wavelengths. Their work was
extended by Zhou et al. [32], who investigated the
spectro-spatial features of nonlinear acoustic metama-
terials consisting of nonlinear cell with a linear local
resonator. Their study showed that nonlinearity gives
rise to nondispersive features in wave propagation. The
spectro-spatial features in [31,32] revealed that nonlin-
ear phenomena affect only short wavelength domain.
This is because the nonlinearity was limited to the
springs connecting the cells only. None of the afore-
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Fig. 1 Schematic diagram for the nonlinear acoustic metamaterials with nonlinear resonators

mentioned studies included nonlinearities in the local
resonators. Recently, we presented for the first time
the spectral analysis (i.e., dispersion relations only) of
a nonlinear metamaterials consisting of nonlinear (or
linear) chain with linear (or nonlinear) multiple local
resonators [33]. Our work indicated that the dispersion
relations for nonlinear chain with linear resonator and
linear chain with nonlinear resonator are different. Par-
ticularly, the former affects the waveform only in the
short wavelength limit, while the latter can be tuned
to affect the waveform in the long wavelength limit.
These findings were also confirmed by the spectro-
spatial analysis of such a nonlinear metamaterial pre-
sented in [34]. Note that both papers were limited to the
study of the nonlinearity attributed to either the chain
only or local resonator only. We did not examine the
combination of both nonlinearities.

In this paper, we extend our work in [33,34] by
combining both chain nonlinearity and local resonators
nonlinearity and thoroughly study the relation between
topological (i.e., space-time domain) and spectral (dis-
persion relations) features of a wave propagating in
such a nonlinear metamaterial. We derive analytical
expressions for the dispersion relations by the method
of multiple scales. Our analytical results are validated
through numerical simulation. Parametric studies are
carried out to examine the role of both hardening and
softening nonlinearities in the chain and local res-
onators. The results show very interesting character-
istics of wave propagation in all wavelength limits.

The remainder of the paper is organized as follows.
Section 2 presents the mathematical modeling of the
proposed nonlinear metamaterial.We address the spec-

tral analysis in Sect. 3 and the spectro-spatial analysis
in Sect. 4. Section 5 summarizes the findings and pro-
vides suggestion for future work.

2 Mathematical modeling

This section presents the mathematical derivation for
the dispersion equation for a nonlinear chain with non-
linear resonators depicted in Fig. 1. Each unit cell con-
sists of a rigidmass,m, connected to other cells through
a nonlinear spring with linear coefficient, k and non-
linear coefficient �. Inside each cell, there are multiple
resonators with mass, mi , attached by nonlinear spring
with linear spring coefficient, ki and nonlinear spring
coefficient, �i . The free oscillation equations for each
cell with s number of resonators can be expressed as

mün + K (2un − un−1 − un+1)

+ ε�((un − un−1)
3 + (un − un+1)

3)

+
s∑

i=1

ki (un − vni )

+
s∑

i=1

ε�i (un − vni )
3 = 0 (1)

mi v̈ni + ki (vni − un) + ε�i (vni − un)
3 = 0 (2)

For convenience, we introduce the following dimen-
sionless parameters

τ = ωnt; �̄ = �

K
; �̄i = �i

K
; k̄i = ki

K
(3)

where ωn = √
K/m and ωdi = √

ki/mi .
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Introducing these parameters in Eqs. (1)–(2) leads
to

ün + 2un − un−1 − un+1

+ ε�̄((un − un−1)
3 + (un − un+1)

3)

+
s∑

i=1

k̄i (un − vni )

+
s∑

i=1

ε�̄i (un − vni )
3 = 0 (4)

ω2
n

ω2
di

v̈ni + (vni − un) + ε
�̄i

k̄i
(vni − un)

3 = 0 (5)

We assume expansions for the displacements in the
form

un(t, ε) = un0(T0, T1) + εun1(T0, T1) + o(ε2) (6)

vni (t, ε) = vni0(T0, T1) + εvni1(T0, T1) + o(ε2) (7)

where T0 = τ is the fast time scale and T1 = ετ is the
slow time scale. Since the time is expressed in two inde-
pendent variables, the time derivative can be presented
by using the chain role as

(¨) = D2
0 + 2εD0D1 + . . . (8)

where Dn = ∂
∂Tn

. Substituting Eqs. (6)–(8) into
Eqs. (4)–(5) and collecting the similar coefficients of
ε, one can get

Order ε0

D2
0un0 + 2un0 − u(n−1)0 − u(n+1)0

+
s∑

i=1

k̄i (un0 − vni0) = 0 (9)

ω2
n

ω2
di

D2
0vni0 − (un0 − vni0) = 0 (10)

Order ε

D2
0un1 + 2un1 − u(n−1)1 − u(n+1)1

+
s∑

i=1

k̄i (un1 − vni1)

= −2D0D1un0 − �̄((un0 − u(n−1)0)
3

+(un0 − u(n+1)0)
3) −

s∑

i=1

�̄i (un0 − vni0)
3 (11)

ω2
n

ω2
di

D2
0vni1 − (un1 − vni1)

= −2
ω2
n

ω2
di

D0D1vni0 − �̄i

k̄i
(vni0 − un0)

3 (12)

2.1 Linear dispersion relation

At order ε0, the problem is linear; therefore, the solu-
tion can be expressed as [22]

un = Ae j (nk−ωT0) + c.c (13)

vni = Bie
j (nk−ωT0) + c.c (14)

where c.c refers to complex conjugate, k = qa denotes
the dimensionless wave number, and q represents the
wave number. A and Bi stand for the wave amplitude
of the outer and inner masses, respectively. By substi-
tuting Eqs. 13–14 into Eqs. 9–10 and following [22],
the linear dispersion equation can be expressed as

−ω2 + (2 − 2 cos k) +
s∑

i=0

k̄i (1 − Kωi ) = 0 (15)

where Kωi = ω2
di

ω2
di−ω2

nω
2 .

2.2 Approximate analytical solution for the nonlinear
dispersion relation

For small values of nonlinear spring coefficients,� and
�i , Eqs. (4)–(5) are classified as weakly nonlinear. For
such a system, the nonlinear dispersion relations can be
derived approximately by perturbation techniques. For
systemwithmultiple coupled equations, it is more con-
venient to employ the method of multiple scales since
it has advantages over other methods in terms of the
required efforts and associated algebra. By rearranging
equations at order ε, we obtain

X (D2
0un1 + 2un1 − u(n−1)1 − u(n+1)1)

+
s∑

i=1

Xk̄iω2
n/ω

2
di

1 − ω2
nω

2/ω2
di

D2
0un1

=
s∑

i=1

Xk̄i
1 − ω2

nω
2/ω2

di

(−2ω2
n/ω

2
di D0D1vni0

+ �̄i

k̄i
(un0 − vni0)

3) + X (−2D0D1un0

−
s∑

i=1

�̄i (un0 − vni0)
3

−�̄((un0 − u(n−1)0)
3 + (un0 − u(n+1)0)

3)) (16)

where X = ∏s
i=1(1 − ω2ω2

n/ω
2
di ).
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Introducing Eqs. (13)–(14) into Eq. (16) leads to

X (D2
0un1 + 2un1 − u(n−1)1 − u(n+1)1)

+
s∑

i=1

Xk̄iω2
n/ω

2
di

1 − ω2
nω

2/ω2
di

un1

=
[
2 jω

s∑

i=1

Xk̄iω2
n/ω

2
di

1 − ω2
nω

2/ω2
di

A′Kωi + 2 j XωA′

−12�̄X A2 Ā(1 − cos k)2

+3A2 Ā

(
s∑

i=1

[
X (1 − kωi )

3

1 − ω2
nω

2/ω2
di

�̄i

−X (1 − kωi )
3�̄i

])]
e j (nk−ωT0) + NST (17)

where NST denotes non-secular terms, A′ = dA
dT1

, and

Ā is the complex conjugate of A. We note here that X
becomes X = ∏s

i=1(1 − ω2ω2
n/ω

2
di )

The left-hand side of Eq. (17) has a nontrivial solu-
tion,while the secular terms on the right-hand sidemust
be eliminated for bonded solution by solving the fol-
lowing solvability condition [19]
[
2 jω

s∑

i=1

Xk̄iω2
n/ω

2
di

1 − ω2
nω

2/ω2
di

A′Kωi + 2 j XωA′

−12�̄X A2 Ā(1 − cos k)2 +

3A2 Ā

(
s∑

i=1

[
X (1 − kωi )

3

1 − ω2
nω

2/ω2
di

�̄i − X (1 − kωi )
3�̄i

])]

= 0

(18)

Substituting the polar form

A = 1

2
αe jβ (19)

into the solvability condition and separating the real
and imaginary parts, the modulation equations for the
amplitude and phase can be expressed as

ω

s∑

i=1

k̄i Xω2
n/ω

2
di

1 − ω2
nω

2/ω2
di

α′Kωi + Xωα′ = 0 (20)

−ω

s∑

i=1

k̄i Xω2
n/ω

2
di

1 − ω2
nω

2/ω2
di

αβ ′Kωi

−Xωαβ ′ − 3

2
X �̄α3(1 − cos k)2

−
s∑

i=1

[
3

8
α3(1 − Kωi )

3X �̄i

(
1

1 − ω2
nω

2/ω2
di

− 1

)]
= 0 (21)

By solving the modulation equations, the amplitude
and phase can be expressed as

α = α0 (22)

β =
∑s

i=1

[
3
8 α2(1 − Kωi )

3�̄i

(
1

1−ω2
nω2/ω2

di
− 1

)]
− 2

3 �̄α2(1 − cos k)2

ω

(
1 + ∑s

i=1
k̄iω2

n/ω2
di

1−ω2
nω2/ω2

di
Kωi

) T1

(23)

Since T1 = ετ , the nonlinear frequency ,ωnl associated
with k is

ωnl = ω + εβ ′ (24)

The nonlinear dispersion relation presented by Eq. (24)
includes the effect of both nonlinearity in the chain
�̄ and in the resonators �̄i ). This expression is also
valid for the cases of nonlinear chain only (i.e., �i =
0) and nonlinear resonator only (i.e., � = 0). It can
also be observed that only the effect of nonlinearity
of the chain varies explicitly with the wave number.
Moreover, the nonlinear correction coefficient εβ ′ is a
function of vibration amplitude α, the nonlinear spring
coefficient ε� (for the nonlinear chain), and ε�i (for the
nonlinear resonator). It is noteworthy that we assume
the system isweakly nonlinear (i.e., ε << 1), setα = 1
in all subsequent sections, and vary the magnitude of
nonlinear stiffness.

3 Predicting band structure boundaries by
analytical dispersion relations

3.1 Validating the current model

To check the accuracy of the derived expression, we
validate our results by using two different techniques.
First, for the nonlinear chain with single linear res-
onator case,we compare our resultswith those obtained
by Lindstedt–Poincare method in the literature. Sec-
ond, we compare our results for the nonlinear resonator
case and multiple resonators case by direct numerical
integration. For the numerical integration, we simulate
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Fig. 2 a Validating the results of a nonlinear chain with single resonator α2ε�̄ = 0.06, α2ε�̄1 = 0.; b Validating the results of a linear
chain with single nonlinear resonator α2ε�̄ = 0, α2ε�̄1 = 0.06

500 cells with perfectly match layers (PML) to omit
wave reflections [21]. The system is excited by a tran-
sient wave packet applied at the beginning of the struc-
ture and propagating to the other end of the structure.
The velocity of the wave packets is selected to force the
wave to travel in one direction only and suppress any
wave propagating in the opposite direction. This wave
packet excitation can be defined as:

um(0) = 1

2
(H(m − 1) − H(m − 1 − Ncy2π/k))

(1 − cos(mk/Ncy)) sin(mk) (25)

u̇m(0) = 1

2
(H(m − 1) − H(m − 1 − Ncy2π/k))

(−ωnω/Ncy sin(mk/Ncy) sin(mk)

−ωnω(1 − cos(mk/Ncy)) cos(mk)) (26)

vmi (0) = Kωi um(0) (27)

v̇mi (0) = Kωi u̇m(0) (28)

where Ncy is the number of cycles and in our numerical
simulations we set Ncy = 7, and H(x) is the Heaviside
function. For these initial conditions, we integrate the
system by MATLAB built in integrator ODE45.

To obtain numerical dispersion curves, we collect
the time response resulting from the numerical integra-
tion in the displacement matrix at a specific wave num-
ber. The displacement matrix is then transformed to
the frequency–wave number domain by 2D fast Fourier
transform (2D-FFT). We next pick the point with max-
imum power density. The frequency and wave number
corresponding to this point are a point on the recon-

structed dispersion curve. To construct the full curve,
thewave number is swept along the first Brillouin zone.

The parameters of the system are selected as ωn =
ωd1 = 1000 rad/s, and k̄1 = 1 for single resonator
system (i.e., s=1), and for two resonators case (i.e.,
s=2) andwe select the parameters asωn = ωd1 = 1000
rad/s, ωd2 = 1.5ωn , k̄1 = 1, and k̄2 = 1.5.

Validation for the nonlinear chain and single lin-
ear resonator is presented in Fig. 2a. It is observed
that our multiple-scale results show a good agreement
with those obtained by the Lindstedt–Poincare method
[32] and numerical results except inside the pseudo-
bandgap. In the pseudo-bandgap region (as we will
show in the subsequent sections), there is a signifi-
cant frequency shift for wave packets excitation [32].
This significant frequency shift cannot be captured by
our approximate solution. It is noteworthy here that we
highlighted the bandgap, optical mode, and acoustic
mode for single resonator system in Figs. 2 and 3.

For the cases of nonlinear resonators, the results are
only validated numerically. The results of a chain with
single nonlinear resonator are shown in Fig. 2b. The
numerical results show a good agreement with the ana-
lytical results in the acoustic mode. However, a sig-
nificant error is observed near the resonator frequency.
This error results from the significant frequency shift.
Indeed, points in the long wavelength limit (k ∼ 0
since λ = 2π/k where λ is the wavelength) belong to
a signal with wavelength inside the pseudo-bandgap (at
medium wavelength limit k ∼ π/2); however, due to
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(a) (b)

Fig. 3 a Validating the results of a nonlinear chain with multiple resonator α2ε�̄ = 0.06, α2ε�̄1 = α2ε�̄2 = 0.; b Validating the
results of a linear chain with multiple nonlinear resonator α2ε�̄ = α2ε�̄2 = 0, α2ε�̄1 = 0.06

0 0.5 1 1.5 2 2.5 3
0

1

2

3

(a) (b)

Fig. 4 a Validating the results of a nonlinear chain with single nonlinear resonator α2ε�̄ = α2ε�̄1 = 0.06.; b Validating the results of
a linear chain with multiple nonlinear resonators α2ε�̄ = α2ε�̄1 = α2ε�̄2 = 0.06

the significant frequency shift, they appear in the long
wavelength limit.

For multiple resonators, the results for nonlinear
chain and nonlinear resonators are presented in Fig. 3.
We note here that reconstructing the dispersion curves
bywave packets excitation is not possible due to the sig-
nificant frequency shift. Therefore, we reconstruct the
dispersion curves using a plane waves excitation. For
a nonlinear metamaterial with linear local resonators
(i.e., Fig. 3a), the perturbation results can accurately
predict the cutoff frequencies. On the other hand, in
the case of linear chain with nonlinear resonators, the
perturbation results can only predict cutoff frequen-

cies away from the surrounding region of nonlinear
resonator frequency. Hence, higher-order perturbations
or other nonlinear analytical tools may be required to
provide better approximations.

Validation of results for a metamaterial with com-
bined nonlinearity in both cells and resonators is pre-
sented in Fig. 4. The results show very good agree-
ment between our analytical and numerical methods.
However, similar observation can be revealed about the
failure in predicting the dispersion curves near the fre-
quency of nonlinear resonator. This is clearly demon-
strated in Fig. 4a in the short wavelength (k ∼ π ) limit
of the acoustic branch and long wavelength limit of
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the optical branch. The points in these regions can-
not be captured numerically. For multiple resonators
case (Fig. 4b), a significant frequency shift is observed
in the middle branch. This region of frequency shift
is confined between the frequencies of both nonlinear
resonators.

3.2 Analytical band structure for different sources and
types of nonlinearities

The numerical validation in Sect. 3.1 revealed that the
analytical dispersion curves can predict the regions of
wavelength that are affected by nonlinearity although
they fail in accurately estimating the band structure lim-
its. In addition to Figs. 2, 3, and 4, dispersion curves
for different sources and types of nonlinearities are
depicted in Figs. 5 and 6.

For single resonator system, the effect of soften-
ing nonlinearity on the band structure is depicted in
Fig. 5a. It is observed that the dispersion curves shift
due to nonlinear resonator is more pronounced at fre-
quencies close to the bandgap. This means that the
short wavelength region in the acoustical mode and
the long wavelength region in the optical mode are sig-
nificantly affected by the nonlinear resonator. On the
other hand, the dispersion curves shift for the nonlin-
ear chain is confined in the short wavelength regions
in both modes. This is not surprising since the nonlin-
ear correction term β ′ explicitly depends on the wave
number for the case of nonlinear chain unlike the case
of nonlinear resonator. It is noteworthy that softening
chain increases the size of the bandgap; however, the
softening resonator does not.

The dispersion curves for a system with nonlinear
chain and nonlinear local resonators with the same
type of nonlinearity are plotted in Fig. 5b. When the
type of nonlinearity is hardening, the dispersion curves
are significantly shifted up. However, the dispersion
curves are shifted down for softening type of nonlin-
earity. This shift is concentrated in the shortwavelength
region in the acoustic mode. The resonators nonlinear-
ities equally shift the optical mode in all wavelength
regions. This shift in the opticalmode in the shortwave-
length limit can be attributed to the chain nonlinearity,
whereas that in the long wavelength limit is due to res-
onator nonlinearity.

To clarify the affectedwavelength regions,we assign
different types of nonlinearities for the chain and local

resonators as depicted in Fig. 5c. It is demonstrated that
the local resonator nonlinearity is more dominant than
chain nonlinearity in the acousticmode.However, there
are different effects on the dispersion curves shifts in
the optical mode. This difference is demonstrated by
domination of the local resonance nonlinearity in the
long wavelength region and domination of the chain
nonlinearity in the short wavelength region. Further-
more, there is an interaction between both sources of
nonlinearities inmediumwavelength (k ∼ π/2) region
since the nonlinear curves intersect the linear curve in
Fig. 5c.

For the multiple resonators case, the effect of each
source and type of nonlinearity on the dispersion curves
is shown in Fig. 5d–f. The shift attributable to nonlin-
ear chain is pronounced in the short wavelength regions
similar to the single resonator case as shown in Fig. 5d.
However, the impact of nonlinear resonators on the
dispersion curves is not concentrated at the bandgap
boundaries. Instead, it is related to the tuned frequency
of the nonlinear resonator. For instance, if the resonator
with ωd1 = ω is nonlinear, we observe a substantial
dispersion curves shift near ω = 1 as shown in Fig. 5e.
Similarly, the dispersion curves shift is observed at fre-
quencies close toω = 1.5when the nonlinear resonator
is the second resonatorωd2 = 1.5ω as shown in Fig. 5f.

To further illustrate the effect of nonlinearity on dis-
persion curves for the case of multiple local resonators,
we investigate the nonlinear systemwhen the chain and
all local resonators are both nonlinear. The results are
depicted in Fig. 6. When the chain and local resonators
have all the same type of nonlinearity (softening or
hardening), the dispersion curves are shifted up in all
modes as demonstrated in Fig. 6a. This shift is quanti-
tatively variant; however, its trend is not.

Next, we assign different types of nonlinearity to
the chain and local resonators. The results are shown
in Fig. 6b and reveal that the impact of nonlinearity in
the chain can be observed only in the second optical
mode at the short wavelength limit. This is not surpris-
ing since that zone is away from the local resonators
frequencies; therefore, the effect of nonlinear local res-
onators is not dominant there.

Finally, the effect of each nonlinear local resonators
on wavelength zones can be obtained from Fig. 6c, d.
The figures show that when one of the nonlinear local
resonators has a nonlinearity type different than the
nonlinearity of the chain and the other local resonator,
the impact of that resonator is dominant in the short
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(a) (b)

(c) (d)

(e) (f)

Fig. 5 Analytical band structure for a system with single and multiple resonators and different sources and types of nonlinearities. a–c:
single resonator and d–f two resonators

wavelength limit in the mode just below its frequency
and in the long wavelength limit in the upper branch.
The results here suggest that for the case of multiple

resonators, the dispersion curves shift due to nonlinear
local resonator is dominant in frequency zones near its
tuned frequency. Therefore, tuning the nonlinear res-
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(a) (b)

(c) (d)

Fig. 6 Analytical band structure for a system with single and multiple resonators and different sources and types of nonlinearities

onator is crucial in determining the zones affected by
nonlinearity. Solitary waves, wave non-reciprocity, and
other nonlinear phenomena can be observed in these
zones. On the other hand, zones at short wavelength
limit and away from the resonator frequency are only
affected by nonlinear chain.

4 Spectro-spatial analysis

Although the cutoff frequencies (boundaries of the non-
linear band structures) can be predicted by the method
of multiple scales, other nonlinear wave propagation
features (e.g., solitons, secondary resonances, disper-
sive waves) cannot be characterized. This suggests the
use of spectro-spatial analysis to characterize the wave
propagation in the proposed metamaterial. It should
be noted that all the following simulations are based
on the optical (upper branch) wave mode because we

find this mode to be more affected by nonlinearity than
the acoustic mode. In particular, there is no significant
frequency shift observed in the acoustics branch (also
defined as pseudo-bandgap in Sect. 3.1) and it is hard
to tune the nonlinear resonator to the long wavelength
region in this mode. Otherwise, the observation in the
optical mode should be similar to those in the acous-
tic mode. Also the numerical simulation for the optical
mode ismuch faster. The simulation in thismode lasted
for 8 s, while the wave packet defined in Eqs. (25)–(28)
was used as an input signal.

4.1 Spatial profile of the wave packet

At the end of the simulation, the spatial profiles of the
wave packet are plotted in Figs. 7 and 8. To investigate
how each source of nonlinearity alters the input signal,
we first present the wave profile of a metamaterial with
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(a) (b)

(c) (d)

(e) (f)

Fig. 7 Spatial profile of the wave packet for different types and sources of nonlinearities at frequencies in the upper branch of dispersion
curve

a single source of nonlinearity in Fig. 7. The wave pro-
file for a signal propagating in a linear chain is shown
in Fig. 7a. The results show that the wave is not dis-
torted in the long wavelength limit. However, the wave

becomes gradually dispersive with the increase in wave
number (i.e., the amplitude of the wave becomes lower
at high wave number since waves of different frequen-
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cies travel with different phase speeds. We refer the
reader to Figure 9 in [25] for more information).

It should be noted that the terms distortion and dis-
persive are not exactly the same although they both
indicate deformation in the input wave. We used the
former mainly when the wave is split into multiple
components and/orwhen there are other forms of defor-
mation resulting from nonlinearity in the system. The
latter is used when the wave get stretched and the wave
amplitude becomes smaller.

For nonlinear chain only, there is no effect on the
wave profile in the long wavelength range and the non-
linear chain behaves like the linear chain as shown in
Fig. 7b, c. This is not surprising since inspecting Eq.
(23) when �̄i = 0 demonstrates that for small values
of wave numbers, β is negligible. In the meantime,
increasing the wave number gradually shows differ-
ent types of wave distortion due to nonlinear chain.
For instance, hardening chain distorts the wave into
a low-amplitude dispersive signal and high-amplitude
localized signal. The latter indicates the birth of solitary
wave due to nonlinearity unlike the pure dispersive sig-
nal in the linear case. This can be explained by chang-
ing the shape of the variable slope dispersion curve to
linear (fixed slope) dispersion curve similar to those
of nondispersive mediums in homogeneous structures
[25] (see Sect. 4.3). On the other hand, softening chain
stretches the signal further to lower-amplitude compo-
nents with the absence of any localized high-amplitude
signals. In other words, the shape of the variable slope
dispersion curve of linear metamaterial becomes more
nonlinear (variable slope), thus more dispersive [25].

The effect of some nonlinear phenomena in the long
wavelength limit can be observed only when the non-
linearity is assigned in the resonator as depicted in
Fig. 7d–f. If the resonator with a frequency near the
upper dispersion curve is nonlinear, a significant dis-
tortion in the wave profile is observed in the vicinal fre-
quencies. Therefore, nonlinearity in the local resonator
can affect the long wavelength limit unlike the nonlin-
ear chain case. For instance,we set the second resonator
(ωd2 = 1.5ω) to be nonlinear and plot the wave profile
in Fig. 7d, e. The results indicate that both harden-
ing nonlinearity and softening nonlinearity in the res-
onator distort the wave shape at all wavelength limits.
However, this distortion (w.r.t linear case in Fig. 7a)
becomes less significantwith the increase inwave num-
ber. The hardening nonlinearity stretches the wave in
the long wavelength limit while it develops a local-

ized signal in addition to the dispersive signal with the
decrease in wavelength as shown in Fig. 7d. The soft-
ening nonlinearity stretches the wave profile more sub-
stantially at all wavelengths limits as shown in Fig. 7e.
This dispersive signal is associated with multiple high-
amplitude localized features with the increase in wave-
length. Finally, we set the first resonator (ωd1 = ω)
to be nonlinear and plot the wave profile in Fig. 7f.
Since this resonator’s frequency is away from the upper
branch of dispersion curve, the effect of nonlinearity is
insignificant. Figure 7f also shows the existence of a
minor distortion in the wave profile at the long wave-
length limit. This distortion becomes negligible with
the increase in wave number.

After analyzing each type of nonlinearity individ-
ually, we analyze the effect of different combinations
of nonlinearities as depicted in Fig. 8. When the chain
and both resonators have hardening nonlinearity, waves
at short wavelength limit form a solitary wave (local-
ized signal) with a small-amplitude dispersive signal
as shown in Fig. 8a. However, distortion at long wave-
length limit is not negligible anymore since the non-
linear resonators stretch the wave with medium vibra-
tion amplitude. Between the long and short wavelength
limits, there is a transition in the wave profile behavior,
such that the wave has a dispersive feature (with ampli-
tude in between the two limits) and localized feature
with medium amplitude. Severe distortions in the wave
profile are observed when the nonlinearity of both res-
onators is changed to softening as shown in Fig. 8b.
Signals at all wavelength limits are more dispersive,
particularly, waves with low wave numbers. However,
one can still recognize localized features at short wave-
length limit due to hardening chain. The latter can com-
pletely disappear if the chain has softening nonlinearity
(see Fig. 8c), even though both resonators have hard-
ening nonlinearity. Yet hardening nonlinear resonators
reduce the wave stretching.

Next, we assign for the first resonator, a type of non-
linearity different from the second resonator, which has
a frequency near the upper optical mode in Fig. 8d, e. It
is observed that the behavior of the wave profile for the
cases in Fig. 8d is similar to the wave profile in Fig. 8b
and signals in Fig. 8e, a are also similar. Though the
distortion in the mid- and long wavelength limits is less
dominant by the nonlinearity of the second resonator,
one can hypothesize that the effect of nonlinearity in
the first resonator is less pronounced than that of the
second resonator in the upper branch of the dispersion
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(a) (b)

(d)(c)

(e) (f)

Fig. 8 Spatial profile of the wave packet for different types and sources of nonlinearities at frequencies in the upper branch of dispersion
curve

curves. Finally, we can also observe that the nonlinear-
ity type in the first resonator does not distort the wave
profile in the short wavelength limit since the frequency
of this resonator is away from frequencies of the sys-

tem in this region and the effect of other sources of
nonlinearity are more dominant as shown in Fig. 8.
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(a) (b)

(d)(c)

(e) (f)

Fig. 9 Spatial spectrograms of the wave packet for different types and sources of nonlinearities at frequencies in the upper branch of
dispersion curve

4.2 Spatial spectrograms of the wave packet

After investigatingwave propagation through themeta-
material in the spatial domain, we now examine the
wave profile in the wave number domain. Here, we use

short-term Fourier transform (STFT) instead of simple
Fourier transform (FT) to investigate the signal as it
changes over time. We apply a Hann window with the
size of initial wave profile to divide the time signal into
shorter segments. The spectrograms for different types
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(a) (b)

(d)(c)

(e) (f)

Fig. 10 Spatial spectrograms of the wave packet for different types and sources of nonlinearities at frequencies in the upper branch of
dispersion curve

and sources of nonlinearities at different wavelengths
are plotted in Figs. 9 and 10.

Figure 9a shows that the input signal is the same as
the output signal for the case of nonlinear chain. This
is not surprising since it was observed in the previous
analysis that at long wavelength limit, the system with

nonlinear chain has similar performance to the linear
system. This does not hold in the nonlinear resonator
case. It is revealed for Fig. 9b, c that the input signal
is severely distorted in the long wavelength limit. If
the nonlinearity is hardening, the input signal becomes
stretched over the chain with high amplitude as shown
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in Fig. 9b. On the other hand, softening nonlinear-
ity distorts the input signal into low-amplitude disper-
sive component and multiple high-amplitude localized
components. Indeed, some of the energy content of
the input signal appears at wave numbers outside the
input signal window. This implies that this energy con-
tent appears at frequencies different than the input sig-
nal frequencies since wave number and frequency are
related in Eq. (24). Therefore, we will refer to any shift
in the wave number of the output signal as frequency
shift in the subsequent discussion. However, if only the
first resonator is nonlinear, the observed distortion is
less significant at long wavelength limit as shown in
Fig. 9d. Beyond the long wave length limit, the effect
of nonlinearity in the case of nonlinear resonator is also
demonstrated in the short wavelength limit as shown in
Fig. 9e. We can observe that the nonlinear hardening
resonator acts like the nonlinear hardening chain in the
short wavelength limit, such that it distorts the signal
into localized component unlike the dispersive signal
in the linear chain. Since the short wavelength limit fre-
quencies in the upper optical mode are away from the
first resonator frequency, the effect of nonlinearity in
this resonator is insignificant in this zone. For instance,
we assign a hardening nonlinearity for this resonator in
Fig. 9f, yet the wave is dispersive like the linear case.

To investigate how different types and sources of
nonlinearities interact in the metamaterial, we assign
different types of nonlinearity to the chain and res-
onators and plot them in Fig. 10. When all sources
of nonlinearity are of hardening type, the system per-
forms like the hardening resonator (ωd2) in the long
wavelength limit as depicted in Fig. 10a. Therefore,
this zone canbe controlled fully by the second resonator
regardless of the nonlinearity in the chain, and partially
by the first resonator as observed in Fig. 9d. In Fig. 10b,
the output signal is distorted severely and brakes down
into multiple components. Most of the energy content
of the output signal appear at wave numbers away from
the input signal wave numbers. Therefore, a significant
frequency shift is observed atmediumwavelength limit
when all sources of nonlinearities are hardening. This
frequency shift forms a pseudo-bandgap [32], which
can be utilized to design acoustic diode. However, there
is no frequency shift at short wavelength limit for hard-
ening chain andhardening resonators, instead the signal
is concentrated in a main component forming a solitary
wave as depicted in Fig. 10c.

In order to generate a significant frequency shift in
allwavelengths limits,we assign softening nonlinearity
to both the resonators and the chain. This can generate a
significant frequency shift in wavelength zones; there-
fore, it can widen the pseudo-bandgap, thus resulting in
a wider operating frequency range for acoustic diodes
for example. These plots are presented in Fig. 10d, e.
A significant frequency shift is observed in all of these
figures. In particular, the signal at long and medium
wavelengths shifts the dominant component in the sig-
nal to very low values of wave number/frequency. This
indicates that a wider pseudo-bandgap can be estab-
lished at these wavelength zones, since any input sig-
nal with wave number/frequency in this range will be
distorted and shifted significantly to low wave num-
ber. Even though this frequency shift is less significant
at short wavelength limit and at higher values of wave
number/frequency (Fig. 10f), it can be used to construct
acoustic diodes.

4.3 2D Fourier transform of the response

After studying the waveform evolution in spatial and
wave number domains, we present the contour of 2D
Fast Fourier transform (2D-FFT) or 2D power spec-
trum of the signal in both frequency and wave number
domains (see Figs. 11 and 12). Contour plots allowus to
reconstruct the dispersion curves, especially inside the
pseudo-bandgap. Moreover, these plots can be used to
detect the birth of solitary waves based on the shape
and distribution of frequency–wave number compo-
nent. At longwavelength limit, the hardening nonlinear
chain does not distort the traveling wave as depicted in
Fig. 11a.We note here that the contour plots for the lin-
ear signal are exactly the same as the signal plot shown
in Fig. 11a, thus confirming that the nonlinear chain has
no effect in this zone. However, frequency shift and dis-
tortion are observed for nonlinear resonator (ωd2) with
hardening nonlinearity (Fig. 11b) and softening non-
linearity (Fig. 11c). It is noteworthy that the frequency
shift is more significant and the wave distortion is more
severe in the case of softening nonlinearity. To demon-
strate the importance of tuning the nonlinear resonator,
we present the contour plot for the first resonator in
Fig. 11d. It can be observed that the distortion in this
case is less significant comparing to the plot in Fig. 11b.

At short wavelength limit, the contour plots for the
linear traveling wave are plotted in Fig. 11e. We can
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(a) (b)

(d)(c)

(e) (f)

Fig. 11 2D Fourier transform contour of the response for different types and sources of nonlinearities at frequencies in the upper branch
of dispersion curve
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(a) (b)

(c) (d)

Fig. 12 2D Fourier transform contour of the response for different types and sources of nonlinearities at frequencies in the upper branch
of dispersion curve

observe that the signal density is stretched over a wide
range of frequencies. Moreover, the power spectrum of
this signal has a variable slope dispersion curve , hence
suggesting that the wave is dispersive in this case [25].
However, the stretchingof the dispersivewavebecomes
narrower and the signal tends to become localizedwhen
nonlinear hardening resonator is used as depicted in
Fig. 11f. We can also observe the presence of some
low-amplitude dispersive signals in the surrounding of
the localized wave. These dispersive signals were also
observed as shown in Sect. 4.1 for hardening nonlin-
earity in both the resonator and chain. It is obvious
here that the localized signal represents a solitary wave
since the power spectrum has a linear dispersion curve
(constant slope) [25].

Finally, we demonstrate the concept of significant
frequency shift by using softening chain and soften-

ing resonators at all wavelength limits (Fig. 12). In
Fig. 12a, a significant frequency shift is observed at
the long wavelength limit. This shift locates the domi-
nant frequency component at frequencies much lower
than the predicted frequencies in the linear case (see
Fig. 11a for comparison). Atmediumwavelength limit,
the frequency shift is more significant comparing to
the other cases as shown in Fig. 12c. The original sig-
nal (Fig. 12b) is completely distorted and shifted to
frequencies in the maximum and minimum level of
the upper dispersion curve. At short wavelength limit
(Fig. 12d), a frequency shift can also be observed.
Although this shift is less significant comparing to
other wavelength limits, the initial frequency bands are
clearly shifted to the end of the dispersion curve. Fur-
thermore, the dispersion curve tends to bemore nonlin-
ear; thus, the wave is more dispersive [25]. The afore-
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(a) (b)

(d)(c)

(e) (f)

Fig. 13 Comparison between approximate analytical solution and contour plots of 2D-FFT of the numerical simulations for nonlinear
chain case
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(a) (b)

(d)(c)

Fig. 14 Comparison between approximate analytical solution and contour plots of 2D-FFT of the numerical simulations for nonlinear
resonator case

mentioned frequency shifts reveal that a wider pseudo-
bandgap can be formed by using softening chain and
softening resonators. This pseudo-bandgap can be uti-
lized for constructing acoustic diodeswith awide range
of operational frequencies.

5 Limitation of the approximate analytical
solution by contour plots

After analyzing the spectro-spatial analysis of the wave
propagating in a nonlinear metamaterial and showing
the possibility of predicting the nonlinear dispersion
curves from the contour plots, we now study the limita-
tions of the approximate analytical solution by increas-
ing the strength of nonlinearity. This can be done by

comparing the analytical results with their correspond-
ing contour plots.

For the case of nonlinear chain, we compare our
solution derived by the method of multiple scales to
the dispersion curves obtained by the contour plots
of the 2D-FTT of the numerical simulations for dif-
ferent strengths of nonlinearity as shown in Fig. 13.
This comparison is done in the short wavelength limit
(in the upper optical branch of the dispersion curves)
since this region is the most affected by nonlinearity
as shown in Sect. 3. For small value of nonlinear-
ity (α2ε� ≤ 0.06), our approximate analytical solu-
tion shows a good agreement with the contour plots
of the numerical simulations as shown in Fig. 13a, b.
It can also be observed that the other wave with lin-
ear profile coincides with the linear dispersion curves.
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Increasing the nonlinearity further results in an addi-
tional weak nonlinear wave, which lies between the
linear and nonlinear dispersion curves as shown in
Fig. 13c, f. The energy content in this wave increases
with the increase in nonlinearity. Yet, Fig. 13c, e indi-
cates that our approximate analytical solution can still
predict the upper boundaries of the dispersion curve for
(α2ε� ≤ 0.015). Beyond this value (α2ε� ≥ 0.15), we
observe that our approximate analytical solution fails to
accurately predict the upper boundary of the dispersion
curve as shown in Fig. 13f.

As for the case of nonlinear resonators, the com-
parison of the approximate solution and the 2D-FTT
contour plot of the numerical simulation is shown in
Fig. 14. Considering frequencies closer to the nonlin-
ear resonator frequency and focusing on the longwave-
length limit, Fig. 14a, b shows that our approximate
analytical solution cannot accurately predict the disper-
sion curve of the system even for small values of non-
linearity. However, when considering the region away
from the nonlinear resonator frequency and focusing
on the short wavelength limit, Fig. 14c, d demonstrates
that our approximate analytical solution can accurately
predict the nonlinear dispersion curve for small values
of nonlinearity. This accuracy vanishes for larger value
of nonlinearity (ε�̄2α

2 ≥ 0.15).

6 Conclusion and future work

In this paper, we investigated a nonlinear metamaterial
consisting of a nonlinear chain with multiple nonlinear
local resonators. Using the method of multiple scales,
we obtained explicit expressions for the nonlinear dis-
persion relations for a nonlinear chain with multiple
nonlinear resonators. These expressions were validated
by the numerical simulations and results in the litera-
ture. The validation indicated that our analytical solu-
tion can accurately predict the cutoff frequencies of the
dispersion curves and the boundaries of the bandgaps.
However, the analytical results failed to predict the
behavior of the nonlinear system in region near the fre-
quency of the nonlinear local resonator and the pseudo-
bandgap for wave packet input signal simulations. The
pseudo-bandgap has a unique feature since a signifi-
cant frequency shift can be observed inside this zone.
Nevertheless, analytical expressions can still reveal the
wavelength zones affected by nonlinearity. The non-
linearity only affected the short wavelength limit for

the case of nonlinear chain. However, for the case of
nonlinear resonators, this nonlinear affected all wave-
lengths, particularly when the resonator was properly
tuned. This observation was consistent with the topo-
logical analysis.

In the spectro-spatial analysis, the results showed
the existence of solitary wave with hardening nonlin-
earity and dispersive wave with softening nonlinearity.
This wave distortion cannot be observed at long wave-
length limit in the nonlinear chain case. However, non-
linear local resonators stretch the wave in this zone
with both types of nonlinearities. The amplitude of
this dispersive wave was much higher with hardening
nonlinearity. This wave distortion depends on the non-
linear resonator frequency and how close it is to the
input wave frequency. These observations were also
confirmed by spectrograms and contour plots of 2D
Fourier transform. For different combinations of non-
linearities, the spectrograms demonstrated significant
frequency shift in the medium wavelength limit when
the chain and resonator have both hardening nonlin-
earity. However, this frequency shift can be observed
at all wavelength limits when we change the nonlinear-
ity type to softening. Finally, the contour plots showed a
wide pseudo-bandgap demonstrating a significant fre-
quency shift at all wavelength limits. The implication is
that this pseudo-bandgap can be utilized to design and
construct acoustic diodes with a wide range of opera-
tion frequencies. For future work, the authors plan to
experimentally demonstrate the benefits of the revealed
phenomena.
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