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a b s t r a c t

Considerable attention has recently been given to the study of simultaneous energy harvest-

ing and vibration attenuation in metastructures. However, only linear metastructures were

investigated although nonlinear metastructures and nonlinear electromechanical devices

offer superior interesting wave propagation phenomena (e.g., birth of solitary waves, tun-

able bandgap, acoustic nonreciprocity) and broadband energy harvesting. In this paper, we

investigate the wave propagation in a weakly nonlinear metastructure with electromechan-

ical resonators. Explicit expressions are derived for the nonlinear dispersion relations using

the method of multiple scales. These expressions are validated via direct numerical integra-

tion. We carried out parametric studies to investigate the role of different parameters of the

electromechanical resonators on the linear and nonlinear band structure. To obtain further

detailed information on the nonlinear wave propagation, we employ spectro-spatial analy-

sis on the numerical simulations. This spectro-spatial analysis can reveal the output voltage

distortion due to different types of nonlinearities. The results indicate that nonlinear chain

can enhance energy harvesting through the birth of solitary wave and without degrading the

boundary of the bandgap. The results also suggest that such a system is suitable for designing

electromechanical diodes and rectifiers.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Metastructures are artificially engineered structures offering exceptional and unique properties that are not present in con-

ventional homogeneous structures [1]. They were originally developed for optical wave propagation (also known as metamateri-

als) and then they were extended to enhance elastic and wave propagation properties [2]. Some of these properties are negative

mass, negative density, and negative Poisson’s ratio [3]. These unique features suggest that metastructures can be beneficial in

vibration and noise control, non-destructive testing, energy harvesting, and acoustic rectifiers.

Metastructures are usually arranged in specific patterns that exhibit exotic functionalities. Earlier consideration of metas-

tructures studied periodic structures [4–9]. Periodic structures prevent the wave from propagating through the structure at

range of frequencies known as bandgap and caused by Bragg scattering. These frequencies have wavelengths close to the lattice

constant. This bandgap formation can be employed in low-frequency vibration attenuation.

The limitation on the lattice size in Bragg scattering restricts the application of metamaterials to only large structures; how-

ever, many engineering applications require controlling smaller size components. Inspired by smaller size systems, Liu et al.

[10] introduced local resonators in metastructures to control vibrations at wavelengths much smaller than the lattice constant.
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These structures are called locally-resonant metamaterials and they are capable of widening the original bandgap developed by

Bragg scattering. Indeed, the parameters of the local resonator determine the dominant cause of the bandgap [11]. Moreover,

multiple bandgaps can be obtained by using multiple resonators with different parameters [12,13].

For large wave amplitudes in inherently nonlinear mediums, linear theory cannot adequately represent the problem; thus

higher-order nonlinear terms need to be considered. Nonlinear metastructures exhibit some interesting wave propagation phe-

nomena that do not develop in linear metastructures. Some of those are gap solitons [14], envelope and dark solitons [15],

asymmetric wave propagation [16], and adjustable bandgap [17].

Nonlinear problems can be characterized based on the strength of nonlinearities. When the nonlinearity is weak, the prob-

lem can be handled by perturbation techniques [18,19] and approximate analytical solution can be derived when the problem

asymptotically converges. Weakly nonlinear metastructures were investigated by Narisetti et al. [20]. They employed Lindstedt-

Poincare method to derive explicit expressions for the dispersion relations. However, when several nonlinear waves propagate

and interact through the structure, the method of multiple scales is more suitable since the associated algebra requires less

efforts [21]. Strongly nonlinear metastructures have gained less attention in the literature and they usually require other tech-

niques such as the complexification-averaging or shooting methods to tackle the problem [22].

Analyzing the dispersion relation analytically does not provide adequate information about the nonlinear dynamical features

in metastructures. Instead, it only presents the nonlinear shift in the dispersion curves. To reveal other interesting features,

Ganesh and Gonella [23] employed spectro-spatial analysis to investigate the wave propagation through metastructures. Their

analysis provided more detailed information about the wave distribution in the structure (i.e., localized or dispersive waves);

therefore, the birth and inhalation of solitary waves can be predicted based on the wavelength and nonlinearity type. The use

of spectro-spatial analyses were also extended in Refs. [24,25] for locally resonant metastructures. They observed a significant

frequency shift in the optical branch, and they then employed this shift to design acoustics diodes.

In recent years, many researchers investigated the bandgap formation due to electromechanical coupling in metastructures

with piezoelectric patches [26–30]. The electromechanical coupling generates piezoelectric locally bandgap where the dimen-

sion of the bandgap is controlled by the added stiffness to the system. Embedding piezoelectric materials in metastructures can

also lead to simultaneous energy harvesting and vibration attenuation [31]. This is inspired by the flat band of frequencies in

metastructures, which was experimentally demonstrated using a locally resonant phononic crystal plate with embedded spiral

beams [32]. The problem was theoretically investigated later for a discrete structure in Ref. [31] and for a continuous structure

in Ref. [33]. Moreover, Hu et al. [34] extended the problem by coupling the internal resonators. This showed an improvement in

the energy harvesting and vibration suppression. Energy harvesting in metastructures was also experimentally demonstrated

by testing a 3D printed 2D structure in Ref. [35]. Furthermore, traveling wave energy harvesting was also experimentally and

numerically demonstrated in a 2D phononic crystal lens structure. The authors showed that a significance improvement in

energy harvesting can be achieved when the acoustic metamaterial is designed to focus or properly localize the wave energy

[36,37].

The study of simultaneous energy harvesting and vibration attenuation in metastructures has so far been limited to linear

metastructures. There is no study that investigates the effect of nonlinearity in metastructures for simultaneous energy har-

vesting and vibration control. In this paper, we investigate the wave propagation and energy harvesting in a weakly nonlinear

metastructure with local electromechanical resonators. We employ the method of multiple scales to derive explicit expressions

for the dispersion relations. These relations are validated by direct numerical integration. Then, we study various nonlinear

phenomena and their effects on the energy harvesting distribution and magnitude. This is done through studying the relation

between topological (i.e., space-time domain) and spectral (dispersion relations) features of a wave propagating in such a non-

linear metastructure. Parametric studies are conducted to investigate the effect of different parameters on the band structure,

the role of nonlinearity on energy harvesting, and energy harvesting associated with solitary waves.

The rest of the paper is outlined as follows: In Section 2, we model the nonlinear chain and electromechanical resonators.

We then present an approximate closed form solution for the dispersion relations. These relations are discussed and validated

numerically in Section 3. In Section 4, we investigate the topological features of the output voltage wave by spectro-spatial anal-

ysis to demonstrate more detailed information about nonlinear wave propagation phenomena. Finally, we discuss the obtained

results in Section 5, and then summarize our findings in Section 6.

2. Mathematical modeling

A schematic diagram for the proposed metastructure is shown in Fig. 1. The metastructure is presented by a chain of cells.

Each cell consists of a rigid mass, M, and is connected to other cells by a nonlinear spring with linear coefficient, K, and nonlinear

coefficient, 𝛼. The cell is also connected to a local electromechanical resonator with an effective mass, mp, and an effective

linear stiffness k1. The resonator consists of a substrate covered by a piezoelectric layer. This piezoelectric layer is shunted to an

external resistor Req and it harvests a voltage, v. The displacement of the nth cell is defined as un, while the absolute displacement

of its local resonator is Yn. Following [31,38] the coupled equation of motions for each cell can be written as

Mün + 2Kun − Kun+1 − Kun−1 + 𝛼(un − un+1)3 + 𝛼(un − un−1)3 + mp(ün + ün) = 0 (1)
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Fig. 1. A schematic diagram for the nonlinear acoustics metastructure with linear electromechanical resonator resonators.

mpün + k1un − 𝜃vn = −mpün (2)

RCpv̇n + vn + R𝜃u̇n = 0 (3)

where un = Yn − un is the relative displacement of the local resonator, 𝜃 is the electromechanical coupling coefficient, and Cp

is the capacitance of the piezoelectric element. These equations can be written in normalized form as

ün + 2un − un+1 − un−1 + 𝛼(un − un+1)3 + 𝛼(un − un−1)3 + kΩ2
0
(ÿn + ün) = 0 (4)

Ω2
0
ÿn + yn − 𝛼1vn = −Ω2

0
ün (5)

𝛼2v̇n + vn + 𝛼3ẏn = 0 (6)

where 𝜔2
n
= K∕M, 𝜔2

d
= k1∕mp, k = k1∕K, un = un∕U0, yn = un∕y0, vn = vn∕V0, 𝛼 = 𝛼U2

0
∕K, Ω0 = 𝜔n∕𝜔d, 𝛼1 = 𝜃V0∕k1,

𝛼2 = RCp𝜔n, 𝛼3 = R𝜃𝜔ny0∕V0, and the nondimensional time is 𝜏 = 𝜔nt. We express the solution for the system by power

series. By ignoring the terms of second order and higher, the solution can be written in the form

un(t, 𝜖) = un0(T0, T1) + 𝜖un1(T0, T1) + o(𝜖2) (7)

yn(t, 𝜖) = yn0(T0, T1) + 𝜖yn1(T0, T1) + o(𝜖2) (8)

vn(t, 𝜖) = vn0(T0, T1) + 𝜖vn1(T0, T1) + o(𝜖2) (9)

where T0 = 𝜏 is the fast time scale and T1 = 𝜖𝜏 is the slow time scale. Since the time is expressed in two independent variables,

the time derivative can be presented using the chain rule as

( ·) = D0 + 𝜖D1 +… (10)

( ·· ) = D2
0
+ 2𝜖D0D1 +… (11)

Introducing Eqs. (7)-(11) into Eqs. (4)–(6) and collecting the terms of similar coefficient leave us with the following sets of

equations.

order 𝜖0

D2
0
un0 + 2un0 − u(n−1)0 − u(n+1)0 + kΩ2

0
D2

0
(yn0 + un0) = 0 (12)
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Ω2
0
D2

0
yn0 + yn0 − 𝛼1vn0 = −Ω2

0
D2

0
un0 (13)

𝛼2D0vn0 + vn0 + 𝛼3D0yn0 = 0 (14)

order 𝜖1

D2
0
un1 + 2un1 − u(n−1)1 − u(n+1)1 + kΩ2

0
D2

0
(yn1 + un1) = −2kΩ2

0
D0D1(yn0 + un0) − 2D0D1un0−

𝛼v(un0 − u(n−1)0)3 − 𝛼(un0 − u(n+1)0)3
(15)

Ω2
0
D2

0
yn1 + yn1 − 𝛼1vn1 = −Ω2

0
D2

0
un1 − 2Ω2

0
D0D1un0 − 2Ω2

0
D0D1yn0 (16)

𝛼2D0vn1 + vn1 + 𝛼3D0yn1 = −𝛼2D1vn0 − 𝛼3D1yn0 (17)

2.1. Linear dispersion relations

At order 𝜖0, the problem is linear. The solution can be written as

un = Aei(nk−𝜔𝜏) (18)

yn = Bei(nk−𝜔𝜏) (19)

vn = Cei(nk−𝜔𝜏) (20)

Substituting Eqs. (19)-(20) into Eq. (14) yields

−i𝛼2𝜔C + C − i𝛼3𝜔B = 0 (21)

Solving for C leaves us with

C = ΓB (22)

where Γ is complex and can be written as

Γ = i𝛼3𝜔

1 − i𝛼2𝜔
(23)

Substituting Eqs. (18)-(19) and Eq. (22) into Eq. (13) leads to

B = K𝜔A (24)

where K𝜔 is also complex and defined as follow

K𝜔 =
Ω2

0
𝜔2

1 − 𝛼1Γ − Ω2
0
𝜔2

(25)

Finally, one can obtain the linear dispersion relation from Eqs. (12), (22) and (24) as:

−𝜔2 + (2 − 2 cos k) − kΩ2
0
𝜔2(1 + K𝜔) = 0 (26)

It is noteworthy here that Eq. (26) has five roots. Four of them are complex pairs with nonzero real part, while the fifth one is

pure complex.

2.2. Nonlinear dispersion relation

At order 𝜖 the problem is nonlinear. We need to obtain the solvability condition in order to obtain a convergent approximate

solution.

Equation. (17) can be written as (after multiplying by 𝛼1)

(𝛼2D0 + 1)𝛼1vn1 = 𝛼1[−𝛼3D0yn1 − 𝛼2D1vn0 − 𝛼3D1yn0] (27)

Multiplying Eq. (16) by (𝛼2D0 + 1) and using Eq. (27) to eliminate vn1, one can obtain

(𝛼2D0 + 1)(Ω2
0
D2

0
yn1 + yn1 + Ω2

0
D2

0
un1) + 𝛼1𝛼3D0yn1 = (𝛼2D0 + 1) (−2Ω2

0
D0D1un0 − 2Ω2

0
D0D1yn0)

−𝛼2𝛼1D1vn0 − 𝛼1𝛼3D1yn0

(28)
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Equation (28) can be written as

[(𝛼2D0 + 1)(Ω2
0
D2

0
+ 1) + 𝛼1𝛼3D0]yn1 = −(𝛼2D0 + 1)Ω2

0
D2

0
un1 + (𝛼2D0 + 1) (−2Ω2

0
D0D1un0 − 2Ω2

0
D0D1yn0)

−𝛼2𝛼1D1vn0 − 𝛼1𝛼3D1yn0

(29)

Multiplying Eq. (29) by kΩ2
0
D2

0
and substituting it in Eq. (15) yields

[(Ω2
0
D2

0
+ 1)(𝛼2D0 + 1) + 𝛼1𝛼3D0]((1 + kΩ2

0
)D2

0
un1 + 2un1 − u(n−1)1 − u(n+1)1)−

kΩ2
0
D2

0
(𝛼2D0 + 1)Ω2

0
D2

0
un1 = [(Ω2

0
D2

0
+ 1)(𝛼2D0 + 1) + 𝛼1𝛼2D0](−2D0D1un0−

− 2kD0D1(un0 + yn0) − 𝛼(un0 − u(n−1)0)3 − 𝛼(un0 − u(n+1)0)3 + kΩ2
0
D2

0
[−(𝛼2D0 + 1)

(−2Ω2
0
D0D1un0 − 2Ω2

0
D0D1yn0)] + 𝛼1𝛼2D1vn0 + 𝛼1𝛼3D1yn0]

(30)

To determine the solvability condition, one should substitute Eqs. (18)-(20) into Eq. (30) to obtain

[(Ω2
0
D2

0
+ 1)(𝛼2D0 + 1) + 𝛼1𝛼3D0]((1 + kΩ2

0
)D2

0
un1 + 2un1 − u(n−1)1 − u(n+1)1)−

kΩ2
0
D2

0
(𝛼2D0 + 1)Ω2

0
D2

0
un1 = ([(−Ω2

0
𝜔2 + 1)(−i𝛼2𝜔 + 1) − i𝛼1𝛼2𝜔](2i𝜔A′

+ 2i𝜔kΩ2
0
(1 + K𝜔)A′ − 12𝛼A2A(1 − cos k)2) − kΩ2

0
𝜔2[(i𝜔𝛼2 − 1)(2iΩ2

0
𝜔A′ + 2iΩ2

0
𝜔K𝜔A′)

+ 𝛼1𝛼2K𝜔ΓA′ + 𝛼1𝛼3K𝜔A′])ei(nk−𝜔t) + NST

(31)

where NST denotes the non-secular terms.

The solvability condition can then be obtained as

[(−Ω2
0
𝜔2 + 1)(−i𝛼2𝜔 + 1) − i𝛼1𝛼2𝜔](2i𝜔A′ + 2i𝜔kΩ2

0
(1 + K𝜔)A′ − 12𝛼A2A(1 − cos k)2)−

kΩ2
0
𝜔2[(i𝜔𝛼2 − 1)(2iΩ2

0
𝜔A′ + 2iΩ2

0
𝜔K𝜔A′) + 𝛼1𝛼2K𝜔ΓA′ + 𝛼1𝛼3K𝜔A′] = 0

(32)

Substituting the polar form (A = aeib where a and b are functions of the slow time scale, K𝜔 = Re[K𝜔] + iIm[K𝜔], and

Γ = Re[Γ] + iIm[Γ]) in Eq. (32) yields

− 1

2
𝛼1𝛼2𝜔

2Ω2
0
k(Re[Γ] + iIm[Γ])

(
eiba′ + iaeibb′

)(
Re[K𝜔] + iIm[K𝜔]

)
+ 𝛼2𝜔

2Ω2
0

k
(

eiba′ + iaeibb′
) (

Re[K𝜔] + iIm[K𝜔]
)
+ 1

2
𝛼1𝛼3𝜔

2Ω2
0
k
(

eiba′ + iaeibb′
) (

Re[K𝜔] + iIm[K𝜔]
)

+ i𝜔Ω2
0

k
(

eiba′ + iaeibb′
) (

Re[K𝜔] + iIm[K𝜔]
)
+ 𝛼2𝜔

2Ω2
0
k
(

eiba′ + iaeibb′
)

+ 𝛼1𝛼3𝜔
2Ω2

0
k
(

eiba′ + iaeibb′
)
+ i𝜔Ω2

0
k
(

eiba′ + iaeibb′
)
− 3

2
ia3𝛼𝛼2eibccc𝜔3Ω2

0
+ 3

2
a3𝛼eibccc𝜔2Ω2

0

+ 3

2
ia3𝛼𝛼2eibccc𝜔 + 3

2
ia3𝛼𝛼1𝛼3eibccc𝜔 − 3

2
a3𝛼eibccc − 𝛼2𝜔

4Ω2
0

(
eiba′ + iaeibb′

)
+ 𝛼2𝜔

2
(

eiba′ + iaeibb′
)

+ 𝛼1𝛼3𝜔
2
(

eiba′ + iaeibb′
)
− i𝜔3Ω2

0

(
eiba′ + iaeibb′

)
+ i𝜔

(
eiba′ + iaeibb′

)
= 0

(33)

where ccc = 1 − cosk. Separating the real and imaginary parts yields the following equations

f + ga′ + hab′ = 0 (34)

l − ha′ + gab′ = 0 (35)

where f, g, h, and l are defined as

g = −1

2
𝜔(𝛼2𝜔(Ω2

0
(k(𝛼1(−Im[Γ])Im[K𝜔] + (𝛼1Re[Γ] − 2)Re[K𝜔]

− 2) + 2𝜔2) − 2) + 2Ω2
0
kIm[K𝜔] − 𝛼1𝛼3𝜔(Ω2

0
k(Re[K𝜔] + 2) + 2)) (36)

h = 1

2
𝜔

(
Ω2

0

(
k
(

Re[K𝜔]
(
𝛼1𝛼2Im[Γ]𝜔 − 2

)
+ 𝜔Im[K𝜔]

(
𝛼2

(
𝛼1Re[Γ] − 2

)
− 𝛼1𝛼3

)
− 2

)
+ 2𝜔2

)
− 2

)
(37)

f = 3

2
a3𝛼ccc

(
𝜔2Ω2

0
− 1

)
(38)
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Fig. 2. Values of c0 and c1 over the frequency range (a)–(b): acoustic mode; (c)–(d): optical mode.

l = 1

2
(−3)a3𝛼ccc𝜔

(
𝛼2

(
𝜔2Ω2

0
− 1

)
− 𝛼1𝛼3

)
(39)

It is noteworthy here that only f and l are function of vibration amplitude. One can solve Eqs. (34)-(36) to obtain

a′ = lh − fg

g2 + h2
(40)

ab′ = − gl + mh

h2 + g2
(41)

Therefore, the slow flow equations can be written in the following form

a′ = c0a3 (42)

b′ = c1a2 (43)

where c0 and c1 are constants. These slow flow equations are nonlinear and need to be solved in order to determine the correc-

tion term for the nonlinear frequency.

2.3. Approximate solution for slow flow equations

To obtain an approximate solution, we plot the values of c0 and c1 over the frequency range in Fig. 2 for 𝜖𝛼 = 0.06, k = 1,

𝜔n = 𝜔d = 1000 rad/s, k1 = 106 N/m, R = 100Ω, 𝜃 = 171 × 10−12 N/V, and Cp = 13.3 × 10−9 F. One can observe that the

values of c0 are too small and almost negligible comparing to the values of c1 in the acoustic and optical modes. This indicates
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Fig. 3. Phase portrait of a′ and a for different values of c0 (a): negative c0; (b): positive c0.

that one can safely assume that a′ = 0 and as a result the amplitude is constant a = a0. Therefore, the correction factor can be

written as

b′ = c1a2
0

(44)

Integrating the differential equation yields

b = c1a2
0
T1 (45)

and the nonlinear frequency can be written as

𝜔nl = 𝜔 − 𝜖b′ (46)

For large c0, the amplitude can be determined as

a =

√
−1

2(c0T1 + c)
(47)

where c = −1

2a2
0

. When c0 is negative, the value under the square root is always positive; therefore, Eq. (47) is also a solution of

the system for T1 > 0. However, if c0 is positive the square root has a solution only if c0T1 >
1

2a2
0

. Otherwise, the trivial solution

is the only possible solution.

We plot the phase portrait for the first order system for positive and negative values of c0 in Fig. 3. The results indicate that

the stable solution associated with negative c0 will reach 0 eventually; therefore, the trivial solution is always the only stable

solution. On the other hand, the system departs from zero when c0 is positive, which is not defined when c0T1 >
1

2a2
0

. Therefore,

the system will also reach 0 eventually and only the trivial solution is stable.

3. Effect of electromechanical resonator on the band structure

In this section, we investigate the effect of the electromechanical coupling on the boundaries of the metastructure’s bandgap.

In particular, we fix the parameter of the metastructure and local resonator and we change the values of resistor unless men-

tioned otherwise. These parameter are defined as k = 1, 𝜔n = 𝜔d = 103 rad/s, k1 = 106 N/m, and Cp = 13.3 × 10−9 F. These

parameters are chosen based on similar studies in Refs. [24,39].

3.1. Validation of the approximate analytical solution

To check the accuracy of the current analytical solution derived by the method of multiple scales, we first compare our results

with those obtained for nonlinear chain in the absence of electromechanical coupling using the Lindstedt-Poincare method. This

can be obtained by setting the load resistor and piezoelectric constant to zero. Therefore, the problem is reduced to the classical

chain with mechanical resonators instead of electromechanical resonators. The comparison for both solutions are shown in

Fig. 4-a. The results show a very good agreement with those in the literature.

Next, we consider the electromechanical coupling by shunting the system to a resistor. The analytical results here are vali-

dated numerically. We simulate a chain consisting of 500 cells, connected by nonlinear springs, and coupled to electromechan-

ical resonators. The parameters of the chain are similar to those used in Fig. 4-a. The simulation is conducted by integrating the
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Fig. 4. Validation of the analytical results (a): without electromechanical coupling using [24]; (b): with electromechanical coupling using numerical simulations for

𝜃 = 10−10 N/V, R = 104Ω.

governing equation numerically by Matlab built-in solver ODE45. To omit any reflective waves, we apply Perfectly Match Layers

(PML) at each end of the chain [20]. The chain is excited by a transient wave packet. We select the velocity of the wave packet

to force the wave to propagate in one direction. This wave packet is defined as

um(0) =
1

2
(H(m − 1) − H(m − 1 − Ncy2𝜋∕k))(1 − cos(mk∕Ncy)) sin(mk) (48)

u̇m(0) =
1

2
(H(m − 1) − H(m − 1 − Ncy2𝜋∕k))(−𝜔n𝜔∕Ncy sin(mk∕Ncy) sin(mk)−

𝜔n𝜔(1 − cos(mk∕Ncy)) cos(mk))
(49)

ym(0) = K𝜔um(0) (50)

ẏm(0) = K𝜔u̇m(0) (51)

v = ΓK𝜔um(0) (52)

where Ncy is the number of cycles and in our numerical simulations we set Ncy = 7, and H(x) is the Heaviside function.

After simulating the system at any wavenumber, we determine the 2D Fourier transform (2DFFT) of the data in the frequency

and wavenumber domains. Then the natural frequency of the system is the frequency associated with the maximum power

density point. By sweeping the wave number over the first Brillouin zone, one can numerically reconstruct the dispersion curves

from the obtained sets of wavenumbers and frequencies. It is noteworthy here that each of the optical and acoustic modes can

be obtained separately by exciting the system at frequencies close to the required mode frequencies.

We plot the numerical dispersion curves in Fig. 4-b. The numerical results also show a good agreement with the analytical

results in the presence of the electromechanical coupling. However, the analytical solution fails to predict the middle branch of

the optical mode. In this region, there is a significant frequency shift (as we will show in the subsequent sections) associated

with transient wave packets excitation. This region is called Pseudo-bandgap [24].

3.2. Linear band structure

When the problem is linear, we plot the dispersion curves with and without electromechanical coupling in Fig. 5. Unlike the

chain with damping [40], it can be observed that shunting the electromechanical resonator to a load resistor does not affect the

band structure of the metastructure for the weak electromechanical coupling case as shown in Fig. 5-a. Hence, harvesting the

power has no role in controlling the boundary of the bandgap although it may change the attenuation level inside the bandgap

(see Fig. 5-b). This indicates that metastructures can be used for simultaneous energy harvesting and vibration mitigation with-

out degrading the bandgap boundary when the electromecanical coupling is weak.

For larger electromechanical coupling values up to 𝜃 = 10−3 N/V, the electromechanical coupling has also no noticeable

effect on the band structure for different shunted load resistors. However, for 𝜃 ≥ 10−2 N/V the band structure starts deforming

and emerging into one dispersion curve branch instead of two as shown in Fig. 5-c. Therefore, the bandgap disappears at this

level of electromechanical coupling. Moreover, the shunted resistor has a significant role in the dispersion curve shape at this

level of electromechanical coupling as shown in Fig. 5-d.
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Fig. 5. The effect of electromechanical coupling on the band structure in linear chain. (a): Weak electromechanical coupling 𝜃 = 10−10N∕V; (b): Imaginary part of the band

structure 𝜃 = 10−10 N/V; (c): Strong electromechanical coupling values when R = 102Ω; (d): Effect of resistor on strong electromechanical coupling, 𝜃 = 10−2 N/V.

3.3. Nonlinear band structure

When the problem is nonlinear, we first plot the dispersion curves in the absence of electromechanical coupling for different

types of nonlinearities in Fig. 6-(a). It can be observed that hardening nonlinearity shifts the dispersion curves up while softening

nonlinearity shifts the curves down. Moreover, this shift is more significant in the optical mode. Next, we plot the dispersion

curves with electromechanical coupling in Fig. 6-(b)-(f). For both types of nonlinearities (hardening and softening) with weakly

electromechanical coupling (Fig. 6-(b) and (c)), it can be revealed that the effect of electromechanical coupling is negligible

on the bandgap boundaries and only the nonlinearity in the chain shifts them. Therefore, one can also use metastructures for

simultaneous energy harvesting and vibration reduction when the chain is nonlinear without affecting the bandgap boundaries.

It is noteworthy here that these observations only hold for electromechanical coupling coefficient of 10−10 < 𝜃 < 10−3 N/V.

Similar to the linear case, stronger electromechanical coupling (i.e., 𝜃 ≥ 10−3 N/V) also alters the band structure of nonlinear

systems as shown in Fig. 6-(d) and (e). Moreover, the band structure for 𝜃 ranging between 10−3 and 100 N/V significantly

depends on the shunted resistor unlike the case of weakly electromechanical coupling.

In the subsequent sections, our study will focus on the weakly electromechanical coupling case because 𝜃 depends on the

piezoelectric constant which is usually at the order of 10−10 for most engineering applications [39].

4. Spectro-spatial analysis

In the previous section, we showed that weakly electromechanical coupling has no effect on the band structure in both

linear and nonlinear chains. Nevertheless, the nonlinearity in the chain shifts the dispersion curves up or down depending on

the type of nonlinearity. However, the dispersion characteristics do not reveal enough detailed information about nonlinear

wave propagation phenomena except frequency shifts. Therefore, we employ the spectro-spatial analysis in this section to

demonstrate other nonlinear wave propagation phenomena, particularly, wave distortion represented by wave localization or

wave dispersion in nonlinear medium. This is done by analyzing the numerical data by different signal processing tools as it will

be shown in the subsequent subsections.
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Fig. 6. The effect of electromechanical coupling on the band structure in nonlinear chain. (a): In the absence of electromechanical coupling; (b): Hardening nonlinearity

with weakly electromechanical coupling 𝜃 = 10−10N∕V; (c): Softening nonlinearity with weakly electromechanical coupling 𝜃 = 10−10N∕V; (d): Hardening nonlinear-

ity with strong electromechanical coupling R = 104Ω; (e): Softening nonlinearity with strong electromechanical coupling R = 104Ω; (f): Effect of resistor on strong

electromechanical coupling, 𝜃 = 10−3N∕V.

4.1. Spatial profile of the wave packet

The wave profile of the output voltage and the voltage in the input cell is plotted in Figs. 7–8 for different load resistors

and different wave limits. It should be noted that the input voltage is determined using Eq. (52) and the output voltage is

calculated using numerical integration. Considering the acoustic-mode wave in the long wavelength region, Fig. 7-a shows that

the harvested power decays through the chain for both linear and hardening nonlinear chains. This is not surprising since the
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Fig. 7. Spatial profile of the wave packet of harvested voltage from electromechanical resonator, R = 107Ω, 𝜃 = 10−8 N/V; (a): k = 𝜋∕9 acoustic mode, (b): k = 𝜋∕9

optical mode, (c): k = 𝜋∕2 acoustic mode, (d): k = 𝜋∕2 optical mode, (e): k = 7𝜋∕9 acoustic mode, (f): k = 7𝜋∕9 optical mode.

frequency of the wave packet is away from the electromechanical resonator frequency. This figure is a mirror image of the wave

profile of a wave propagating in a nonlinear chain since the effect of nonlinearity is negligible in the long wavelength limit.

However, at frequencies close to the resonator frequency in the long wavelength limit (optical mode), the harvested voltage

wave propagates through the structure as shown in Fig. 7-b. Yet the nonlinearity is negligible in this wavelength limit of the

optical branch.

For the acoustic branch in the medium wavelength domain (Fig. 7-c), the dispersion curve is nonlinear (i.e., variable slope)

and hence as expected, the wave is dispersive and its amplitude decreases significantly when the chain is linear. For the hard-

ening nonlinear chain, the wave is split into two components; one is dispersive with low amplitude and the other is localized

with high amplitude (solitary) wave. The solitary wave obtained from the nonlinear chain exhibits the highest output voltage
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Fig. 8. Spatial profile of the wave packet of harvested voltage from electromechanical resonator, R = 107Ω, 𝜃 = 10−10 N/V; (a): k = 𝜋∕9 acoustic mode, (b): k = 𝜋∕9

optical mode, (c): k = 𝜋∕2 acoustic mode, (d): k = 𝜋∕2 optical mode, (e): k = 7𝜋∕9 acoustic mode, (f): k = 7𝜋∕9 optical mode.

as compared to the linear and softening nonlinear chains. The softening nonlinear chain stretches the dispersive wave, thus

resulting in the lowest output voltage as compared to the linear and nonlinear hardening chains. Nevertheless, the number of

cells engaged in energy harvesting at specific time are higher than those in the linear and hardening nonlinear chains.

For the optical mode in the medium wavelength limit, Fig. 7-d shows that the wave still has two different magnitude com-

ponents for the hardening nonlinearity case, but the output voltage of the localized wave is not significantly higher than that of

the linear chain. Yet the higher amplitude component in hardening nonlinear chain in this case is more localized than that of

the acoustic mode wave of Fig. 7-c. Fig. 7-d also shows that the softening nonlinear chain lowers the amplitude of the localized

component and stretches the other wave component over more cells.
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In the short wavelength region (Fig. 7-e for the acoustic mode and Fig. 7-f for the optical mode), it can be noted that the linear

wave is more dispersive since the dispersion curve in this region is strongly nonlinear (refer to Section 4.3 for more details).

However, the effect of nonlinearity is more significant in localizing the wave for the hardening nonlinearity case and stretching

the wave for the softening nonlinearity case. These results suggest that higher power amplitude solitary waves are developed

when the nonlinearity is hardening while more cells are engaged in energy harvesting when the nonlinearity is softening.

Finally, we show the spatial profile of the harvested voltage due to wave packet excitation at lower electromechanical cou-

pling in Fig. 8. The general observations discussed for the case of R = 107Ω and 𝜃 = 10−8 N/V holds here. However, some of

the spatial profiles are slightly different, especially for the acoustic mode in the long wavelength limit. This indicates that the

load resistor has a slight effect on the spatial profile of the wave propagation.

4.2. Spatial short term fourier transform of wave motion

In this section, we plot the short term Fourier transform (STFT) to investigate the change in wave characteristics over time

in the space domain as depicted in Figs. 9 and 10 for the acoustics and optical modes, respectively. We use a Hann window with

the size of input burst to contain the short spatial components over time. This Hann window is represented by a signal between

dashed lines in the figures. It is noteworthy here that we only consider medium and short wave lengths in this section since the

previous section revealed that nonlinearity has no effect in the long wave length domain. These analyses are carried out on a

chain coupled to R = 107Ω load resistors.

For the acoustic-mode wave propagating in a linear chain (Fig. 9-a for k = 𝜋∕2 and Fig. 9-b for k = 7𝜋∕9), the voltage

output is dispersive and has only one component with low amplitude. Moreover, it can be observed that the stretching of the

wave is more severe at shorter wavelengths. It should be noted here that we plot the input signal in addition to the output signal;

therefore, the reader can recognize the wave distortion. Furthermore, for better visualization of the output signal amplitude, we

can compare the ratio between the output to the input signal to demonstrate the increase or decrease in wave amplitude. For

instance, output voltage wave amplitude in Fig. 9-b is lower than that in Fig. 9-a since the input signal in the former case is

lower.

For the nonlinear chain, two different behaviors are observed for different types of nonlinearities. For hardening nonlinearity

(Fig. 9-c for k = 𝜋∕2 and Fig. 9-d for k = 7𝜋∕9), solitary waves are developed, thus the output voltage is higher and localized

within a few number of cells. However, the effect of hardening nonlinearity is more significant in the shorter wavelength limit

and some of its energy is shifted outside the Hann window limits as shown in Fig. 9-d. For softening nonlinearity (Fig. 9-e for

k = 𝜋∕2 and Fig. 9-f for k = 7𝜋∕9), the output voltage wave is stretched over the chain. This wave has lower amplitude than

the linear case. It is also observed here that the effect of nonlineariy becomes more significant with reducing the wavelength.

Moreover, some of the energy content is shifted below the Hann window limits. In general, we observe that the output voltage

wave is attenuated through the chain at all wavelength regions of the acoustic mode; however, wave amplitude is almost at the

same order of magnitude of the input wave amplitude in hardening nonlinear chain at short wavelength.

For the optical mode wave, we show STFT in Fig. 10. In general, the output voltage wave propagates at higher amplitudes

through the chain in all wavelength limits. Yet this propagation depends significantly on the type of nonlinearity and wave-

length. For a wave propagating in a linear chain at medium wavelength (Fig. 10-a), it can be observed that the wave is not

dispersive and has a significant amplitude localized wave unlike the behavior observed in the same wavelength region of the

acoustic mode. However, the wave is clearly dispersive at shorter wavelengths as depicted in Fig. 10-b for the linear chain.

For the optical branch in the medium wavelength region, (Fig. 10-c and d), the output voltage wave is severely distorted and

brakes down into multiple components. For hardening nonlinearity, the output wave has three components. The first component

has low wavenumber and the wave is dispersive with low amplitude. The second component lies inside the Hann window

(linear limit) and the wave is also dispersive. As for the third component, most of the energy content is shifted above the Hann

window due to hardening nonlinearity. The latter represents a solitary wave. For softening nonlinearity (Fig. 10-d), the output

voltage wave is broken into two components. The first component has a high wavenumber and the wave is dispersive with low

amplitude. However, most of the energy of the linear wave is significantly shifted below the Hann window. In both types of

nonlinearity, we observe a significant frequency shift for the optical branch in the medium wavelength limit since most of the

output energy dilates outside the input signal frequency confined within the Hann window.

Finally, we investigate the wave distortion for the optical branch in the short wavelength domain (Fig. 10-e and f). The results

indicate that the behavior of this mode is similar to that of the acoustic mode in the short wavelength limit. The hardening

nonlinearity develops a localized solitary wave, which has a voltage amplitude much higher than the linear case as shown in

Fig. 10-e. On the other hand, softening nonlinearity stretches the wave significantly in this wavelength limit. The resulting wave

is dispersive with low amplitude. It is noteworthy here that, for the nonlinear chain, some of the energy content is shifted

outside the limits of the input signal in the short wavelength region.

4.3. Contour plots of 2D fourier transform

After analyzing the output voltage of the wave characteristics over time in the spatial domain, we investigate the frequency-

wavenumber characteristics of the system in order to reconstruct the nonlinear dispersion curves and examine the Pseudo-

bandgap observed in Fig. 4-b. This can be done by determining the 2D Fourier transform for the temporal and spatial compo-
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Fig. 9. Short term Fourier transform for energy harvested in acoustic mode and for different types of nonlinearity, R = 107Ω, 𝜃 = 10−10 N/V; (a): k = 𝜋∕2, 𝜖𝛼A2 = 0,

(b): k = 7𝜋∕9, 𝜖𝛼A2 = 0, (c): k = 𝜋∕2, 𝜖𝛼A2 = 0.03, (d): k = 7𝜋∕9, 𝜖𝛼A2 = 0.03, (e): k = 𝜋∕2, 𝜖𝛼A2 = −0.03, (f): k = 7𝜋∕9, 𝜖𝛼A2 = −0.03.

nents. We plot the contour lines of the results in frequency-wavenumber domain for the acoustic mode in Fig. 11 and optical

mode in Fig. 12. To compare the distribution of the frequency-wavenumber component for different types of nonlinearity, we

plot the output voltage power density with the same wavelength inside the same frequency-wavenumber band limit. We focus

only on waves propagating in the medium and short wavelength regions since we have shown that the effect of nonlinearity is

negligible in the long wavelength limit.

For the acoustic mode in the medium wavelength limit (Fig. 11-a, b, and c), it is demonstrated that the hardening nonlinearity

localized the output voltage power spectrum while the softening nonlinearity stretches it over a wider range of frequency-

wavenumber. Moreover, it can be demonstrated that hardening nonlinearity bents the nonlinear dispersion curve (Fig. 11-a)

to a less nonlinear dispersion curve while the softening nonlinearity bents the nonlinear dispersion curve to a more nonlinear
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Fig. 10. Short term Fourier transform for energy harvested in optical mode and for different types of nonlinearity, R = 107Ω, 𝜃 = 10−10 N/V; (a): k = 𝜋∕2, 𝜖𝛼A2 = 0,

(b): k = 7𝜋∕9, 𝜖𝛼A2 = 0, (c): k = 𝜋∕2, 𝜖𝛼A2 = 0.03, (d):k = 𝜋∕2, 𝜖𝛼A2 = −0.03, (e): k = 7𝜋∕9, 𝜖𝛼A2 = 0.03, (f): k = 7𝜋∕9, 𝜖𝛼A2 = −0.03.

dispersion curve; therefore, the wave becomes more dispersive. It is noteworthy that no significant frequency shift can be

observed. For the same mode, but in the short wavelength region (Fig. 11-d, e, and f), similar behavior in localizing and stretching

the power spectrum can be observed. However, the effect here is more significant. For instance, the power spectrum in the case

of hardening nonlinearity is almost linear which indicates the birth of solitons. On the other hand, power spectrum curves are

more nonlinear in the case of softening nonlinear chain.

Next, we investigate the contour plots of 2D Fourier transform for the optical mode (Fig. 12). For the medium wavelength

limit (Fig. 12-a, b, and c), we observe a significant frequency-wavenumber shift in the power spectrum contours for both types

of nonlinearity. However, this shift is more pronounced in the case of hardening nonlinearity. It can be observed that the power

spectrum is broken into mainly three components in the case of hardening nonlinearity while it is divided into two components
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Fig. 11. 2D Fourier transform for harvested voltage in acoustic mode, 𝜃 = 10−10 N/V, R = 107Ω; (a): k = 𝜋∕2, 𝜖𝛼A2 = 0, (b): k = 𝜋∕2, 𝜖𝛼A2 = 0.03, (c): k = 𝜋∕2,

𝜖𝛼A2 = −0.03, (d): k = 7𝜋∕9, 𝜖𝛼A2 = 0, (e): k = 7𝜋∕9, 𝜖𝛼A2 = 0.03, (f): k = 7𝜋∕9, 𝜖𝛼A2 = −0.03.

in the case of softening nonlinearity. This is not surprising since we have observed this broken signal in STFT plots in the pre-

vious section. In Fig. 12-b, it is observed that the higher frequency component has most of the energy content; moreover, this

component has a linear dispersion curve (i.e., constant slope), which indicates that there is a development of solitary wave. For

the short wavelength limit (Fig. 12-d, e, and f), a frequency-wavenumber shift is also observed in the presence of nonlinearity;

however, neither significant shift nor severe wave distortion is demonstrated in this wavelength region. When the chain has

hardening nonlinearity (Fig. 12-e), the power spectrum of the output voltage is concentrated in a linear dispersion curve (strong

soliton) and shifted to higher frequency values. Nevertheless, one can still observe some of the energy content appearing as

nonlinear dispersion curves similar to those observed in the case of linear chain shown in Fig. 12-a. For softening nonlinearity
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Fig. 12. 2D Fourier transform for harvested voltage in optical mode, 𝜃 = 10−10 N/V, R = 107Ω; (a): k = 𝜋∕2, 𝜖𝛼A2 = 0, (b): k = 𝜋∕2, 𝜖𝛼A2 = 0.03, (c): k = 𝜋∕2,

𝜖𝛼A2 = −0.03, (d): k = 7𝜋∕9, 𝜖𝛼A2 = 0, (e): k = 7𝜋∕9, 𝜖𝛼A2 = 0.03, (f): k = 7𝜋∕9, 𝜖𝛼A2 = −0.03.

Fig. 12-f, the power spectrum is shifted to lower frequency values. However, the energy content is not broken into multiple

components, instead the signal is almost concentrated in one branch over wider band of frequency and wavenumber.

5. Discussion

Finally, we add some general comments about simultaneous energy harvesting or sensing and vibration attenuation in non-

linear metastructures based on the analyses carried out in the present study. The output voltage wave propagates to higher

level through the chain only for the optical branch. However, the wave amplitude can be at the same level of input signal when

the chain has hardening nonlinearity for the acoustic mode in the short wavelength limit. This is because solitary wave can be
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observed in this limit. The hardening nonlinearity can also convert the dispersive waves to solitary waves with higher voltage

amplitude in the optical mode. On the other hand, softening nonlinearity stretches the voltage wave over the chain and reduces

the amplitude. Therefore, higher voltage amplitude wave is predicted with hardening chain while lower voltage amplitude is

predicted with softening chain. However, the number of cells engaged in energy harvesting is higher in the latter case. Nonlinear

chains also shift the output signal frequency to higher or lower values at medium and short wavelengths when the nonlinear-

ity is hardening or softening, respectively. However, this shift is significant for the optical mode in the medium wavelength

limit. This significant shift is concentrated in shifting the higher power density component up or down while other lower value

components can also be observed at different frequencies.

Nonlinear chains can be employed toward better simultaneous energy harvesting, sensing, and vibration attenuation. For

instance, the significant increase in the voltage amplitude by hardening chain allows better and faster sensing of the input

disturbance. In addition, the significant frequency shift can be utilized to design electromechanical rectifier [16]. This can be

achieved by coupling such a nonlinear electromechanical chain with a linear electromechanical chain and tuning the frequency

shift region to the bandgap of the linear chain. This will allow energy harvesting (sensing) and wave propagation in only one

direction.

Finally, replacing some of the local electromechanical resonators by local mechanical resonators should preserve the perfor-

mance of vibration attenuation in the structure. This is because the weak electromechanical coupling has no effect on the size

of the bandgap. However, these local mechanical resonators must have equivalent dynamical properties as those of the local

electromechanical resonators. Thus, only finite number of energy harvester can be considered. This will be more meaningful

from the prospective of energy harvesting.

6. Conclusion

In this work, a nonlinear metastructure coupled to a linear electromechanical resonator was studied. The metastructure was

modeled as a chain of masses connected by weakly nonlinear springs. The cells were coupled to electromechanical resonators,

which were also modeled as a spring-mass system and shunted to a load resistor. We employed the method of multiple scales

to derive an analytical approximate solution for the nonlinear dispersion relations. These expressions were validated by direct

numerical integration. The validation showed that the method of multiple scales can accurately predict the cut-off frequencies,

but not the significant frequency shift in the medium wavelength limit of the optical branch. The analytical results indicated

that neither the band structure of linear nor nonlinear chains were affected by the weakly electromechanical coupling. These

findings suggest that energy harvesting does not degrade the vibration mitigation limits in metastructures. However, for very

strong electromechanical coupling, the electromechanical coupling can alter the band structure. Nevertheless, these values of

coupling coefficient are much higher than those in real life engineering applications.

We further investigated the nonlinear voltage output wave propagation by studying the spectro-spatial features using dif-

ferent signal processing techniques. This provided further detailed information about different nonlinear phenomena based on

the type of nonlinearity. The spatial profile of the output voltage wave demonstrated that the wave does not propagate for

higher values comparing to input wave profile in linear chains. The effect of nonlinearity in nonlinear chains appeared as wave

stretching in softening chains or wave localization in hardening chains. It was demonstrated that an acoustic-mode wave in the

short wavelength region can propagate with higher voltage amplitude only for the hardening nonlinear chain. Conversely, an

optical-mode wave in all wavelength regions can propagate with high voltage amplitude in both linear and nonlinear chains.

Yet softening nonlinearity can stretch the wave while hardening nonlinearity can localize it. This wave distortion significantly

depends on the wave length. The images of STFT demonstrated the output voltage wave distortion due to nonlinearity. The

results indicated that there is a significant frequency shift at frequency-wavenumber located in the middle of the optical mode.

Moreover, it was shown that the wave gets divided into multiple components in the medium wavelength limit. Furthermore,

the spectro-spatial analysis revealed that the nonlinear dispersion curves can be reconstructed by a contour of 2D Fourier trans-

form. These contour plots demonstrated the birth of solitary waves in hardening nonlinear metastructures at medium and short

wavelengths.

Finally, the observed significant frequency shift by spectro-spatial analysis in nonlinear metastructures can be employed to

construct electromechanical diodes with simultaneous uni-direction energy harvesting and energy transfer.
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