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ABSTRACT
Vortex-induced vibrations have a considerable effect on

overhead power transmission lines, often leading to fatigue-
failure. While nonlinear models exist for power lines, vibra-
tion dampers, and vortex-induced vibrations, no work com-
bines the nonlinearities stemming from the cable, vibration
damper, and fluid forces in a single model. As power trans-
mission lines are a major component of modern infrastruc-
ture, a thorough understanding of the nonlinear dynamic
interactions of conductors, dampers, and wind forces is cru-
cial. This paper examines a conductor with attached Stock-
bridge dampers under vortex-induced vibration. Sources of
nonlinearity in this system include mid-plane stretching of
the conductor, equivalent cubic stiffness of the Stockbridge
damper, and fluctuating lift force modeled as a Van der Pol
oscillator. The equations of motion for the resulting system
are discretized using Galerkin’s method and solved using the
numerical continuation method. Through parametric anal-
ysis, the effects of factors such as damper position and mass
ratio on system response are determined. Insight is gained
on the combined nonlinear system and a strong foundation
is formed for ongoing study.

INTRODUCTION
Wind-induced vibrations are a major factor in the fa-

tigue failure of overhead power transmission lines, or con-

∗Address all correspondence to this author.

ductors. One specific type of wind-induced vibrations is ae-
olian vibrations. Aeolian vibrations are driven by periodic
vortex shedding that occurs due to cross-flow past a bluff
cylindrical body [1]. They are caused by wind speeds of 1–7
m/s, and consist of relatively low amplitude and high fre-
quency vibrations [2–5]. As a power line undergoes Aeolian
vibration, fatigue damage accumulates on its clamped ends,
potentially leading to failure. To prevent this failure, vibra-
tions can be mitigated by installing Stockbridge dampers
on the conductors near the clamps at either end [6].

The effect of aeolian vibrations on conductors with
dampers or other in-span fittings has been previously stud-
ied using several methods. These include the energy bal-
ance method [7–10] and impedance method [11–13]. The
conductor has been modeled as a cable or Euler-Bernoulli
beam, while Stockbridge dampers have been modeled as
a concentrated force, another Euler-Bernoulli beam, or an
equivalent mass-spring-damper-mass system. Even setting
aside the vortex-induced forcing, there are multiple sources
of nonlinearity in this system. From the attached damper,
there is a cubic nonlinearity from the spring-mass system.
From the conductor itself, nonlinearity stems from mid-
plane stretching of a beam with fixed ends. Dowell’s model
of a nonlinear beam with spring-mass system included the
former nonlinearity [14], and was expanded by Pakdemirli
and Nayfeh to add the latter [15]. This model was expanded
to include axial tension and multiple mass-spring-damper
systems by Barry et al [16], and further extended to include
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a wind-induced forcing term by Bukhari [17].
In previous works, the vortex-induced wind forces were

commonly represented by a single excitation term [6] or
determined from experimental data [9]. However, vortex-
induced vibrations are significantly nonlinear and have been
the subject of numerous studies on their own. This body of
work has been extensively reviewed by Sarpkaya [18], Griffin
and Ramberg [19], Parkinson [20], and Pantazopolous [21].
One notable trait of vortex-induced forces is the lock-in con-
dition. Through experiments, it has been shown that the
vortex shedding frequency locks on to a flexible structure’s
natural frequency in a phenomenon known as lock-in or syn-
chronization. This leads to resonance of vortex-induced vi-
brations, increasing the vortex strength and fluid forces [22].

These fluid forces can be divided into cross-flow and in-
line components oriented perpendicular and parallel to flow
direction respectively. Studies on the response of cylindrical
structures within fluid flow tend to focus on the cross-flow
response because in-line motions are often an order of mag-
nitude smaller than cross-flow response [22]. There have
been numerous models developed to analyze cross-flow re-
sponse, both analytical and numerical. Because of similar-
ities with the vortex shedding process, a number of these
models use equations of nonlinear oscillators such as the
Van der Pol oscillator to represent the fluctuating cross-flow
(lift) force on the structure [23–25]. These models proved
successful in identifying the controlling factor [24, 25] and
modal scaling principle [26, 27] in a structure’s response.
Following these conventions, this work takes into account
the lift force only, utilizing a model based on the Van der
Pol oscillator as detailed by Skop and Balasubramanian [1].

In this paper, this nonlinear model of lift force is cou-
pled for the first time with the nonlinear beam-damper sys-
tem previously described. The conductor is modeled as
an Euler-Bernoulli beam with a number of attached mass-
spring-damper systems. Forces on the conductor include
pretension and the vortex-induced lift force. Sources of non-
linearity in this model include mid-plane stretching, cubic
spring stiffness, and the fluctuation of the lift force. Using
this model, the numerical continuation method is employed
to determine the conductor’s frequency-amplitude relation
for the lock-in case of primary resonance near the system’s
fundamental natural frequency. These results are validated
through comparison to prior literature and an alternate nu-
merical method, then used in parametric studies to deter-
mine the effect of selected parameters on system response.

MATHEMATICAL FORMULATION
A schematic of a single conductor with a pair of at-

tached Stockbridge dampers is shown in Fig. 1. Here, the
conductor is represented by an Euler-Bernoulli beam and

Figure 1: Schematic of a transmission cable with attached
nonlinear vibration absorbers.

the Stockbridge attachments are reduced to mass-spring-
damper-mass systems with equivalent properties. In this
model, the beam has length L, flexural rigidity EI, ax-
ial rigidity EA, mass per unit length m, and diameter D.
Each equivalent damper p has in-span mass Mcp, suspended
mass Mdp, linear stiffness Kp, cubic nonlinear stiffness qp,
and dashpot damping coefficient Cdp. Its position along the
beam from the left-end reference frame is denoted xsp. The
beam is also subject to a pretension T and fluctuating lift
force FL. The surrounding fluid flows perpendicular to the
beam’s axis at a velocity of Vf , and has a density ρf .

For this system, the beam’s axial coordinate is denoted
by x, the cross-flow (transverse) beam displacement is de-
noted by W (x,t) and the displacement of Mdp is denoted
by Vp(t). The number of attached dampers is defined as n.
The notations dot (̇) and prime (′) represent temporal and
spatial derivatives, respectively.

After expressing the Lagrangian and applying Hamil-
ton’s principle for an Euler-Bernoulli beam, the nonlinear
equations of motion and boundary conditions for this sys-
tem can be written as:

mẄ + EIW iv − TW ′′ = EA− T

2L

∫ L

0
W ′2dxW ′′

− 2µẆ + FL +
n∑

p=1

[
McpẄ

+Kp(W − VP ) + qp(W − VP )3

+ Cdp(Ẇ − ˙VP )
]
δ(x− xsp)

(1)
(2)W (0, t) = 0
(3)W ′′(0, t) = 0
(4)W (L,t) = 0
(5)W ′′(L,t) = 0

MdpV̈p(t) =Kp(Wp(xsp, t)−Vp(t))+qp(Wp(xsp, t)−Vp(t))3

+ Cdp(Ẇp(xsp, t) − V̇p(t))
(6)
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where p= 1,2, ...,n.
In Eq. (1), µ is the internal damping coefficient and

FL(x,t) is the fluctuating fluid force across the conductor.
Following Perkins [22], FL can be defined in terms of fluc-
tuating lift coefficient CL(x,t) as:

(7)FL(x,t) =
ρfV

2
f DCL(x,t)

2
Here, CL is defined by two terms: an excitation Q(x,t)

that stems from the response of the conductor and a stall
term. This stall term, shown in Eq. (8), enforces a self-
limiting response for all system parameter values.

(8)CL(x,t) = Q(x,t) − 2α
ωs
Ẇ (x,t)

where ωs is the vortex shedding frequency. Due to the lock-
in condition, it can be assumed that ωs

∼= ωn,j , where ωn,j

is the jth natural frequency for the conductor response.
Following Skop and Balasubramanian [1], the excitation

term Q(x,t) is modelled by a Van der Pol equation:

(9)Q̈− ωsG(C2
L0 − 4Q2)Q̇+ ω2

sQ = ωsFẆ

Here, G and F are constant parameters determined from
experimental data, and CL0 is the lift coefficient for a sta-
tionary cylinder.

For convenience, the above equations are nondimen-
sionalized using the following substitutions of dimensionless
variables:

(10)
ξ = x

L
; ξp = xsp

L
; w = W

r
;

vp = Vp

r
τ = t

L2

√
EI

m
Substituting Eq. (10) into Eqs. (1)–(9) provides nondi-

mensional equations:

ẅ + wiv − 2s2w′′ = λ

2

∫ 1

0
w′2dξw′′ − 2µ̄ẇ + fL

(
q

− 2ᾱ
ω̄s
ẇ
)

+
n∑

p=1

[
α1pẅ + kp(w − vp)

+ γp(w− vp)3 + cdp(ẇ− v̇p)
]
δ(ξ − ξsp)

(11)
(12)w(0, τ) = 0
(13)w′′(0, τ) = 0
(14)w(L,τ) = 0
(15)w′′(L,τ) = 0

α2pv̈p(τ) = kp(wp(ξp, τ) − vp(τ)) + γp(wp(ξp, τ) − vp(τ))3

+ cdp(ẇp(ξp, τ) − v̇p(τ))
(16)

(17)q̈ − ω̄sG
(
C2

L0 − 4q2
)
q̇ + ω̄2

sq = ω̄sF̄ ẇ

where:

(18)

s =
√
TL2

2EI ; λ = 1 − 2s2 r
2

L2 ; µ̄ = µ
L4

EIr
;

fL =
L4ρfV

2
f D

2EIr ; α1p = Mcp

mL
; α2p =

Mdp

mL
;

kp = KpL
3

EI
; γp = qpL

3r2

EI
; cdp =

CdpL
2

Mdp

√
m

EI
;

ᾱ = αr; F̄ = Fr; ω̄s = ωs

√
mL4

EI

The conductor response w and excitation term q have
modal expansions: w(ξ,τ) =

∑
Yj(ξ)w̄j(τ) and q(ξ,τ) =∑

Yj(ξ)q̄j(τ). From the experimental work of Ramberg and
Griffin, it has been demonstrated that a vortex-induced ex-
citation shares the normal modes of the conductor response,
i.e. their mode shapes Yj(ξ) are identical [28, 29].

Galerkin’s Method
To discretize these partial differential equations, an as-

sumed mode shape that satisfies the boundary conditions
is used to approximate w and q. This approximate mode
shape is:

(19)Yj(ξ) = sin(jπξ)
Thus:

(20)w =
∞∑

j=1
w̄j sin(jπξ)

(21)q =
∞∑

j=1
q̄j sin(jπξ)

Once these approximations are substituted into
Eqs. (11), (16), and (17), equality will no longer be sat-
isfied. This results in an error term for each equation, εi,
where i= 1−3. For instance, from Eq. (11):

(22)

ε1 = ẅ + wiv − 2s2w′′ − λ

2

∫ 1

0
w′2dξw′′ + 2µ̄ẇ

− fL

(
q − 2ᾱ

ω̄s
ẇ
)

−
n∑

p=1

[
α1pẅ + kp(w − vp)

+ γp(w − vp)3 + cdp(ẇ − v̇p)
]
δ(ξ − ξsp)

Thus, the the values w̄j and q̄j that satisfy this system
can be determined by setting the weighted integral of each
error expression equal to zero. These weighted integrals are
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formed using the mode shapes Yk as weighting functions
and integrating over the length of the beam, yielding:

(23)
∫ L

0
εiYkdξ = 0

By obtaining the three error functions, substituting into
Eq. (23), and integrating, the system of partial differential
equations in ξ and τ can be transformed into a set of ordi-
nary differential equations that depend solely on τ . For a
system with a single Stockbridge damper (n= 1), this yields
the equations:

(24)

¨̄w + 2α1s
2
j

¨̄w + j4π4w̄ + 2j2π2s2w̄

+ λ

4 j
2π2s2

j w̄ + fL
2ᾱ
ω̄s

˙̄w − fLq̄ + 2µ̄ ˙̄w

+ 2cds
2
j

˙̄w− 2cdsj v̇+ 2ks2
j w̄− 2ksjv+ 2γv3sj

+ 2γs4
j w̄

3 + 6γs2
jv

2w̄ − 6γs3
jvw̄

2 = 0

(25)α2v̈ + cdv̇ + kv + γv3 − γw̄3s3
j − cdsj ˙̄w

− ksjw̄ − 3γsjv
2w̄ + 3γs2

jvw̄
2 = 0

(26)¨̄q − ω̄sG
(
C2

L0 − 3q̄2
)

˙̄q + ω̄2
s q̄ − ω̄sF̄ ˙̄w = 0

where sj = sin(jπξs).
Skop and Iwan have demonstrated that when ωs

∼=ωn,j ,
only the jth mode significantly contributes to the modal
expansion of q(ξ,τ) [26, 27]. Perkins also showed that for
ωs

∼= ωn,j , the only forced component of the conductor re-
sponse w(ξ,τ) is the jth mode. Since this study focuses on
the case of lock-in and primary resonance near the funda-
mental natural frequency, only the first mode shape, j = 1,
of the system will be analyzed moving forward.

The system of nonlinear differential equations (24)–
(26) serves as a model for the conductor-damper system
under wind-induced vibrations. The numerical continua-
tion method was used to determine this system’s frequency-
amplitude relations.

VALIDATION
Two factors were used to validate the continuation

method. The first five natural frequencies were determined
and compared against previous literature, and the system’s
steady-state response was determined and compared to a
numerical solution using the MATLAB routine ode45.

Through simulating the system without forcing or
damping until steady state, the first several natural frequen-
cies of the cable were found. These were compared to pre-
vious works that studied similar systems using the method
of multiple scales [17] and finite element analysis [5].

Table 1: Validation of natural frequencies (Hz) for a conduc-
tor with single damper. ξs = 0.05, α1 = 0.0045, α2 = 0.1088,
s= 80.33, k = 17139.7

Study ωn,1 ωn,2 ωn,3 ωn,4 ωn,5

Present 2.3950 2.6677 4.7941 7.2143 9.6343

Multiple

Scales [17]
2.3634 2.6366 4.8244 7.2402 9.6696

FEA [5] 2.3845 2.6387 4.8164 7.2337 9.6663

As shown in Table 1, there is high agreement between
four of the first five natural frequencies. The first, third,
fourth and fifth frequencies are those of the conductor, while
the second is the natural frequency of the damper. This
comparison indicates that the utilized methods are valid,
giving confidence to the following analysis.

To further validate the results of the continuation
method, the steady-state response obtained by continua-
tion was compared to the direct numerical solution using
MATLAB’s ode45 routine. Fig. 2 displays very good agree-
ment between the phase portraits of these two solutions at
the same excitation frequency.

Figure 2: Phase portrait validation of steady-state conduc-
tor response.
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Figure 3: Vibration amplitude versus nonlinear frequency
for varied values of x1.
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Figure 5: Vibration amplitude versus nonlinear frequency
for varied values of α2.

PARAMETRIC ANALYSIS
To build understanding of the coupled system, the re-

sponse of the conductor was examined. Four parameters
were varied to determine their effect on the conductor’s

Figure 4: Vibration amplitude versus nonlinear frequency
for varied values of α1.

340 350 360 370
0

0.05

0.1

0.15

0.2

Figure 6: Vibration amplitude versus nonlinear frequency
for varied values of cd.

nonlinear frequency-amplitude relation. These parameters
were: damper position ξs, in-span mass ratio α1, hanging
mass ratio α2, and dashpot damping coefficient cd. In all
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cases, the default parameters were: ξs = 0.05, α1 = 0.001,
α2 = 0.1, cd = 94.3, s= 80.33, k = 17139.7, γ = 0.1, µ̄= 0.2,
fL = 148.1, α= 0.183 F = 1.0027, G= 0.3763. Only one pa-
rameter was varied for each simulation. In all figures, solid
lines indicate a curve’s stable region while dashed lines in-
dicate the unstable region, if present.

In Fig. 3, the influence of damper position ξs is illus-
trated. Through numerical simulation, it was determined
that the sine mode shape was not valid for all positions of ξs;
at higher values, this approximation began to break down.
Furthermore, Stockbridge dampers are usually placed near
the conductor ends, as galloping can cause early fatigue
failure for dampers placed further from the ends of the
conductor [30, 31]. For both of these reasons, ξs was var-
ied from 0.05–0.15. As the damper position moves away
from the clamped end, the conductor’s vibration ampli-
tude decreased. This indicates improved performance of the
damper as it moves away from the node at the conductor
end and closer to the vibration antinode at the conductor
midpoint. Additionally, it can be seen that as the amplitude
decreases, the effect of nonlinearity on the system decreases.

Fig. 4 shows that increasing the in-span damper mass
α1 from 0.001 to 0.01 has a minimal effect on the conductor
vibration. Altering this mass by another factor of 10 to
0.1, the system’s nonlinear frequency visibly decreases, but
there is still little effect on the nonlinearity of the system,
and a very slight increase in the amplitude of the response.
The shift in frequency is logical, as placing or increasing
an in-span mass on a beam is known to affect the system’s
natural frequency. Regarding the effect of this mass ratio
on nonlinearity, there is the potential of greater effect if α1
is increased further. However, the presence of an increased
in-span mass would result in further effects on the system’s
natural frequency as well as increased vibration amplitude,
which could adversely affect the system.

In addition, the bulk of mass in a Stockbridge damper
(i.e, ratio of the hanging mass over the total mass of the ca-
ble, α2) has a much more significant effect on the vibration
amplitude, as can be seen in Fig. 5. Increasing α2 in incre-
ments of 0.01 significantly impacts the vibration amplitude;
even this relatively small change in hanging mass displays
increased damper effectiveness. Nonlinearity does not vis-
ibly change with this small variation in hanging mass, but
a larger range of α2 could change this observation. How-
ever, similarly to the effect of increasing ξs, some values of
α2 were found to make the sine approximation of the mode
shape inaccurate, restricting the range of the current study.

In contrast, increasing the dashpot damping cd results
in increased vibration amplitude but decreased effect of non-
linearity, illustrated in Fig. 6. This indicates that a Stock-
bridge damper with higher dashpot damping will actually
be less effective at absorbing the vibration of the conductor,

but will make the system more nonlinear. This behavior,
contrary to the usual effects of damping, merits further in-
vestigation. To make sense of these results, the effect of
dashpot damping should be examined more closely over a
wider range of frequencies, with particular attention given
to the effect before, during, and after resonance.

CONCLUSION
This work seeks to develop comprehension of a system

with multiple sources of nonlinearity. To do so, this sys-
tem, consisting of an overhead power transmission line with
attached Stockbridge dampers undergoing vortex-induced
vibrations, is modeled and analyzed. The model is rep-
resented by a system of coupled nonlinear equations that
incorporate nonlinearity from all three components: mid-
plane stretching from the conductor, cubic stiffness from
the damper, and the oscillation of the vortex-induced lift
force. Once modeled, this system is discretized using the
Galerkin method. Then, using the numerical continua-
tion method, the frequency-amplitude relation of this sys-
tem at steady-state is generated. The utilized methodology
is validated through comparison of natural frequencies to
previous works and comparison of continuation-generated
steady-state response to a direct numerical solution of the
discretized equations.

To gain insight into a specific case of a conductor with
a single Stockbridge damper under the lock-in condition of
primary resonance, parametric analysis is employed. Us-
ing the model described above, the effect of selected system
variables on the system’s frequency-amplitude relation is
determined. It is found that damper effectiveness increases
as the damper position moves away from the conductor end,
as the damper’s hanging mass increases, and as the dash-
pot damping decreases. Furthermore, it is shown that the
system’s nonlinearity decreases with increasing damper po-
sition and dashpot damping. Altering the in-span damper
mass within a small range is found to shift the response
frequency, but not to affect amplitude or nonlinearity.

These results shed light on the fundamental properties
of this coupled nonlinear system, providing a foundation
for future research on the interaction between these three
sources of nonlinearity. The data from the performed para-
metric studies can be used and expanded to optimize a
damper for power lines under wind-induced vibration, while
the nonlinear model of the system itself serves as an excel-
lent base for future study using perturbation methods.
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