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ABSTRACT
Considerable attention has been given to nonlinear meta-

materials because they offer some interesting phenomena such
as solitons, frequency shifts, and tunable bandgaps. However,
only little is known about the spectro-spatial properties of a wave
propagating in nonlinear periodic chains, particularly, a cell
with multiple nonlinear resonators. This problem is investigated
here. Our study examines both hardening and softening nonlin-
earities in the chains and in the local resonators. Explicit expres-
sions for the nonlinear dispersion relations are derived by the
method of multiple scales. We validate our analytical results us-
ing numerical simulations. The numerical simulation is based on
spectro-spatial analysis using signal processing techniques such
as spatial-spectrogram and wave filtering. The spectro-spatial
analysis provides detailed information about the interactions of
dispersive and nonlinear phenomena of waveform in both short
and long-wavelength domains. The findings suggest that nonlin-
ear resonators can have more effect on the waveform than the
nonlinear chains. This observation is valid in both short and
long wavelength limits.

INTRODUCTION
Introducing unique dynamic properties artificially from

engineering configurations and material constituent leads to
promising materials with exceptional characteristics in differ-
ent engineering applications. These materials, which are called
metamaterials, have attracted many researchers because of their
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wider applications in different fields. They were first introduced
in electromagnetic and optical wave propagation and later ex-
tended to mechanical waves applications [1, 2].

Mechanical metamaterials are often fabricated from periodic
cells arranged carefully. The earlier study for periodic structure
was in the 1900s [3–8]. These structures form a bandgaps due to
Bragg scattering at wavelengths near their lattice constant. This
enables, for example, vibration attenuation at low frequencies lo-
cated inside the bandgap. However, the condition associated with
Brag scattering makes this application limited to large structures.

Attaching local resonators on the crystal allows a bandgap
formation at wavelengths much larger than the lattice constant
[9]. This enables the vibration control of small structures at low
frequencies, thus widening the possible applications of metama-
terials. Further investigation on the comparison between local
resonator and Bragg scattering concepts can be found in [10].
Multiple bandgaps at different frequency ranges can also be de-
veloped by using multiple resonators with different parameters
[11, 12].

Beyond vibration suppression, nonlinear metamaterials of-
fer a wide pool of applications including gap solitons [13], dark
solitons, envelope and dark solitons [14], wave non-reciprocity
[15], and altering band structure limits [16].

Weakly nonlinear acoustics metamaterials were investigated
analytically by using different perturbation techniques [17, 18].
For instance, Narisetti et al. [19], employed the Lindstedt-
Poincare method in deriving the dispersion relations for nonlin-
ear chain and validated the results numerically. The method of
multiple scales can deal with more complicated nonlinear sys-
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FIGURE 1: A schematic diagram for the nonlinear acoustics metamaterial

tems like multiple waves interaction [20].
Wave non-reciprocity can be used in uni-direction acoustics

wave propagation (e.g. Acoustics diode). This can be obtained
by coupling linear and nonlinear mediums [15, 21, 22], bifurca-
tion in granular structures [23], or nonlinear hierarchical internal
structures [24]. Moreover, acoustics rectifier can be obtained by
a cubically weakly nonlinear oscillator attached to a linear pe-
riodic lattice such that the operation frequencies of the rectifier
coincide with the secondary resonances of the nonlinear oscilla-
tor [25].

Analyzing nonlinear metamaterials is often performed by
tracking the change in the temporal state properties and dis-
cussing the existence of solitary waves, and dispersion charac-
teristics. However, Ganesh and Gonella [26] have studied the
spectro-spatial wave packet propagation features of nonlinear pe-
riodic chains by some signal processing tools. This allows de-
tecting wave localization (born of solitons), and reconstructing
dispersion curves. However, although their analytical expres-
sions could predict the shift in dispersion curves, many other
nonlinear phenomena could not be inferred. Zhou et al. [27],
extended Ganesh and Gonella’s work by including local linear
resonators and studied the spectro-spatial wave features of non-
linear acoustic metamaterial. In both studies [26, 27], the effect
of nonlinearity in the chain was limited to short wavelength re-
gion only. None of the studies included the nonlinearity in local
resonators and determine how nonlinear resonators affect disper-
sion characteristics or propagation of solitary waves in both long
and short-wavelength domains.

Seeking for a nonlinear system that offers interesting wave
propagation phenomena in all wavelength regions, which is a rare
find, we investigate for the first time the nonlinear vibration of a
nonlinear chain with multiple nonlinear local resonators analyti-
cally and numerically. The nonlinearity is assumed to be weakly
cubic type with softening or hardening nonlinear coefficients. In
one case, we study the effect of nonlinearity attributed to the

nonlinearity in the chain only. In another case, we examine the
nonlinearity effect caused by the local resonator only. We em-
ploy the method of multiple scales to generate approximate close
form expressions for the dispersion curves of a nonlinear (linear)
chain with any number of linear (nonlinear) resonators. We fol-
low this by numerical simulations of the metastructure subjected
to a wave packet input impulse. The results are used to check
our analytical model in predicting the cut-off frequency. We then
use multiple signal processing tools in order to investigate the
spectro-spatial properties of the nonlinear acoustic metamaterial.
Finally, we study the effect of both hardening and softening non-
linearities in the chain and in the local resonators. The findings
suggest that very interesting dispersion characteristics and prop-
agation of solitary wave can be realized in both long-wavelength
and short-wavelength domains using nonlinear chain with multi-
ple nonlinear local resonators. These interesting wave propaga-
tion characteristics can be employed to design superior vibration
isolation and acoustic diode devices.

SYSTEM DESCRIPTION AND MATHEMATICAL MOD-
ELING

A schematic diagram for the acoustic metamaterial chain is
depicted in Fig. 1. The chain consists of periodic cells. Each cell
is represented by a mass, m, and it is connected to the other cells
by a linear or nonlinear spring with linear coefficient, k, and non-
linear coefficient εΓ. There are s number of local resonators in
each cell. The ith resonator consists of a mass, mi and connected
to the jth cell by a linear or nonlinear spring with linear coefi-
cient, ki, and a nonlinear coefficient, εΓi. It is noteworthy here
that the system is reduced to a linear system if ε = 0.

The equations of motion for the nth cell can be expressed as
follows
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mün + k(2un−un−1−un+1)+

εΓ((un−un−1)
3 +(un−un+1)

3)+
s

∑
i=1

ki(un− vni)+
s

∑
i=1

εΓi(un− vni)
3 = 0

(1)

miv̈ni + ki(vni−un)+ εΓi(vni−un)
3 = 0 (2)

For the case of nonlinear chain only, we set Γi = 0 while we
set Γ = 0 in the case of nonlinear resonator only.

Eqns. (1)-(2) can be written in the non-dimensional form as

ün +2un−un−1−un+1 + εΓ̄((un−un−1)
3+

(un−un+1)
3)+

s

∑
i=1

k̄i(un− vni)+
s

∑
i=1

εΓ̄i(un− vni)
3 = 0

(3)

ω2
n

ω2
di

v̈ni +(vni−un)+ εΓ̄i(vni−un)
3 = 0 (4)

where the dots here denote the derivative in terms of the
non-dimensional time τ = ωnt, Γ̄ = Γ

ω2
n m , k̄i =

ki
ω2

n m , ω2
n = k/m,

and ω2
di = ki/mi.

Approximate Analytical Solution by the Method of Mul-
tiple Scales

For weakly nonlinear systems like the one presented in Eqns.
(3)-(4), perturbation techniques can be employed to obtain ap-
proximate analytical solution of the dispersion curves. Here we
use the method of multiple scales to present explicit expressions
for the dispersion relations. The method of multiple scales is
advantageous over other techniques due to the simplicity of han-
dling and collecting the secular terms in multiple equations or
complicated systems. The approximate solution can be repre-
sented up to second order approximation as

un(t,ε) = un0(T0,T1)+ εun1(T0,T1) (5)

vni(t,ε) = vni0(T0,T1)+ εvni1(T0,T1) (6)

where T0 = τ is the fast time scale and T1 = ετ is the slow time
scale. The system can now be represented by two independent
variables (scales) and applying the full derivative is not valid any
more. Instead, we can represent the time derivative by the chain
rule as

(¨) = D2
0 +2εD0D1 + ... (7)

where Dn =
∂

∂Tn
.

The solution of the linear system can be expressed as

un = Aei(nk̄−ωT0)+ c.c (8)

vni = Biei(nk̄−ωT0)+ c.c (9)

where k̄ = aq is the nondimensional wavenumber. For conve-
nience, we drop the bar from k̄ in the subsequent analysis since
the linear stiffness of the chain k does not appear any more in the
normalized parameters.

Substituting Eqns. (5)-(7) into Eqns. (3)-(4), collecting the
coefficients of ε0&ε , and then substituting Eqns. (8)-(9), (refer
to [28] for more details) one can write the linear dispersion rela-
tion for all cases of nonlinearity as

−ω
2 +(2−2cosk)+

s

∑
i=1

k̄i(1−Kωi) = 0 (10)

where Kωi =
1

1−ω2
n ω2/ω2

di
. To derive the nonlinear solution, the

vibration amplitude should be written in the polar form as

A =
1
2

αeiβ (11)

and solving for the amplitude α , reveals that α = α0, where α0
is a constant, for both cases of nonlinearity. The phase can be
written for each case as

Nonlinear chain Γ̄ 6= 0

β =− 3Γ̄α2(1− cosk)2

2ω(1+∑
s
i=0

k̄iω2
n /ω2

di
1−ω2

n ω2/ω2
di

Kωi)
T1 (12)

Nonlinear resonator Γ̄i 6= 0

β =−
∑

s
i=1[

3
8 α2(1−Kωi)

3Γ̄i(
k̄i

1−ω2
n ω2/ω2

di
−1)]

ω(1+∑
s
i=1

k̄iω2
n /ωdi

1−ω2
n ω2/ω2

di
Kωi)

T1 (13)

Therefore, the nonlinear dispersion curves can be written as

ωnl = ω + εβ
′ (14)

where β
′

is the derivative in terms of the slow time scale.
From Eqn. (12), it can be observed that the nonlinear fre-

quency in the nonlinear chain case is a function of wavenumber.
In fact, the correction factor β ∼ 0 when k is very small and hence
the effect of chain nonlinearity (β ) is negligible for long wave-
length limit at both acoustic and optical modes. On the other
hand, for the case of the nonlinear resonator (Eqn. (13)), the
wavenumber does not explicitly appear in the expression of the
correction factor and hence the only wavenumber dependence in
this case is through the linear dispersion relation (i.e. Eqn. (10)).
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Also note the appearance of a new term (1−Kωi)
3 in the numer-

ator of Eqn. (13), which can have a significant effect on the cor-
rection factor β and hence on the nonlinear frequency when the
resonator is tuned to the excitation frequency regardless of the
wavenumber. It is noteworthy here that the derived expression
for, β in Eqn. (13), is correct and different from that obtained
in [16], since the latter omitted the contribution of the resonators
on the left hand side from the equations at order ε [19, 20] (for
more information refer to [29]).

FIGURE 2: Validating the results of nonlinear chain with single
linear resonator, εΓ̄α2 = 0.06, εΓ̄1α2 = 0.

FIGURE 3: Validating the results of nonlinear chain with two
linear resonators, εΓ̄α2 = 0.06, εΓ̄1α2 = εΓ̄2α2 = 0.

VALIDATING ANALYTICAL RESULTS
To validate the dispersion relations obtained by the method

of multiple scale, we compare the current results with those ob-
tained in the literature for a nonlinear chain single linear res-
onator system obtained by Lindstedt-Poincare methods and with

FIGURE 4: Validating the results of linear chain with two non-
linear resonators, εΓ̄α2 = 0, εΓ̄1α2 = 0.06, εΓ̄2α2 = 0.

those obtained numerically. For this part, we select ωn = ωd1 =
1000 rad/sec, k̄i = 1, s = 1, εΓ̄α2 = 0.06, and εΓ̄iα

2 = 0.
For numerical simulations, we simulate a chain consisting

of 500 cells and attached to it s number of resonators (e.g. s = 1
in the first part of validation, then we set s = 2). The boundaries
of the chain are assumed to be a perfectly matched layer (PML)
in order to absorb and dissipate incoming waves, as well as, min-
imize wave reflections at each end [19]. The system is excited by
a transient wave packets signal at different wavenumbers. The
velocity of the wave packet is selected to limit the motion of
the signal in one direction and suppress any waves traveling in
the opposite direction [26]. Therefore, the system is excited at
first cell while the wave will travel to the other end (cell 500).
The numerical integration is done by MATLAB built in integra-
tor ODE45. After running the simulation at a specific wavenum-
ber, 2-D Fast Fourier Transform is applied on the displacement
matrix and the frequency and wavenumber corresponding to the
maximum amplitude value are collected. These values represent
the point in the dispersion curve corresponding to the wavenum-
ber of excitation signal [20]. The wavenumber is then swept to
reconstruct other points in the dispersion curves numerically.

Fig. 2 presents a comparison between our results, the liter-
ature results, and numerical results. Our multiple scales results
show very good agreement for the case of nonlinear chain with
single linear resonator.

For the case of nonlinear chain with multiple linear res-
onators, we validate our analytical results using numerical simu-
lation only since the literature lacks simulations for similar non-
linear systems. The results are shown in Fig. 3 for the case of
two resonators where ωd1 = ωn and ωd2 = 1.5ωn. The results
show that the method of multiple scale can accurately predict, in
general, dispersion curves and the trend of this type of nonlin-
earity. However, it fails to predict any other nonlinear dynamics
phenomena such as solitons and the presence of secondary reso-
nances as we will show in the following sections.
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(a) (b)

(c) (d)

FIGURE 5: Analytical dispersion curves for acoustics metamaterial and two local resonators with different types and
sources of nonlinearities: (a) Softening chain nonlinearity εΓ̄α2 = −0.06, εΓ̄1α2 = εΓ̄2α2 = 0; (b) Hardening resonator
nonlinearity εΓ̄2α2 = 0.06, εΓ̄1α2 = εΓ̄α2 = 0; (c) Softening resonator nonlinearity εΓ̄1α2 =−0.06, εΓ̄α2 = εΓ̄2α2 = 0;
(d) Softening resonator nonlinearity εΓ̄2α2 =−0.06, εΓ̄1α2 = εΓ̄α2 = 0.

Furthermore, the numerical and analytical results of the non-
linear resonator are plotted in Fig. 4. We can observe that the
method of multiple scales is a good predictor of the upper and
lower branches of the dispersion curve, but a poor predictor of
the middle branch when the natural frequency of the system is
ωd1 = ωn. Therefore, this region should be handled by a differ-
ent approach.

THE EFFECT OF DIFFERENT TYPES OF NONLINEARI-
TIES ON THE BANDGAP BOUNDARIES

After checking the obtained solution for each case, we ex-
amine the effect of nonlinearity on the wave propagation in vari-
ous wavelength regions. In addition to Figs. 3-4, we present the
analytical dispersion curves for different kind and source of non-
linearities in Fig. 5.

We can observe from Fig. 3 and Fig. 5.(a) that the nonlinear
chain affects mainly the short wavelength region. The effect of

nonlinearity in the long wavelength region is almost negligible;
however, a significant shift of the dispersion curves is observed
at high wavenumbers. On the other hand, Fig. 4 and Figs. 5.(b)-
(d) show that systems with nonlinear resonators has significant
impact on the dispersion curves in the long wavelength region.

Moreover, it is demonstrated that the effect of nonlinear res-
onators becomes more pronounced at frequencies near the res-
onator frequency. For instance, in Fig. 4 and Fig. 5.(c), a signif-
icant shift occurs near the resonance frequency of the nonlinear
resonators ωd1 = ωn. However, making the second resonators
ωd2 = 1.5ωn nonlinear, shifts the effect of nonlinearity to other
frequency regions.

It is also demonstrated that tuning the bandgap can be done
by changing the type of nonlinearity. In Fig. 5.(a) and Figs. 5.(c)-
(d), softening nonlinearity shifts the dispersion curves lower, thus
increasing the size of the bandgap. On the other hand, hardening
nonlinearity shifts the dispersion curves up as shown in Figs. 3-4
and Fig. 5.(b).
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(a) (b)

(c) (d)

(e) (f)

FIGURE 6: Spatial profile of the wave packet for different types and sources of nonlinearities at frequencies in the upper
branch of dispersion curve: (a) Linear chain εΓ̄α2 = εΓ̄1α2 = εΓ̄2α2 = 0; (b) Hardening chain nonlinearity εΓ̄α2 = 0.03,
εΓ̄1α2 = εΓ̄2α2 = 0; (c) Softening chain nonlinearity εΓ̄α2 = −0.03, εΓ̄1α2 = εΓ̄2α2 = 0; (d) Hardening resonator
nonlinearity εΓ̄2α2 = 0.03, εΓ̄1α2 = εΓ̄α2 = 0; (e) Softening resonator nonlinearity εΓ̄2α2 =−0.03, εΓ̄1α2 = εΓ̄α2 = 0;
(f) Hardening resonator nonlinearity εΓ̄1α2 = 0.03, εΓ̄2α2 = εΓ̄α2 = 0.
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FIGURE 7: Spatial spectrograms of the wave packet for different types and sources of nonlinearities at frequencies in
the upper branch of dispersion curve: (a) Hardening chain nonlinearity εΓ̄α2 = 0.03, εΓ̄1α2 = εΓ̄2α2 = 0, k = π/9;
(b) Hardening resonator nonlinearity εΓ̄2α2 = 0.03, εΓ̄1α2 = εΓ̄α2 = 0, k = π/9; (c) Softening resonator nonlinearity
εΓ̄2α2 =−0.03, εΓ̄1α2 = εΓ̄α2 = 0, k = π/9; (d) Hardening resonator nonlinearity εΓ̄1α2 = 0.03, εΓ̄2α2 = εΓ̄α2 = 0,
k = π/9; (e) Hardening resonator nonlinearity εΓ̄2α2 = 0.03, εΓ̄1α2 = εΓ̄α2 = 0, k = 7π/9; (f) Hardening resonator
nonlinearity εΓ̄1α2 = 0.03, εΓ̄2α2 = εΓ̄α2 = 0, k = 7π/9.
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SPECTRO-SPATIAL ANALYSIS
Although the cut-off frequencies can be predicted by the

method of multiple scales, other nonlinear wave propagation fea-
tures cannot be characterized. This suggests the use of spectro-
spatial analysis to characterize the wave propagation in the pro-
posed metastructure. It should be noted that all the following
simulations are based on the optical branch because this branch is
more affected by nonlinearity than the acoustic branch. Also the
numerical simulation for the optical mode is much faster. More-
over, Figs. 6-7 are plotted at the end of numerical simulations.
The numerical simulations lasted for t = 8 sec.

The spatial profile of the wave packet are depicted in Fig. 6
for different types of nonlinearities. We observe that the non-
linear chain gives rise to wave localization with increasing
wavenumber when the nonlinearity is hardening Fig. 6.(b) and
wave dispersive when the nonlinearity is softening Fig. 6.(c).
However, Figs. 6.(a)-(c) indicate that nonlinear hardening chain
has no effect on the wave profile in long wavelength region
for both types of nonlinearities . The opposite is observed in
Figs. 6.(d)-(f) when the system is changed to linear chains with
nonlinear local resonators. It is evident that the wave profile is
distorted in all wavelength domains. In Fig. 6.(d), a hardening
resonator exhibits dispersive wave at long wavelength and local-
ized wave at short wavelength. On the other hand, a softening
resonator shows an interesting behavior at long wavelength limit
since the wave profile has localized and dispersive components;
however, the localized component vanishes reducing wavelength
(i.e. increasing wavenumber) as shown in Fig. 6.(e). This effect
of resonator nonlinearity depends significantly on the frequency
of the nonlinear resonator. For example, tuning the nonlinear
resonator away from the upper dispersion curve results in signif-
icant reduction in the effect of nonlinear wave propagation phe-
nomena, specifically, in the short wavelength region as shown in
Fig. 6.(d). It is noteworthy that, albeit the analytical dispersion
curves fail to predict the cut-off frequency and other important
wave propagation features, they accurately predict how the non-
linearities in both the chains and resonators affect the wave prop-
agation across all wavelength domains. In that, their predictions
about the effect of nonlinearities agree with the spatial profile
plots. For example, both Fig. 3 and Fig. 6.(b) show hardening
chains to have no effect in long-wavelength domain and signifi-
cant effect in short wavelength domain.

Fig. 7 shows the spectrograms of the wave propagating
through the metastructure in both short and long-wavelengths.
As we observed before, the nonlinear chain has no effect on the
structure in the long wavelength limit. This is clearly shown in
Fig. 7.(a), the output wave profile is exactly the same as the input
signal. However, as shown in Figs. 7.(b)-(c), a significant distor-
tion to the input signal is observed when we change the nonlin-
earity from chain to local resonator. The signal becomes clearly
dispersive along the chain with significant equal amplitude when
the nonlinearity is hardening as shown in Fig. 7.(b). When the

nonlinearity is of softening type, we observe multiple localized
signals, as well as, dispersive components (Fig. 7.(c)). The dis-
persive components are generated at wide range of wavenumbers
outside the initial signal wavenumber content. In the short wave-
length region, the effect of nonlinear resonator is similar to that
of nonlinear chain, the output signal is localized unlike in the
linear case where the signal at this limit is completely disper-
sive. This indicates that soliton formation is also possible in the
case of nonlinear resonator as shown in Fig. 7.(e). In Fig. 7.(d)
and Fig. 7.(f), it is observed that a nonlinear resonator with fre-
quency away from the excitation frequency has less effect on the
wave profile, specifically, in the short wavelength limit where it
is completely linear.

Finally, we present the effect of nonlinear resonators in the
image of 2-D fast Fourier transform depicted in Fig. 8. The lin-
ear signal is similar to the nonlinear signal as shown in Fig. 8.(a),
thus confirming that the nonlinear chain has no effect in this
limit. In Fig. 8.(b)-(c), the nonlinear resonator shows a wider
distribution of the signal along both the frequency and wavenum-
ber ranges in the long wavelength limit for both types of non-
linearity. This observation suggests that such nonlinear acous-
tic metamaterial can be suitable for applications such as acous-
tic diode. Fig. 8.(e) demonstrates that the nonlinear resonator is
also effective in the short wavelength limit since it localizes the
signal and stretches it over a wider region. However, it is also
demonstrated in Fig. 8.(d) and Fig. 8.(f) that the effect of non-
linear resonator vanishes when it is not tuned carefully. Over-
all, both spectral (wavenumber-frequency domain) and topolog-
ical/physical (space-time domain) analyses provide good insight
about the nonlinear effect on wave propagation across all wave-
length regions. But only the topological analysis can provide de-
tail information about the physical features of wave propagation
such as solitons formation.

CONCLUSION
In this paper, a nonlinear acoustics metamaterial with mul-

tiple local resonators was investigated analytically and numeri-
cally. In one case, we examined the nonlinearity in the chains
and in another we investigated the nonlinearity in the resonators.
Closed-form expressions were presented for the nonlinear dis-
persion relations using the method of multiple scales. These ex-
pressions are more general since they can be applied for nonlin-
ear chains with any number of nonlinear local resonators. The
analytical results were validated via comparison with those in
the literature and those obtained numerically. The validation re-
vealed that the analytical results can predict the cut-off frequency
in both cases; however, it fails to predict the dispersion curve
near the resonator frequency. The analytical dispersion equation
for the case of nonlinear resonator shows a significant shift at
all wavelength limits, particularly when the excitation frequency
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(a) (b)

(c) (d)

(e) (f)

FIGURE 8: 2-D Fourier transform of the response for different types and sources of nonlinearities at frequencies in
the upper branch of dispersion curve: (a) Hardening chain nonlinearity εΓ̄α2 = 0.03, εΓ̄1α2 = εΓ̄2α2 = 0, k = π/9;
(b) Hardening resonator nonlinearity εΓ̄2α2 = 0.03, εΓ̄1α2 = εΓ̄α2 = 0, k = π/9; (c) Softening resonator nonlinearity
εΓ̄2α2 =−0.03, εΓ̄1α2 = εΓ̄α2 = 0, k = π/9; (d) Hardening resonator nonlinearity εΓ̄1α2 = 0.03, εΓ̄2α2 = εΓ̄α2 = 0,
k = π/9; (e) Hardening resonator nonlinearity εΓ̄2α2 = 0.03, εΓ̄1α2 = εΓ̄α2 = 0, k = 7π/9; (f) Hardening resonator
nonlinearity εΓ̄1α2 = 0.03, εΓ̄2α2 = εΓ̄α2 = 0, k = 7π/9. Dashed lines represents linear frequency bands.
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is near the resonator frequency. Hence suggesting that nonlin-
ear resonators, unlike nonlinear chains, affect wave propagation
in the long wavelength domain. This observation was consis-
tent with the topological analysis. In the spectro-spatial anal-
ysis, we demonstrated that the effect of hardening nonlinearity
appears as localizing the wave, whereas, that of softening non-
linearity appears as dispersing the wave. This effect depends on
the nonlinear resonator frequency and how close it is to the in-
put wave frequency. Spectrograms and images of 2-D short term
Fourier transform also confirmed these observations. They also
showed that the nonlinear resonator has output signal stretching
over wider range of frequencies and wavenumbers in the long
wavelength region. In addition, the nonlinear resonators and non-
linear chains exhibited similar waveform characteristics in short
wavelength region when the nonlinear resonator was tuned prop-
erly. These observations suggest that such a nonlinear metamate-
rial, consisting of nonlinear (or linear) chain and multiple linear
(or nonlinear) resonators, are suitable for various applications in-
cluding acoustic diodes and broadband vibration isolation.
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