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ABSTRACT
We propose a novel online model-based motion planning al-

gorithm for a family of rehabilitation exoskeletons to improve
transparency in user-guided operation. In this study, we assume
that the short-term human movement intention can be embedded
in the time-delay dimensions of motion signals. The model-based
estimation is employed to obtain the interaction load between
the dynamical subsystems respectively controlled by the human
and exoskeleton. The objective of the proposed motion planning
algorithm is to reduce the interaction load, which leads to the
establishment of a least-square optimization problem. A Sup-
port Vector Regression (SVR) model, driven by the time-delayed
motion data, is implemented to solve the optimization problem
by generating the acceleration of tracking reference. The motion
planning algorithm based on SVR can be combined with a variety
of trajectory tracking controllers. To ensure the efficiency of the
algorithm for online applications, we also design the SVR model
so that its properties can be calculated recursively based on lat-
est data sets. The performance and characteristics of the motion
planning algorithm are then observed and discussed through the
control simulations of a wearable wrist exoskeleton designed for
pathological tremor alleviation. The results show that while the
planned tracking reference can approximate the synthetic human
movement intention, the motion planning accuracy can be lim-
ited by system disturbances, and the delay of signals caused by
digital filters.

∗Corresponding Author (Email: obarry@vt.edu)

NOMENCLATURE
The mathematical notations used are listed as following:
F(Z) Single-input function F with argument Z (to differentiate

from multiplications of parenthesized terms)
‖Z‖n n-norm of a matrix Z (n = 2 if not specified)
cm m×1 vector whose elements equal to c ∈ R
cm×n m×n matrix whose elements equal to c∈R (m, n fit with

neighboring blocks if not specified)
In Identity matrix of dimension n (m, n fit with neighboring

blocks if not specified)
Z−T Transposed inverse of Z (since (Z−1)T = (ZT)−1)
Z > 0 A square matrix Z is positive definite
Z+ The Moore-Penrose pseudo inverse of Z
diag(z) Convert a vector z into a diagonal matrix, whose diag-

onal elements are the elements of z
vec(Z) Reshape a diagonal matrix Z into a column vector,

whose elements are the diagonal elements of Z

INTRODUCTION
The past decades have witnessed the emergence of many rehabil-
itation exoskeletons for physiotherapy and movement assistance
[1,2]. To improve the safety and efficiency of exoskeleton opera-
tion, the control system of exoskeleton has been investigated ex-
tensively in previous studies [3–6]. The transparency in human-
robot interaction, i.e., the minimization of resistance/reaction
forces the robot applies to the user that leads to high compliance
towards natural human motions [7], is crucial to the smoothness
of user-guided control in rehabilitation exoskeletons [8]. While
transparency can be evaluated by the interaction loading between
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FIGURE 1: THE CAD DESIGN OF THE TREMOR ALLEVI-
ATING WRIST EXOSKELETON (TAWE) [13].

the user and the exoskeleton [6, 7], it is challenging to obtain an
ideal transparent exoskeleton that not only avoids encumbering
the user, but also augments the movements following the exact
intentions of the user. Some earlier studies effectively improved
the exoskeleton transparency through model-based feedforward
compensations and disturbance observer-based controllers [7,9].
Other studies adopted user motion predictions for more compli-
ant exoskeleton control or motion planning [6, 10–12]. In par-
ticular, the human intention of motion in these studies were pre-
dicted based on the user-applied loads, which were measured by
force/torque sensors [6,10,12] or estimated through EMG signals
and musculoskeletal models [11].

Our team is developing TAWE - a wearable wrist exoskele-
ton for pathological tremor alleviation as presented in Fig. 1
[13]. Unlike many stationary exoskeletons in the abovemen-
tioned studies, TAWE is not equipped with force sensors, and
has limited computation and actuation capacities. The mecha-
nism of TAWE is also back-drivable, which results in the dynam-
ical interaction between user motions and exoskeleton controls.
Finally, in the applications to pathological tremor suppression,
the voluntary movements of the user can be overlaid by tremors,
making it more difficult to identify the volitional intention of mo-
tions. These challenges were rarely addressed in previous stud-
ies. Therefore, the development of TAWE motivates us to ex-
plore efficient motion planning methods, which can be applied
in real-time under system disturbances and tremors.

In the paper, we introduce a novel real-time motion plan-
ning algorithm for a family of rehabilitation exoskeletons to im-
prove transparency in user-guided operation. The algorithm is
proposed based on the assumption that the human movement in-
tention in the short-term can be embedded in the time-delay di-
mensions of motion signals [14]. Model-based estimation is then
employed to obtain the interaction load between the dynamical
subsystems respectively controlled by the human and exoskele-
ton. The objective of the proposed motion planning algorithm is
to reduce the interaction load, which leads to the establishment
of a least-square optimization problem. A Support Vector Re-
gression (SVR) model driven by the time-delayed motion data
is implemented to solve the optimization problem by generating

the acceleration of tracking reference. The motion planning algo-
rithm based on SVR can be combined with a variety of trajectory
tracking controllers. We also design the SVR model so that its
properties can be calculated recursively based on a moving win-
dow of data sets, making it efficient for online applications.

The rest of the paper is arranged as follows: We first ana-
lyze the dynamical interplay in the human-exoskeleton control
system, and proposed a few model assumptions. The optimiza-
tion problem of motion planning is then proposed, which leads
to the design of the SVR algorithm that calculates the exoskele-
ton tracking reference. Later, the performance and characteris-
tics of the proposed motion planning algorithm is observed and
discussed through the control simulations of TAWE. Finally, we
summarize the findings of this paper and propose future works.

HUMAN-EXOSKELETON CONTROL SYSTEM
In this paper, we study the motion planning of a family of reha-
bilitation exoskeletons that follow a generic human-exoskeleton
multibody model structure in the form of [5, 13]

M(q)q̈ =−C(q, q̇)q̇−h(t,q, q̇)+JT
w(q)w+u (1)

where t ∈ R+ is the time variable; q ∈ Rnq is the generalized
coordinate; w ∈ Rnw is the bounded perturbation/disturbance;
M ∈ Rnq×nq is the inertia matrix, which satisfies M = MT > 0;
C ∈ Rnq×nq is the Coriolis and centripetal matrix; h ∈ Rnq is
the vector of generalized forces, which includes potential energy
forces and energy dissipation forces, and time-dependent excita-
tions; and Jw ∈ Rnw×nq is the disturbance input Jacobian matrix.

For convenience, we define the control input as u = u1 +u2,
where u1 ∈ Rnq and u2 ∈ Rnq as the generalized control inputs
from human and exoskeleton, respectively. These definitions are
based on following assumptions:

(Asm. 1) The exoskeleton input ue ∈ Rnu,e can actuate all the
human degrees of freedom (DOF) within the closed
kinematic chain, i.e, the human-exoskeleton system is
fully-actuated. This leads to nu,e ≥ nq, and

u2 = JT
u,eue (2)

where Ju,e ∈Rnu,e×nq is the exoskeleton input Jacobian
matrix that satisfies rank(Ju,e) = nq.

(Asm. 2) Uncertain loads from the user are generalized into di-
rect forces/torques acting at the human joints, which
are included in h. Hence, we do not consider user load
uncertainties as a part of u1. We also assume that the
uncertainties include pathological tremor effects.

With a smooth tracking reference r(t) ∈ Rnq , the tracking
error and control system state can be defined as

ε = q− r; x =
[
εT ε̇

T]T (3)
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Then we can write the control system of Eq.(1) as

ẋ =

[
ε̇

−r̈−M−1(Cq̇+h−JT
ww)

]
+

[
0

M−1

]
u (4)

For human-exoskeleton cooperative control, it is important
to note that the human control input u1 follows a tracking refer-
ence (i.e., the true human intention of movement) different from
that followed by the exoskeleton input u2. To avoid confusion,
we assume the user movement intention as an unknown tracking
reference r1(t)∈Rnq , and the known tracking reference followed
by the exoskeleton is defined as r2(t) ∈ Rnq .

Assumptions on Human Control Input Dynamics
When u2 ≈ 0, i.e., the exoskeleton serves as only a passive load,
the user input u1 controls the human-exoskeleton system to fol-
low r = r1. However, due to the complexity of human neuro-
musculoskeletal system [15], the unknown dynamics of u1 can
be volatile and extremely complicated. Hence, we propose two
more assumptions to simplify the analysis:

(Asm. 3) Within a delayed time window t ∈ T, the short-term
dynamics of u1 can be approximated by a nonlinear
function α as [14]

u1 ≈ α(zq,zr,1) (5)

with

zq =
[
qT

t,1 qT
t,2 · · · qT

t,m
]T

; zr,i =
[
rT

i,t,1 rT
i,t,2 · · · rT

i,t,m
]T
(6)

where qt,i, rt,i ∈ Rnq (where i = 1, 2, · · · , m) are the
generalized coordinate and tracking reference at time
ti ∈ T, respectively.

(Asm. 4) The control input α can adapt to property changes in
the human-exoskeleton dynamical system, and elimi-
nate steady-state tracking errors.

Hence, (Asm. 3) embeds the user input in the time-delay di-
mensions of human intentions and movements [14], and takes
into consideration the time-delay effects in the system. Although
the true nature of α is unknown, a variety of controllers can
fulfill the requirements of (Asm. 4) under certain conditions.
As an example, when the dynamical properties of the model
is time-invariant, and the user motion is very slow, we obtain
Ṁ ≈ 0. Then we can design a Proportional-Integral-Derivative
(PID) controller

u1 = u1,PID =−(cu,1,Iε I + cu,1,Pε + cu,1,Dε̇) (7)

where

ε I =
∫ t

0
(q(τ)− r(τ))dτ (8)

is the integral of tracking error; and cu,1,I, cu,1,P, cu,1,D > 0 are
respectively the P, I, and D gains. A stabilizing PID controller

from Eq.(7) requires a Hurwitz state matrix [13]

A =

 0 I 0
0 0 I

−cu,1,IM−1 −cu,1,PM−1 −cu,1,DM−1

 (9)

Since M > 0, the eigenvalues κA of A can be solved from a set
of nq characteristic equations

κM,iκ
3
A+cu,1,Dκ

2
A+cu,1,PκA+cu,1,I = 0 (i = 1, 2, · · · , nq) (10)

where κM,i is the ith eigenvalue of M. The Routh-Hurwitz
criterion for A requires that the control parameters satisfy
cu,1,Pcu,1,D > cu,1,IκM,i for every characteristic equation. Again,
while a PID controller can eliminate steady-state errors, the con-
troller from Eq.(7) has very restrictive application conditions,
which will be applied only in the simulations in later sections.

Adaptive Controller for Exoskeleton
When u1 ≈ 0, i.e., the user is not actively controlling the move-
ments, the human-exoskeleton system can be controlled to track
an arbitrarily designed know trajectory r = r2 via u2. Here,
we define p ∈ Rnp as the uncertain dynamical parameters of the
model based on the following assumption:

(Asm. 5) The dynamical properties of the model (i.e., M, C,
and h) are bounded and time-invariant (or slowly time-
varying). This leads to ṗ≈ 0.

Hence, an adaptive controller u2 and its parameter estimation
update law can be designed as [5]

u2 = JT
p(t,q, q̇)p̂+u f +ub; (11a)
˙̂p =−Γ

−1Jpξ (11b)

with the intermediate terms u f , ub, ζ , ξ ∈ Rnq defined as

u f = M0ζ̇ +C0ζ +h0; ub =−R(q)ξ (12a)

ζ = ṙ−K1ε; ξ = ε̇ +K1ε (12b)

where Γ, R, K1 ∈ Rnq×nq are symmetric positive definite ma-
trices; M0, C0, and h0 are the known dynamical properties and
follows the definitions of M, C, and h, respectively; p̂ is the esti-
mation of p; and Jp is the Jacobian matrix of p which satisfies [5]

JT
pp+u f = Mζ̇ +Cζ +h (13)

When disturbance w ≈ 0, the adaptive controller can stabilize
Eq.(4) by converging the Lyapunov function designed as

V = (ξ TMξ + ε
TK2ε + p̃T

Γp̃)/2 (14)

where p̃ = p̂−p, and K2 ∈ Rnq×nq satisfies K2 = KT
2 > 0. The

stability proof of Eq.(14) can be referenced from [5]. Compared
to the PID controller in Eq.(7), the adaptive controller in Eq.(11)
is more rigorous and suitable for exoskeletons.

It should be noted that the adaptive controller from Eq.(11)
can also be used to identify the uncertain dynamical parameters
(e.g., mass and moments) of the human-exoskeleton model. This,
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again, requires that the user does not actively control the move-
ments. When there are no model uncertainties (p = 0), the above
controller is reduced to a Proportional-Derivative (PD) trajectory
tracking controller for multibody system.

Interaction between Human and Exoskeleton
This subsection discusses the dynamical interplay between the
human and exoskeleton, which considers the existences of both
u1 and u2. This requires a final model assumption on the patho-
logical tremors, disturbances, and sensor noises:

(Asm. 6) The pathological tremors, disturbances, and sensor
noises mostly belong to bands of noticeably higher fre-
quencies than those of voluntary user motions and ex-
oskeleton tracking references.

Hence, we modify Eq.(1) into a dynamical model in the low-
frequency domain

M̄(q̄) ¨̄q =−C̄(q̄, ˙̄q) ˙̄q− h̄(t, q̄, ˙̄q)+v+ ᾱ + ū2 (15)

where ” ¯ ” denotes low-pass filtered properties, and v∈Rnq con-
tains unfiltered model disturbances and the perturbation caused
by low-pass filtering, which is assumed to be bounded. Specifi-
cally, h̄ and ū2 does not contain terms related to tremors. Also,
based on (Asm. 3) and (Asm. 5), we obtain ᾱ = α(z̄q,zr,1),
where zr,1 is not affected by low-pass filtering.

By considering that the user and exoskeleton each controls a
part of the human-robot control system, we separate Eq.(15) into
two dynamical subsystems

M̄1 ¨̄q =− C̄1 ˙̄q− h̄1 + ᾱ−λ (16a)
M̄2 ¨̄q =− C̄2 ˙̄q− h̄2 + ū2 +v+λ (16b)

where M̄i, C̄i, and h̄i (with i = 1, 2) are the components of M̄,
C̄, and h̄, respectively. In particular, M̄i satisfies M̄i = M̄T

i > 0.
We introduce λ as the generalized interaction force between the
two subsystems.

In a few studies [6, 12], λ is obtained through fused mea-
surements from multiple sensors, which indicate the intention
of movements, where Eq.(16a) and Eq.(16b) have fixed struc-
tures as the human and exoskeleton subsystems, respectively. In
this study, we consider that the exoskeleton only provides partial
movement assistance, which is reasonable for wearable devices
due to their power capacity limitations. Hence, the dynamical
properties of Eq.(16b) can be designed arbitrarily based on the
level of movement assistance. The adaptive controller in Eq.(11)
can be used to obtain the estimated properties M̂, Ĉ, and ĥ, so
that the properties of Eq.(16b) are reasonably designed.

Finally, based on Eq.(16a), we can represent λ as

λ = ᾱ−M̄1 ¨̄q− C̄1 ˙̄q− h̄1 (17)

which involves the voluntary intention of movements. On the
other hand, similar to Eq.(11), we can design the controller u2 so

FIGURE 2: THE FRAMEWORK OF THE PROPOSED EX-
OSKELETON MOTION PLANNING ALGORITHM.

that its filter version can be written as

ū2 = M̄2ζ̇ + C̄2ζ + h̄2− R̄(q̄)ξ̄ (18)

Hence, λ can be estimated from Eq.(16b) as

λ ≈ β (z̄q,zr,2)≈ M̄2
¨̄
ξ + C̄2ξ̄ − R̄(q̄)ξ̄ (19)

While Eq.(17) and Eq.(19) represents the identical λ , the human
intention r1 is embedded implicitly in the nonlinear dynamics of
q̄. The dynamics of r1 and α , again, are extremely difficult to
model. However, λ estimated via Eq.(19) can reflect the coordi-
nation level between the human and robot. Small λ magnitudes
indicate that the exoskeleton can cooperatively control the des-
ignated subsystem Eq.(16b) following the user intention. In the
next section, we discuss the real-time motion planning of r2. The
objective of motion planning is to minimize λ .

REAL-TIME MOTION PLANNING

This section discusses the motion planning of r2 that minimizes
λ for the user-guided exoskeleton control. The general motion
planning framework is shown in Fig. 2. The motion planning
algorithm is established on the discrete-time domain with

t = k/cs (20)

where k is the discrete time used to label discrete-time variables;
and cs > 0 is the sampling frequency in Hz. By defining a win-
dow Tk,m at discrete time k with m delays, we propose the motion
planning scheme of r2 as

r2,k+1 = r2,k + ṙ2,k/cs; ṙ2,k+1 = ṙ2,k + r̈2,k/cs (21)

with the approximation

r̈2,k ≈ γk(ω,ur,k); ur,k =
[
z̄T

q,k,m zT
r,2,k,m

]T
(22)

where γ ∈ Rnq is a nonlinear function; ω is the tunable model
parameters; z̄q,k and zr,2,k are collection vectors of time-delayed
terms from Tk,m defined as

z̄q,k,m =
[
q̄T

k q̄T
k−1 · · · q̄T

k−m

]T ; zr,2,k,m =
[
rT

2,k rT
2,k−1 · · · rT

2,k−m
]T

(23)
Hence, based on Eq.(16b) and Eq.(18), we introduce δ as

δ k = M̄−1
2,k(λ k +vk) = ¨̄qk− γk + zδ ,k (24)
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where the intermediate term zδ is

zδ ,k = K1ε̄k +M̄−1
2,kC̄ξ̄ k +M̄−1

2,kR̄kξ̄ k (25)

and ¨̄qk is numerically approximated by

¨̄qk ≈ c2
s (q̄k+1−2q̄k + q̄k−1) (26)

When v is small, δ is comparable to λ . As the objective of mo-
tion planning is to minimize λ , the basic least square cost func-
tion of the motion planning optimization is proposed as

J (ω̂k) = (ω̂T
k Pω̂k + zT

δ ,k,µ Qzδ ,k,µ)/2 (27)

where P and Q are positive definite diagonal matrices, and zy,k,µ
is a collection vector of δ over a window Tk,µ at discrete time k
with µ delays, which is defined as

zδ ,k,µ =
[
δ

T
k δ

T
k−1 · · · δ

T
k−µ

]T
(28)

The optimization problem is solved by minimizing J , which
yields the estimated parameter ω̂ that minimizes δ over the win-
dow Tk,µ . The estimated parameter ω̂ at discrete time k is then
used for the upcoming motion planning of r2. It should be noted
that J can be modified to consider additional criteria including
safety and range of motion constraints. There is also a variety
of options for the structure of γ and the optimizer for J . The
next subsection discusses an approach to the motion planning of
r2 using online Support Vector Regression.

Online Support Vector Regression
Support Vector Regression (SVR) is the application of Support
Vector Machine (SVM) in regression [16–19], which is model-
free and capable of handling nonlinearities. The least square
SVR nonlinearly maps the input data into a higher-dimensional
feature space, and performs linear regression on the nonlinear
mappings of input data. Based on the least square cost function
Eq.(27), we employ SVR for the identification of γ used in mo-
tion planning. Hence, the function of γ can be written as

γk = Ωφ k(ur,k)+b+Cpξ̄ k; Ω =
[
ω1 ω2 · · · ωnq

]T (29)

where b ∈ Rnq is the bias; Cp = CT
p > 0 is a constant coefficient

matrix; and φ ∈ Rnq is the nonlinear projection of input ur from
Eq.(22); ω i (with i = 1, 2, · · · , nq) are derived from

ω =
[
ωT

1 ωT
2 · · · ωT

nq

]T
(30)

The impedance term Cpξ̄ k is introduced to improve the stability
of r2, and prevent it from drifting far away from the current co-
ordinate. Hence, based on Eq.(24) and Eq.(29), we introduce the
output y as

yk = c2
s (q̄k+1−2q̄k + q̄k−1)+ zδ ,k−Cpξ̄ k (31)

This representation also indicate that Cp should be reasonably
selected, so that it does not significantly affect the robustness of
adaptive controller.

Based on the above setups, the Lagrangian function of the
optimization problem can be established as

L (ω̂k) = J (ω̂k)−θ
T
k zr,y,µ (32)

where θ is the Lagrange multiplier vector corresponding to a col-
lection of constraints zr,y defined as

zr,y,µ =
[
rT

y,k rT
y,k−1 · · · rT

y,k−µ

]T
(33a)

ry,k−i = Ω̂kφ k−i +δ k−i + b̂k−yk−i (i = 0, 1, · · · , µ) (33b)

In this study, we simplify the cost function so that P = I, and
Q = (1/cQ)I where cQ > 0. The Karush-Kuhun-Tucker (KKT)
conditions is formulated for the dual problem of Eq.(32) as [16]

∂L

∂ω̂k
= 0 → ω̂ i,k = Φkθ B,i,k (i = 1, 2, · · · , nq) (34a)

∂L

∂zδ ,k,m
= 0 → δ k−i = cQθ A,i,k (i = 0, 1, · · · , µ) (34b)

∂L

∂ b̂k
= 0 → 11,µ θ B,i,k = 0 (i = 1, 2, · · · , nq) (34c)

∂L

∂θ
= 0 → ry,k−i = 0 (i = 0, 1, · · · , µ) (34d)

where the intermediate terms are derived from

Φk =
[
φ k φ k−1 · · · φ k−µ

]
; θ k =

[
θ

T
A,0,k θ

T
A,1,k · · · θ

T
A,µ,k

]T
(35a)

Θk =
[
θ A,0,k θ A,1,k · · · θ A,µ,k

]T
=
[
θ B,1,k θ B,2,k · · · θ B,nq,k

]
(35b)

Based on the substitutions of ω and θ , the KKT conditions yields
the least square problem[

Yk 0nq,1
]

Π
−1
k =

[
Θ̂

T
k b̂k

]
(36)

where

Πk =

[
Φ

T
k Φk + cQI 1µ,1

11,µ 0

]
; Yk =

[
yk yk−1 · · · yk−µ

]
(37)

By employing the radial basis function (RBF) kernal function
[19] designed as

K (ur,k−i,ur,k− j) = φ
T
i φ j = exp(−‖ur,i−ur, j‖2/c2

K ) (38)

where i, j = 0, 1, · · · , µ and cK > 0, γ at discrete time k+1 is
calculated based on the model driven by previous data as

γk+1 =
[
Θ̂

T
k b̂k

][
Φ

T
k φ k+1

1

]
+Cpξ̄ k+1 =

[
Θ̂

T
k b̂k

][
ψk
1

]
+Cpξ̄ k+1

(39)
where ψ is a collection vector of kernel terms

ψk =


K (ûr,k+1,ur,k)

K (ûr,k+1,ur,k−1)
...

K (ûr,k+1,ur,k−m)


T

(40)
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As previously mentioned, it is crucial to ensure the effi-
ciency of the motion planning algorithm so that it can operate
on line. To obtain θ in real-time [17], we employ an iterative ap-
proach to calculate the update of Π

−1 based on data in a moving
window. When the data of q̄k+2 is available for the calculation
of yk+1, we obtain an augmented matrix as

Πk,k+1 =

 1+ cQ
[
φ T

k+1Φk 1
][

Φ
T
k φ k+1

1

]
Πk

 (41)

By defining an intermediate vector

zK ,k,i =

[
Φ

T
k φ k−i

1

]
(i =−1, 0, 1, · · · , µ) (42)

which can be calculated using the RBF kernel function, we can
obtain based on Schur complement [20] that

Π
−1
k,k+1 =

[
zΠ,2 −zΠ,2zT

Π,1
−zΠ,2zΠ,1 Π

−1
k + zΠ,2zΠ,1zT

Π,1

]
(43)

where

zΠ,1 = Π
−1
k zK ,k,−1; zΠ,2 = 1/(1+ cQ− zT

K ,k,−1zΠ,1) (44)

After that, with Π
−1
k,k+1 alternatively presented via intermediate

terms as

Π
−1
k,k+1 =

[
ZΠ,3 ZΠ,4
ZT

Π,4 ZΠ,5

]
(45)

where ZΠ,5 is a 2×2 matrix. We can then obtain

ZΠ,6 = ZΠ,3−ZΠ,4Z−1
Π,5ZT

Π,4 (46)

Finally, the updated Π
−1 can be calculated as

Π
−1
k+1 =

[
Zπ,6 + zΠ,8zΠ,7zT

Π,7 −zΠ,8zΠ,7

−zΠ,8zT
Π,7 zΠ,8

]
(47)

where

zΠ,7 = ZΠ,61µ,1; zΠ,8 =−1/(11,µ zΠ,7) (48)

Therefore, Π
−1 can be efficiently updated online through the

above process efficiently without matrix inversion computations.

Remarks on the Proposed Method
In summary, the proposed motion planning algorithm is designed
based on the objective of minimizing interaction load λ between
the user and exoskeleton, which leads to the parameters Θ and b
used in the planning of tracking reference acceleration ṙ2 through
Eq.(39). The algorithm can be combined with a variety of con-
trollers, and does not require measurements of acceleration or
force/torque. The employed online SVR algorithm provides an
efficient data-driven method to realize nonlinear motion plan-
ning. It should be noted that the RBF kernel adopted in this
study can also be replaced by other kernels (e.g., polynomial ker-
nel, hybrid kernel [18]), which may yield potential improvements
under certain conditions.

While the derivation is long, the online SVR algorithm at
discrete time k can be summarized as follows - (1): obtain yk
from Eq.(31) and update Yk in Eq.(37); (2): calculate Θ̂k and
b̂k from Eq.(36); (3): obtain uk+1 based on Eq.(22) and calculate
ψk in Eq.(40); (4): calculate γk+1 for motion planning in Eq.(39);
(5): iteratively update Π

−1
k through Eq.(41-48); and (6): return

to Step (1) for discrete time k+1.
In the application, it should be noted that the model-based

estimation of δ requires the inversion of matrix M̄2, which re-
quires the user to carefully design the exoskeleton controlled sub-
system in Eq.(16b) to avoid numerical instability. Also, any sig-
nificant perturbation v can undermine the motion planning per-
formance due to poor estimation of the interaction load λ .

NUMERICAL SIMULATIONS
This section presents the control simulations of TAWE with the
application of the proposed motion planning algorithm. The
simulations are carried out in MATLAB [21]. The human-
exoskeleton system of TAWE is modeled as a constrained closed-
loop multibody system with two degrees of freedom (DOF) [5],
which are qRUD and qFE on the wrist radial-ulnar deviation and
flexion-extension directions, respectively.

The human input dynamics in real life is very complicated.
In the simulations, we simplify the user input as the PID con-
troller in Eq.(7) by default. The synthetic user motion intention,
i.e., the tracking reference r1 for human control input u1 is a
set of randomly generated quasi-periodic time series based on a
frequency band of 0.2-0.4 Hz. Again, r1 is configured to be un-
known to the TAWE controller. The simulation is performed on
a sample rate of 1000 Hz, and the control input update rates for
both u1 and u2 are 250 Hz. The default motion planning and
controller parameters are selected as

Cp = I; cQ = 1×10−4; cK = 1; m = 25 (49a)

µ = 25; K1 = 4I; R−1 = 0.0625I; Γ
−1 = I (49b)

cu,1,P = 1; cu,1,I = 0.0625; cu,1,D = 0.25 (49c)

Simulations without Disturbances
The first set of simulation trials are carried out in the zero-
disturbance condition to observe the ideal performance of the
motion planning algorithm. Under this condition, low-pass fil-
ters are not applied to the motion signals, which leads to v = 0.
Hence, Eq. (24) can provide an accurate estimation of δ .

We first observe the motion planning of r2 with the
impedance term only. We also assume that the dynamical proper-
ties of the model (i.e., M, C, and h) are known and implemented
in u1 and u2, which are both designed as model-based PD con-
troller (Eq.(11) without the adaptive term). The motion planning
and trajectory tracking control results are shown in Figs. 3(a) and
3(b). While the impedance term can prevent the planned refer-
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FIGURE 3: THE COMPARISON OF SYNTHETIC MOVE-
MENT INTENTION r1, SYSTEM STATE q, AND EX-
OSKELETON REFERENCE r2 GENERATED BY MOTION
PLANNING IN RUD (SUBFIGURES (a), (c)) AND FE (SUB-
FIGURES (b), (d)) DIRECTIONS, WHERE THE MOTION
PLANNING IN SUBFIGURES (a) AND (b) INVOLVES THE
IMPEDANCE TERM ONLY; THE MOTION PLANNING IN
SUBFIGURES (c) AND (d) INVOLVES BOTH IMPEDANCE
AND SVR TERMS.

ence r2 from drifting away from q, r2 noticeably deviates from
r1. The trajectories of q are attracted closer to r1, since u1 in this
trial adopts a larger control gain (R−1 = 0.25I).

When the SVR model is activated, the exoskeleton reference
r2 can closely approximate the synthetic movement intention r1,
as shown in Figs. 3(c) and 3(d). We also notice that the trajec-
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FIGURE 4: THE SHORT-TERM COMPARISON OF SYSTEM
STATE q AND EXOSKELETON REFERENCE r2 GENER-
ATED BY MOTION PLANNING IN RUD (SUBFIGURES (a),
(c)) AND FE (SUBFIGURES (b), (d)) DIRECTIONS, WHERE
SUBFIGURES (a) AND (b) SHOWS THE COMPARISON FOR
A SHORT PERIOD OF TIME AFTER t = 45 s; SUBFIGURES
(c) AND (d) SHOWS THE COMPARISON FOR A SHORT PE-
RIOD OF TIME AFTER t = 50 s.
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FIGURE 5: THE COMPARISON OF SYNTHETIC MOVE-
MENT INTENTION r1 AND EXOSKELETON REFERENCE
r2 GENERATED BY MOTION PLANNING IN RUD (SUB-
FIGURE (a)) AND FE (SUBFIGURE (b)) DIRECTIONS,
WHERE r2,PD AND r2,PID ARE GENERATED WHEN THE
USER INPUT u1 IS RESPECTIVELY DESIGNED AS A PD
CONTROLLER AND A PID CONTROLLER.

tories of q and r2 converge with each other during steady states.
It is important to show that r2 is not a random walk result, i.e.,
r2 being simply a delayed version of q. Therefore, we closely
compared q and r2 in the short-term as shown in Fig. 4. In Figs.
4(a) and 4(b), both q and r2 trajectories are declining along time,
where the trajectory of r2 in Fig. 4(b) is ahead of q. Similarly,
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FIGURE 6: THE COMPARISON OF SYNTHETIC MOVE-
MENT INTENTION R1 AND EXOSKELETON REFERENCE
r2 GENERATED BY MOTION PLANNING IN RUD (SUB-
FIGURE (a)) AND FE (SUBFIGURE (b)) DIRECTIONS,
WHERE r2,m=25, r2,m=50, AND r2,m=100 ARE GENERATED
BASED ON SVR DELAY PARAMETERS m = 25, m = 50, and
m = 100, RESPECTIVELY. NOTE THAT THE UPDATE OF
SVR MODEL PARAMETERS Θ AND b ARE STOPPED FOR
ALL MOTION PLANNING AT t = 40 s.
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FIGURE 7: THE COMPARISON OF ESTIMATED INTER-
ACTION LOADS δ IN RUD (SUBFIGURE (a)) AND FE
(SUBFIGURE (b)) DIRECTIONS, CORRESPONDING TO
THE DIFFERENT MOTION PLANNING CASES IN FIG. 6,
WHERE r2,m=25. HERE, r2,online IS GENERATED BY MO-
TION PLANNING ALGORITHM BASED ON THE DEFAULT
PARAMETERS IN EQ.(49), WHERE THE SVR MODEL PA-
RAMETER Θ AND b IS CONSTANTLY UPDATED. FOR
THE OTHER CASES, THE UPDATES OF Θ AND b ARE
STOPPED AT t = 40 s.

the trajectories of r2 are ahead of q during the climbing stage as
shown in both Figs. 4(c) and 4(d). These results imply that r2
is not a random walk result. The lag of r2 in Fig. 4(a) is likely
caused by the overshoot in the previous climbing stage.

When the dynamical properties are unknown, a PD con-
troller u1 cannot compensate for the inertia and loads uncovered
by u2, which results in steady-state tracking errors. In Fig. 5,
we observe that such steady-state errors also result in r2 signifi-
cantly deviated from r1 during steady states. On the other hand,
with u1 designed as a PID controller, the steady-state deviation
of r2 from r1 is eliminated. These results suggest that the motion
planning algorithm is similar to a forecaster of q based on only
the patterns of time-delayed data q and r2. The SVR model can-
not infer steady-state errors between q and synthetic movement
intention r1. Hence, u1 is designed as a PID controller with the
default parameters in Eq.(49) in the following simulations.

Note that SVR model is not suitable for long-term regres-
sion, and the model parameter Θ and b used in Eq.(39) are re-
quired to be constantly updated. To demonstrate this, we com-
pared the r2 trajectories generated under different delay param-
eters m = 25, m = 50, and m = 100, where for each case it is
also configured that µ = m. The results in Fig. 6 show similar
performances from these three cases before t = 40 s, where all
r2 trajectories accurately approximate r1. However, all r2 tra-
jectories start to deviate from r1 after Θ and b stop updating at
t = 40. The corresponding estimated interaction loads δ also sig-
nificantly rise after t = 40 s, which implies that the obsolete Θ
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FIGURE 8: THE COMPARISON OF SYNTHETIC MOVE-
MENT INTENTION r1, SYSTEM STATE q, AND EX-
OSKELETON REFERENCE r2 GENERATED BY MOTION
PLANNING IN RUD (SUBFIGURE (a)) AND FE (SUBFIG-
URE (b)) dIRECTIONS, IN THE PRESENCE OF DISTUR-
BANCES, NOISES, AND TREMORS.

and b can no longer provide accurate regression results.

Simulations with Disturbances
This subsection discusses the simulation results with the involve-
ment of disturbances (above 10 Hz), sensor noises (above 10
Hz), and synthetic pathological tremors (3-6 Hz [22]), which are
all randomly generated as quasiperiodic signals. In practice, the
wrist kinematics of the user is not directly available and needs to
be identified for the controller design [5, 13, 23]. Hence, we also
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FIGURE 9: THE COMPARISON OF SYNTHETIC MOVE-
MENT INTENTION r1, SYSTEM STATE q, AND EX-
OSKELETON REFERENCE r2 GENERATED BY MOTION
PLANNING IN RUD (SUBFIGURE (a)) AND FE (SUBFIG-
URE (b)) DIRECTIONS, IN THE PRESENCE OF DISTUR-
BANCES, NOISES, TREMORS, AND ACTIVE TREMOR
SUPPRESSION THROUGH BMFLC.
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FIGURE 10: THE COMPARISON OF SYNTHETIC MOVE-
MENT INTENTION r1 AND EXOSKELETON REFERENCE
r2 GENERATED BY MOTION PLANNING IN RUD (SUB-
FIGURE (a)) AND FE (SUBFIGURE (b)) DIRECTIONS, IN
THE PRESENCE OF DISTURBANCES, NOISES, TREMORS,
AND ACTIVE TREMOR SUPPRESSION THROUGH BM-
FLC. HERE, r2,IIR−3 AND r2,IIR−5 ARE GENERATED BY
MOTION PLANNING WITH 3RD ORDER AND 5TH ORDER
IIR FILTERS, RESPECTIVELY.

add to the simulation a real-time wrist kinematic identification
(WKI) algorithm based on the Extended Kalman Filter [23, 24],
which runs along with the controller and motion planning algo-
rithm. The states q estimated through WKI are then low-pass
filtered with a 3rd order Infinite Impulse Response (IIR) filter
at 2 Hz. Finally, the delay parameters for SVR are selected as
m, µ = 50 for the following simulations.

The simulation results without tremor suppression is shown
in Fig. 8. Without suppression, the synthetic tremors are also
considered as disturbances, whose effects can be clearly ob-
served from the small oscillations along the trajectories of q. We
also observe a significant delay of q and r2 from r1, which is
mainly caused by the IIR filter. This delay affects the motion
planning performance, and results in a noticeable deviation of
r2 from r1. On the other hand, the trajectories of planned refer-
ence r2 based on the low-pass filtered states are much smoother
compared to those of q.

We then implemented the band-limited multi-frequency
Fourier linear combiner (BMFLC) model for active tremor sup-
pression [13,25], based on the assumption that tremor signals can
be approximated by the linear combinations of harmonic waves
of different frequencies from a certain bandwidth. The BMFLC
compensator established on the matching bandwidth can be di-
rectly applied through the adaptive controller in Eq.(11), where
the amplitudes of the harmonic waves are the unknown param-
eters constantly estimated by the update law in Eq.(11b). The
simulations result with active tremor suppression are shown in
Fig. 9, which shows that the oscillation amplitude in the trajec-
tories of q are significantly reduced. The motion planning of r2,

however, remains deviated from the synthetic movement inten-
tion r1 due to the delay introduced by the IIR filter.

To further observe the effect of delay caused by IIR filter,
we compared the performances of motion planning under 3rd or-
der and 5th order IIR filters. As shown in Fig. 10, the delay
and inaccuracy of motion planning become more severe with the
increase of filter order. Hence, it can be concluded that the ma-
jor challenge is posed by delays introduced by filters, which can
significantly affect the SVR regression and the motion planning
performance.

In summary, we observe through simulations that the pro-
posed motion planning algorithm can generate exoskeleton refer-
ence r2, which can closely approximate the synthetic movement
intention r1 when the disturbance in the system is small. The
algorithm can also be combined with the wrist kinematic identi-
fication algorithm and tremor suppression controller. However,
the motion planning performance is limited in the presence of
large disturbance and delays introduced by filters. Finally, the
algorithm can run at a rate beyond 2000 Hz with SVR delay pa-
rameters m, µ = 50 (on a AMD Ryzen 7 1800X CPU), making
it efficient enough for real-time application.

CONCLUSION AND FUTURE WORK
This paper proposed a novel online modeled-based motion plan-
ning algorithm for a family of rehabilitation exoskeletons to im-
prove transparency in user-guided operation. We first analyzed
the dynamics of the human-exoskeleton control system. Based
on the assumption that the human movement intention in the
short-term can be embedded in the time-delay dimensions of mo-
tion signals, the model-based estimation was employed to obtain
the interaction load between the dynamical subsystems respec-
tively controlled by the human and exoskeleton. The objective
of the motion planning algorithm was set to reduce the interac-
tion load, which led to the establishment of a least-square opti-
mization problem. A Support Vector Regression (SVR) model
was then employed to solve the optimization problem by gen-
erating the exoskeleton tracking reference. We also designed the
SVR model so that its properties can be calculated recursively for
efficient real-time applications. The performance and character-
istics of the motion planning algorithm were then observed and
discussed through the control simulations of TAWE - a wearable
wrist exoskeleton designed for pathological tremor alleviation.
We observed that the planned tracking reference can approxi-
mate the synthetic human movement intention when the system
disturbance is small. The algorithm can also be combined with
the wrist kinematic identification algorithm and tremor suppres-
sion controller. However, the performance of the motion plan-
ning algorithm can be limited by system disturbances, and delays
in signals introduced by filters.

For future works, we will investigate multi-step motion plan-
ning algorithms to overcome the effect of delays. We will also
explore different optimization and regression model setups. Last
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but most importantly, we will experiment the motion planning
algorithm on human subjects through TAWE, and improve the
performance and safety of the algorithm based on user feedback.
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