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Abstract Vortex-induced vibrations are one of the
major factors in fatigue failure of power transmission
lines and can be mitigated using vibration absorbers in
the form of Stockbridge dampers. Since power trans-
mission lines play an important role in modern infras-
tructure, a thorough understanding of the nonlinear
dynamical interactions between conductors, dampers,
and wind forces is crucial. Although different nonlin-
ear models exist for conductor vibration with attached
dampers or under wind force, no work combines all
these nonlinearities in a single model and examines the
dynamics of the conductor along with dampers. In an
attempt to fill this gap, this work combines the non-
linearities from the mid-plane stretching of the con-
ductor, equivalent cubic stiffness of the Stockbridge
damper, and fluctuating lift force modeled as a Van der
Pol oscillator in a single model to investigate the non-
linear vortex-induced vibrations. In this work, the con-
ductor is modeled as a simply supported beam and the
Stockbridge damper as a mass–spring–damper–mass
system with a combination of cubic and linear stiff-
ness. The governing equations of motion are solved
analytically using the method of multiple scales for
the case of primary resonance between the fluctuating
lift-force and conductor. Analytical findings are further
validated by comparing against the numerical integra-
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tion of a reduced-order system, and the results show
an excellent match. The analysis is extended by con-
ducting a parametric study to investigate the effect of
different system parameters on the frequency response
curves. These findings are promising and further pro-
vide a direction to design an optimal vibration absorber.

Keywords Nonlinear vibration · The method of
multiple scale · Wake oscillator

1 Introduction

The use of suspended cables can be found in numerous
engineering applications due to their flexible structure
and capability of transmitting forces or signals across
vast distances.One significant applicationof suspended
cables, also known as conductors, is in overhead power
transmission lines, which play an essential role inmod-
ern infrastructure. Any failure of power transmission
lines causes not only discomfort in daily life but also a
substantial economic loss to power industries. Due to
their long flexible structure with low structural damp-
ing, power transmission lines are highly susceptible
to vortex-induced vibrations or VIV, which play a cru-
cial role in the fatigue failure of the power transmission
cables/conductors. Therefore, it is necessary to develop
a complete understanding of cable/conductor dynam-
ics under various circumstances during VIV; this is the
focus of the current work.
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VIV is driven by periodic vortex shedding that
occurs due to cross-flow past a bluff cylindrical body
[1]. When the frequency of vortex shedding is close
enough to the natural frequency of the body, primary
resonance occurs,which further leads to potential insta-
bility (large amplitude oscillations) in the system [2].
Although in the case of suspended cables, the maxi-
mum amplitude of these VIV is on the order of magni-
tude of the cable diameter, their high-frequency results
in the accumulation of fatigue damage on the clamped
ends of the conductor and eventually leads to fatigue
failure [3–6]. This failure is commonly mitigated by
installing Stockbridge dampers on the conductors near
the clamps at either end. These passive dampers can
reduce or even eliminate conductor vibrations, but their
performance depends on positioning, the properties of
both conductor and damper [7], and cable-wind interac-
tion. The response of a cable/conductor underVIVwith
dampers or other in-span fittings (e.g., spacers, suspen-
sion clamps, aircraft warning spheres) has been previ-
ously studied using several methods such as the energy
balance method, the method of impedance, matrix
transfer method, the statistical method, and the multi-
physics approach [8–17].However, only the energybal-
ance method and the method of impedance reflect the
complex coupling between the conductor and damper
dynamics and hence, are themost widely usedmethods
for analysis. Also, it should be noted that the dynamic
analyses mentioned above ignore the nonlinearity in
the primary system of conductor and dampers, making
them incapable of thoroughly describing the system’s
response under all circumstances. Therefore, it is nec-
essary to include all possible sources of nonlinearity in
the system to understand the dynamics of the system
completely.

In the existing literature, the conductor is modeled
as a Euler–Bernoulli beam. In contrast, Stockbridge
dampers have been modeled as a concentrated force
[7], another Euler–Bernoulli beam [4,5], or an equiva-
lent mass–spring–damper–mass system [6]. One of the
primary sources of nonlinearity in the system stems
from the mid-plane stretching of a cable with immov-
able ends. Also, in the attached damper, there exists
a cubic nonlinearity from the equivalent stiffness of
the spring–mass system. The system with these non-
linearities has been widely studied in the literature.
For the sake of completeness, some of the pioneer-
ing works are summarized here. Dowell’s model of
a nonlinear Euler–Bernoulli beam with a spring-mass

system included the mid-plane stretching nonlinear-
ity [18] and was expanded by Pakdemirli and Nayfeh
to add the cubic nonlinearity [19]. This model was
extended to include axial tension and multiple mass–
spring–damper systemsbyBarry et al. [20] andBukhari
and Barry [21].

We emphasize that in the studies mentioned in the
preceding paragraph, the fluid–structure interaction in
the form of VIV lift force, if included, is modeled as a
sinusoidal force, and no nonlinearity has been consid-
ered in fluid-structure interaction. It has been noticed
that for stationary bodies, lift force can bewell approxi-
mated using a sinusoidal term [1].However, formoving
bodies such as stretching sheets, stretching cylinders,
oscillating plates, rotating disks, this approximation
does not hold any longer, and more robust models and
methods are required to represent fluid–structure inter-
action and explore the coupled dynamics, respectively
[22–26]. Due to limited understanding of the mecha-
nisms of vortex shedding caused by flow around a body
[27–29], researchers have employed different models
for nonlinear oscillators, such as the Van der Pol oscil-
lator, to represent the fluctuating cross-flow (lift) force
on a structure [30–32]. It should be noted that these
models were chosen based solely on the observed sim-
ilarity of the vortex shedding and nonlinear oscillators,
not due to any connection of the oscillator equations
with fluid dynamics. However, they have shown a good
agreement with experimental data and have been used
to gain valuable insights into VIV systems [31–34].

One notable trait of VIV is the lock-in phenomenon,
in which the frequency of vortex shedding deviates
from expected values and approaches the natural fre-
quency of the body oscillating within the fluid. Instead
of following the Strouhal law, which dictates that it
varies with flow velocity, the shedding frequency will
“lock on” to that of the vibrating body, thus cou-
pling the dynamics of vortex shedding and structural
vibration [35]. This phenomenon leads to the reso-
nance of vortex-induced vibrations, increasing the vor-
tex strength and fluid forces [36]. Various aspects of
lock-in have been studied in detail [36–39]. However,
the relevance of lock-in to this paper is mainly to estab-
lish the case of primary resonance.

In a review of prior work, it becomes evident that
while the intensive study has been performed for a non-
linear cable-damper model with sinusoidal lift force or
a cable with a nonlinear model of lift force [40–43],
there are no studies combining all sources of nonlin-
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earity to analyze the response of the system. In this
work, we attempt to fill this gap by considering the non-
linear cable-damper system coupled with a nonlinear
model of lift force. Following the above conventions,
the conductor is modeled as an Euler–Bernoulli beam
with several attached mass–spring–damper–mass sys-
tems representing Stockbridge dampers. Forces on the
conductor include pretension and vortex-induced lift
force modeled as a Van der Pol oscillator. The method
ofmultiple scales (MMS) is used for the case of primary
resonance, and an approximate analytical solution is
obtained for the coupled weakly nonlinear differential
equations. Parametric studies are conducted to exam-
ine the effect of different system parameters on the fre-
quency response curves to get a complete understand-
ing of system dynamics under different circumstances.
The rest of the paper is organized as follows. In Sect. 2,
the complete mathematical model of cable/conductor
vibration is presented. This section includes a brief
description of the Van der Pol oscillator for the lift-
force model, along with the non-dimensionalization of
the governing equation of motions. Linear and nonlin-
ear analysis of the system, using the method of mul-
tiple scales, are presented in Sect. 3. Results from the
nonlinear analysis, along with parametric studies, are
presented in Sect. 4. In Sect. 5, some conclusions are
drawn from the findings of this analysis.

2 Mathematical formulation

Aschematic of a cable/conductorwith a pair of attached
Stockbridge dampers is shown in Fig. 1. As mentioned
earlier, the conductor is modeled as an Euler–Bernoulli
beam,whereas each Stockbridge damper is represented
by a mass–spring–damper–mass system with equiva-
lent properties. In the schematic, L is the length of
cable/conductor, EI is the flexural rigidity of cable,
EA is the axial rigidity of cable, m is the mass per
unit length of cable, and D is the diameter of cable.
Each equivalent pth damper has in-spanmassMcp , sus-
pended mass Mdp, linear stiffness Kp, cubic nonlinear
stiffness qp, and dashpot damping coefficientCdp. The
beam is also subjected to a pretension T and vortex-
induced lift force FL(x, t). The surrounding fluid flows
perpendicular to the beam’s axis with a velocity of V f

and a densityρ f . For this system, the beam’s axial coor-
dinate is denoted by x , and accordingly, the position of
a Stockbridge damper along the beam in the left-end

reference frame is denoted xsp . Note that the addition of
n number of dampers in the cable divides the span into
n + 1 segments and hence, the cross-flow (transverse)
beam displacement of segment i is denoted byWi (x, t)
and the displacement of Mdp is denoted by Vp(t). The
notations (̇) and prime (′) represent temporal and spatial
derivatives, respectively.

Accordingly, the kinetic energy (KE), and potential
energy (PE), of the system are [21]

K E =
n∑

i=0

∫ xs(i+1)

xsi
mẆ 2

i+1dx

+1

2

n∑

i=1

Mci Ẇi (xsi , t)
2

+1

2

n∑

i=1

Mdi V̇i (t)
2. (1)

PE = 1

2

n∑

i=0

∫ xs(i+1)

xsi
EI(W ′′

i+1)
2dx

+ 1

2

n∑

i=0

∫ xs(i+1)

xsi
(E A − T )

1

2

(
W ′)4

i+1 dx

+ 1

2

n∑

i=1

Ki (Wi (xi , t) − Vi )
2

+ 1

4

n∑

i=1

qi (Wi (xi , t) − Vi )
4

+ 1

2
T

n∑

i=0

∫ xs(i+1)

xsi

(
W ′)2

i+1 dx . (2)

Thus, the Lagrangian for the combined system without
any nonconservative forces can be expressed as L =
K E − PE :

L =
n∑

i=0

∫ xs(i+1)

xsi
mẆ 2

i+1dx

+ 1

2

n∑

i=1

Mci Ẇi (xsi , t)
2

+ 1

2

n∑

i=1

Mdi V̇i (t)
2

− 1

2

n∑

i=0

∫ xs(i+1)

xsi
E I (W ′′

i+1)
2dx

− 1

2

n∑

i=0

∫ xs(i+1)

xsi
(E A − T )

1

2

(
W ′)4

i+1 dx
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Fig. 1 Schematic of a
transmission cable with
attached nonlinear vibration
absorbers. (Color figure
online)

− 1

2

n∑

i=1

Ki (Wi (xi , t) − Vi )
2

− 1

4

n∑

i=1

qi (Wi (xi , t) − Vi )
4

− 1

2
T

n∑

i=0

∫ xs(i+1)

xsi

(
W ′)2

i+1 dx . (3)

After applying Hamilton’s principle to Eq. (3) and-
including nonconservative forces, the nonlinear gov-
erning equations of motion and boundary conditions
for the system can be written as:

mẄi + EIWiv
i − TW ′′

i

= E A − T

2L

n∑

r=0

[∫ xr+1

xr

(
W ′

r+1

)2 dx
]
W ′′

i

−2μẆi + FLi , (4a)

W1(0, t) = W ′′
1 (0, t) = Wn+1(L , t)

= W ′′
n+1(L , t) = 0 , (4b)

{
Wp = Wp+1

} ∣∣∣
x=xsp

,
{
W ′

p = W ′
p+1

} ∣∣∣
x=xsp

,
{
W ′′

p

= W ′′
p+1

} ∣∣∣
x=xsp

, (4c)

{
EI

(
W ′′′

p − W ′′′
p+1

)
= McpẄp + Kp(Wp − VP )

+ qp(Wp − VP )3 + Cdp(Ẇp − V̇P )

}∣∣∣∣
x=xsp

,(4d)

{
MdpV̈p = Kp(Wp − VP ) + qp(Wp − VP )3

+Cdp(Ẇp − V̇P )
}∣∣∣

x=xsp
, (4e)

where i = 1, 2, ..., n + 1 and p = 1, 2, ..., n. In
Eq. (4a),μ represents the internal damping coefficient,

whereas FLi (x, t) is the fluctuating fluid force across
segment i of the cable/conductor. Following Skop and
Balasubramanian [1], FLi can be defined in terms of
fluctuating lift coefficient CLi (x, t) as:

FLi = ρ f V 2
f DCLi

2
. (5)

This model introduces further nonlinearity via CLi .
Instead of being constant as in previous works, CLi

is governed by the following equation

CLi (x, t) = Qi (x, t) − 2α

ωs
Ẇi (x, t) , (6)

whereα is the stall parameter andωs is the vortex shed-
ding frequency. Due to the lock-in condition found in
vortex shedding, it can be assumed that ωs ∼= ωn, j ,
where ωn, j is the j th natural frequency for the conduc-
tor response. Qi (x, t) is the wake variable, represent-
ing the excitation component of the lift coefficient and
is considered to develop from the conductor’s ampli-
tude response. The second term in Eq. (6), also known
as a stall term, enforces a self-limiting response for all
system parameter values by ensuring that the lift coeffi-
cient has a negative slope for large amplitude response.
Following Skop and Balasubramanian [1], the wake
variable Qi (x, t) is governed through a nonlinear Van
der Pol equation and given by

Q̈i − ωsG
(
C2
L0 − 4Q2

i

)
Q̇i + ω2

s Qi = ωs FẆi , (7)

whereG and F are parameters depending on the cable-
wind interaction and can be determined from experi-
mental data, and CL0 is the lift coefficient for a station-
ary cylinder.

For the ease of analysis, the following nondimen-
sional scales and parameters are introduced in the sys-
tem:
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ξ = x

L
, ξp = xsp

L
, wi = Wi

r
, vp = Vp

r
, τ

= t

L2

√
EI

m
, s =

√
TL2

2EI
, λ = 1 − 2s2

r2

L2 ,

μ̄ = μ
L4

EIr
, fL = L4ρ f V 2

f D

2EIr
, α1p = Mcp

mL
, α2p

= Mdp

mL
, kp = KpL3

EI
, γp = qpL3r2

EI
,

cdp = CdpL2

Mdp

√
m

EI
, ᾱ = αr, F̄ = Fr, ω̄s

= ωs

√
mL4

EI
.

(8)

where r is the radius of gyration of cable. Using the
above-mentioned nondimensional scales and parame-
ters, the governing equations of motion can be nondi-
mensionalized as

ẅi + wiv
i − 2s2w′′

i = λ

2

n∑

r=0

[∫ ξr+1

ξr

(
w′
r+1

)2
dξ

]
w′′
i

−2μ̄ẇi + fL

(
Qi − 2ᾱ

ω̄s
ẇi

)
(9a)

Q̈i − ω̄sG
(
C2
L0 − 4Q2

i

)
Q̇i + ω̄2

s Qi

= ω̄s F̄ẇi (9b){
α2p v̈p = kp(wp − vP ) + γp(wp − vP )3

+ cdp(ẇp − v̇p)
}∣∣∣

ξ=ξp
(9c)

w1(0, τ ) = w′′
1(0, τ ) = wn+1(1, τ )

= w′′
n+1(1, τ ) = 0 (9d)

{
wp = wp+1

} ∣∣∣
ξ=ξp

,
{
w′

p = w′
p+1

} ∣∣∣
ξ=ξp

,
{
w′′

p

= w′′
p+1

} ∣∣∣
ξ=ξp

(9e)
{
w′′′

p − w′′′
p+1 = α1pẅp + kp(wp − vP )

+ γp(wp − vP )3 + cdp(ẇp − v̇p)
}∣∣∣

ξ=ξp
(9f)

Having established the nonlinear governing equations
of motion, next a perturbation method is used to obtain
an approximate solution of Eq. (9). This method is pre-
sented in the following section.

3 Nonlinear analysis using the method of multiple
scales

As mentioned earlier, our prime interest in this work is
to understand the effect of different system parameters
on the nonlinear dynamics of the system, which further
requires the exact solution of the system of equations
(Eq. (9)). Note that the equations of motion governing
the dynamics of the system (Eq. (9)) involve nonlin-
ear cubic terms, and it is difficult to obtain the exact
solution for such systems. However, the approximate
solution may be obtained using existing perturbation
methods.With the samemotivation, themethod ofmul-
tiple scales (MMS) is used in particular to obtain the
approximate solution of the system. For this purpose,
we follow the procedure outlined in [44] and introduce
a small dimensionless parameter ε (ε � 1) in the gov-
erning equations by defining multiple time scales:

T0 = τ , T2 = ε2τ , (10)

where T0 is the fast time scale, T2 is a slow time scale,
and ε is a small scaling parameter. Since the type of
nonlinearity in the system is cubic in nature, the slow
time scale T1 = ετ has not been considered in the sys-
tem.With the introduction of these time scales, the time
derivative operators get perturbed and can be expressed
in new time scales as

δ

δτ
= D0 + ε2D2 + O(ε3) (11a)

δ2

δτ 2
= D2

0 + 2ε2D0D2 + O(ε3) (11b)

where Dn = δ

δTn
. Following this, the solution of non-

linear governing equations of motion (Eq. (9)) can be
expressed as a series in powers of ε as

wi (ξ, τ ) = εyi,1(ξ, T0, T2) + ε3yi,3(ξ, T0, T2)

+ O(ε4) , (12a)

Qi (ξ, τ ) = εqi,1(ξ, T0, T2) + ε3qi,3(ξ, T0, T2)

+ O(ε4) , (12b)

vp(τ ) = εvp,1(T0, T2) + ε3vp,3(T0, T2)

+ O(ε4) . (12c)

As we are considering the case of primary resonance,
i.e., ωs ≈ ωy , the following parameters are rescaled
to ensure that the system is weakly nonlinear and that
the effects of damping and forcing appear at the same
order ε
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fL = ε2 f ∗
L , μ̄ = ε2μ̄∗, cdp = ε2c∗

dp, F

= ε2F∗, GC2
L0 = ε2G

(
C∗
L0

)2
.

(13)

Through introducing Eqs. (11)–(13) into Eq. (9) and
collecting different orders of ε to get

O(ε1) :
D2
0 yi,1 + yivi,1 − 2 s2y′′

i,1 = 0 , (14a)

D2
0qi,1 + ω̄2

s qi,1 = 0 , (14b)

α2pD
2
0vp,1 − kp(yp,1 − vp,1)

∣∣∣
ξ=ξp

= 0 , (14c)

y1,1(0, τ ) = y′′
1,1(0, τ ) = y(n+1),1(1, τ )

= y′′
(n+1),1(1, τ ) = 0 , (14d)

{
yp,1 = y(p+1),1

} ∣∣∣
ξ=ξp

,
{
y′
p,1

= y′
(p+1),1

} ∣∣∣
ξ=ξp

,
{
y′′
p,1 = y′′

(p+1),1

} ∣∣∣
ξ=ξp

, (14e)
{
y′′′
p,1 − y′′′

(p+1),1 = α1pD
2
0 yp,1

+ kp(yp,1 − vp,1)
}∣∣∣

ξ=ξp
, (14f)

O (
ε3

)
:

D2
0 yi,3 + yivi,3 − 2 s2y′′

i,3

= λ

2

n∑

r=0

[ ∫ ξr+1

ξr

(
y′)2

(r+1),1 dξ

]
y′′
i,1

− 2D0D2yi,1 − 2μ̄∗D0yi,1

+ f ∗
L

(
qi,1 − 2ᾱD0yi,1

ω̄s

)
, (15a)

D2
0qi,3 + qi,3ω̄

2
s = GC∗

L0
2D0qi,1ω̄s

− 4GD0qi,1q
2
i,1ω̄s − 2D0D2qi,1

+F∗D0wi,1ω̄s , (15b)
{
α2pD

2
0vp,3 − kp(yp,3 − vp,3) = −α2p2D0D2vp,1

+ γp(yp,1 − vp,1)
3 + c∗

dpD0(yp,1 − vp,1)

}∣∣∣∣
ξ=ξp

,(15c)

y1,3(0, τ ) = y′′
1,3(0, τ ) = y(n+1),3(1, τ )

= y′′
(n+1),3(1, τ ) = 0 , (15d)

{
yp,3 = y(p+1),3

} ∣∣∣
ξ=ξp

,
{
y′
p,3 = y′

(p+1),3

} ∣∣∣
ξ=ξp

,

{
y′′
p,3 = y′′

(p+1),3

} ∣∣∣
ξ=ξp

, (15e)
{
y′′′
p,3 − y′′′

(p+1),3 = kp(yp,3 − vp,3)

+ γp(yp,1 − vp,1)
3 + c∗

dpD0(yp,1 − vp,1)

+α1pD
2
0 yp,3 + α1p2D0D2yp,1

}∣∣∣∣
ξ=ξp

, (15f)

Note that the equations at the order ofO(ε1) (Eq. (14))
are linear coupled partial differential equations. Also,
the solution of theO(ε1) appears on right side as forc-
ing terms for the equations corresponding to O(ε3)

(Eq. (15)). Therefore, it is required to perform the lin-
ear analysis of the system, which is presented in the
subsequent section.

3.1 Linear analysis

Asmentioned earlier, equations corresponding toO(ε1)

are coupled linear partial differential equations. There-
fore, the system only consists of linear harmonic vibra-
tions and the solutions of yi,1 and vp,1 can be expressed
as [45]:

yi,1 =
[
A1(T2)e

jωyT0 + c.c.
]
Yi (ξ) , (16)

vp,1 = V1,p(T2)e
jωyT0 + c.c. , (17)

where c.c. denotes the complex conjugate of the pre-
ceding temporal term and Yi (ξ) is the spatial solution
or mode shape for the i th segment of the cable. From
the experimental work of Ramberg and Griffin [46],
it was shown that the wake term of a vortex-induced
excitation shares the normal modes of the conductor
response. Thus, the mode shape Yi (ξ) is identical for
both yi,1 and qi,1 [46,47] and hence, the solution for
qi,1 can be written as

qi,1 =
[
Q̃1(T2)e

j ω̄s T0 + c.c.
]
Yi (ξ) , (18)

Substitution of the assumed form of the solutions for
yi,1, vp,1 and qi,1 into Eq. (14) leads to

Y iv
i − 2 s2Y ′′

i − ω2
yYi = 0 , (19a)

−ω2
s Q̃1 + ω2

s Q̃1 = 0 , (19b)

−ω2
yα2pV1,p − kp(A1Yi (ξp) − V1,p) = 0 , (19c)

Y1(0) = Y ′′
1 (0) = Y(n+1)(1) = Y ′′

(n+1)(1) = 0 , (19d)
{
Yp = Y(p+1)

} ∣∣∣
ξ=ξp

,
{
Y ′
p = Y ′

(p+1)

} ∣∣∣
ξ=ξp

,
{
Y ′′
p

= Y ′′
(p+1)

} ∣∣∣
ξ=ξp

, (19e)
{
Y ′′′
p − Y ′′′

(p+1) = −ω2
yα1pYp

+ kp

(
Yp − V1,p

A1

)} ∣∣∣
ξ=ξp

. (19f)

Note that Eq. (19b) does not provide any additional
information for the linear analysis, as qi,1 and yi,1 share
the same mode shapes. Also, from Eq. (19c) it can be
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noticed that V1,p and A1 are related through the fol-
lowing expression

V1,p =
(

kp
kp − α2pω2

y

)
Yp(ξp)A1 = �pYp(ξp)A1

(20)

with �p = kp
kp − α2pω2

y
. The mode shape Yi for each

segment of cable can be obtained by solving Eq. (19a)
and is given by

Yi = C1,i sin αξ + C2,i cosαξ

+C3,i sinh βξ + C4,i cosh βξ (21)

where α and β are functions of the beam’s natural fre-
quency ωy and s, and are given by

α =
√

−s2 +
√
s4 + ω4

y , β =
√
s2 +

√
s4 + ω4

y .

(22)

Whereas Ck,i , k = 1, 2, 3, 4 are arbitrary coefficients.
The natural frequencies of the system, i.e.,ωy for differ-
ent modes, and accordingly, the arbitrary coefficients
can be determined by utilizing boundary conditions for
the nontrivial solutions of the system. We emphasize
that due to the complex boundary conditions, it is not
possible to obtain closed form expression for the natu-
ral frequency for different modes. Therefore, numeri-
calmethods are used to compute the natural frequencies
and corresponding arbitrary coefficients. Having estab-
lished the linear solution of the system, the nonlinear
analysis using the equations corresponding toO(ε3) is
presented next.

3.2 Nonlinear analysis

Since linear analysis does not provide any information
about the nonlinear response of the system, we proceed
to equations corresponding to O(ε3). To have a finite
solution of the system described by Eq. (15), the solv-
ability conditionsmust be determined and satisfied, i.e.,
the coefficients corresponding to secular terms must
vanish. To achieve this, the solutions of yi,3, vp,3 are
assumed as

yi,3 = φi (ξ, T2)e
jωyT0 + c.c. + y∗

i (ξ, T0, T2) , (23a)

vp,3 = V2,p(T2)e
jωyT0 + c.c. + v∗

p(T0, T2) , (23b)

where y∗
i and v∗

p are the unique expressions that do not
produce any secular terms in Eq. (15) and hence are not

reported here (for more details about these terms read-
ers are referred to [48]). As mentioned earlier, in the
current work, we are considering the case of primary
resonance only that accompanies lock-in phenomena.
In the lock-in phenomena, the vortex shedding fre-
quency is detuned from one of the natural frequencies
of the system by a small parameter and hence, can be
related to the natural frequency of the system by the
following expression

ωs = ωy + ε2σ , (24)

where ε is the same small parameter as above and σ is
the detuning parameter.

Substitution of Eqs. (16)–(18), (20), (23), (24) into
Eq. (15) and removal of secular terms leads to

φiv
i − ω2

yφi − 2s2φ′′
i

= 3

2
λA1 Ā

2
1

n∑

r=0

[∫ ξr+1

ξr

Y ′2
(r+1)dξ

]
Y ′′
i,1

− 2 jωy(D2A1 + μ̄∗A1)Yi

+ f ∗
L Yi

(
Q1e

jσT2 − 2 j ᾱωy

ωs
A1

)
(25a)

4 jω2
s G Q̃1

¯̃Q1Y
3
i

− jω2
s C

∗
L0

2GQ̃1Yi − jωs F
∗ωy A1Yie

− jσT2

+ 2 jωs D2 Q̃1 = 0 (25b)

−α2pω
2
s V2,p + 2 jωyα2p�pYp(ξp)D2A1

=
{
kp

(
φp − V2,p

) − 3γp�1,p A
2
1 Ā1Y

3
p

+ jωyc
∗
dpYp A1(1 − �p)

}∣∣∣
ξ=ξp

(25c)

φ1(0, T2)) = φ′′
1 (0, T2)

= φi+1(0, T2) = φ′′
i+1(0, T2) = 0 (25d)

{
φp = φp+1

} ∣∣∣
ξ=ξp

,
{
φ′
p

= φ′
p+1

} ∣∣∣
ξ=ξp

,
{
φ′′
p

= φ′′
p+1

} ∣∣∣
ξ=ξp

(25e)
{
φ′′′
p − φ′′′

p+1 = kp(φp − V2,p) − 3γp�1,p A
2
1 Ā1Y

3
p

+ jωyc
∗
dpYp A1(1 − �p) + α1p(−ω2

yφp

+ 2 jωy D2A1Yp)
} ∣∣∣

ξ=ξp
(25f)
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with �1,p = 1− �3
p + 3�2

p − 3�p. Further, Eq. (25c)
can be rearranged and V2,p can be expressed in terms
of other variables as

V2,p

= kpφp(ξp, T2) − 3γpYp(ξp)
3�1,p A2

1 Ā1 − 2 jα2p�pYp(ξp)(D2A1)ωy + jc∗
dpYp(ξp)ωy(1 − �p)A1

kp − α2pωy
2 . (26)

Using the above expression, Eq. (25f) can be rewritten
as
φ′′′
p (ξp, T2) − φ′′′

p+1(ξp, T2)

= −3γpYp(ξp)
3�1,p A

2
1 Ā1 + 3�2,pkp A

2
1 Ā1

+ j D2A1kpωy�3,p + jkpωy A1(�p − 1)�4,p

− jωy

(
c∗
dp�p A1 − c∗

dp A1 − 2α1pD2A1

)
Yp(ξp)

− (α1pωy
2 + kp�p − kp)φp(ξp, T2)

(27)

With further algebraic manipulation, Eq. (25) can be
simplified to a pair of equations in terms of the mag-
nitudes A1 and Q̄1. These equations are the solvability
conditions and are given by

n∑

p=1

[
− 3�1,pγp A

2
1 Ā1Yp(ξp)

4

+
[
jωy(−c∗

dp�p + c∗
dp)A1 + 2 jωyα1pD2A1

]
Yp(ξp)

2

+
[
(3�2,pkp A

2
1 Ā1 + jkpωy�4,p(�p − 1)A1

+ jkpωy�3,pD2A1

]
Yp(ξp)

]

− 3

2
λb2b3A

2
1 Ā1 + 2 jb1ωy

ωs
( f ∗

L ᾱ + μ̄∗ωs)A1

+ 2 jb1ωy D2A1 − e jσT2 f ∗
L Q̃1b1

= 0, (28)
2e jσT2D2Q1 − e jσT2b1ωsGC∗

L0
2Q1

− F∗ωyb1A1 + 4Gωsb12e
jσT2Q1

2 ¯̃Q1

= 0, (29)

with

�2,p = γp�1,pYp(ξp)
3

kp − α2pω2
y

, �3,p

= 2α2p�1,pYp(ξp)

kp − α2pω2
y

, �4,p = c∗
dpYp(ξp)

kp − α2pω2
y

(30)

b1 =
n+1∑

p=1

∫ ξp

ξp−1

Y 2
pdξ, b12 =

n+1∑

p=1

∫ ξp

ξp−1

Y 4
pdξ, b2

=
n+1∑

p=1

∫ ξp

ξp−1

( d

dξ
Yp

)2
dξ, b3

=
n+1∑

p=1

∫ ξp

ξp−1

Yp

( d

dξ
Yp

)2
dξ (31)

Next, we switch to polar coordinates by substituting

A1(T2) = ay(T2)eiθy(T1)

2

and Ā1(T2) = ay(T2)e−iθy(T1)

2
,

Q̃1(T2) = 1

2
qy(T2)e

jθq (T2)

and ¯̃Q1(T2) = 1

2
qy(T2)e

− jθq (T2) and (32)

into Eq. (31) and separate real and imaginary parts.
Upon separating real and imaginary parts, we get four
equations that can be solved for D2ay , D2θy , D2qy and
D2θq as

D2ay

=
∑n

p=1

[
ayc∗

dp(�p − 1)Yp(ξp)
2 + aykp�4,p(1 − �p)Yp(ξp)

]

∑n
p=1

[
kpYp(ξp)�3,p + 2Yp(ξp)2α1p

]
+ 2b1

− 2ωyay f ∗
L ᾱb1 − f ∗

L qyb1ωs sin(�) + 2ωyay μ̄∗b1ωs
∑n

p=1

[
ωsωykpYp(ξp)�3,p + 2ωsωyYp(ξp)2α1p

]
+ 2ωyωsb1

,

(33a)
D2θy

=
∑n

p=1

(
6ay3kpYp(ξp)�2,p − 6ay3γpYp(ξp)

4�1,p
)

∑n
p=1 ayωy

[
16b1 + 8kpYp(ξp)�3,p + 16Yp(ξp)2α1p

]

+ −8 f ∗
L qyb1 cos(�) − 3ay3λb2b3

∑n
p=1 ayωy

[
16b1 + 8kpYp(ξp)�3,p + 16Yp(ξp)2α1p

] , (33b)

D2qy

= 1

2b1
ay F

∗ωyb1 cos(�) + ωsGC∗
L0

2qyb1

− qy
3Gωsb12 , (33c)

D2θq = − 1

2qy
ay F

∗ωy sin(�) . (33d)

In the above slow-flow equations, the phase differ-
ence, �, is defined as � = σT2 + θq − θy . Note that
Eq. (33) provides the dynamics of the system in the
slow time scale T2. Therefore, the equilibrium solu-
tion of the system at T2 is equivalent to the steady-
state amplitudes of the full-order system, i.e., Eq. (9).
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The steady-state amplitudes are solved by setting the
time derivatives of amplitude and phase to zero, i.e.,
D2ay = D2qy = D2� = 0. This step gives us 3 alge-
braic equations in terms ofay andqy with trigonometric
terms of an argument of phase difference �. Eliminat-
ing the phase difference� by using trigonometric iden-
tities, two algebraic equations governing the unknown
steady-state amplitudes a∗

y , q∗
y for the given system

parameters are obtained as

G1(a
∗
y , q

∗
y ) = 0 and G2(a

∗
y , q

∗
y ) = 0. (34)

For the sake of brevity, the expressions for G1 and
G2 have been put in Appendix-A. Having established
the slow-flow equations governing the steady-state
response, a detailed discussion on these slowflowequa-
tions and verification of our analytical approach with
numerical simulation are presented in the next section.

4 Results and discussion

In this section, a detailed analysis of the VIV of a
cable/conductor with an installed nonlinear vibration
absorber in the form of a Stockbridge damper is pre-
sented. The first part of the analysis deals with the val-
idation of the derived analytical solution of the sys-
tem using MMS (Eq. (33)) and determines the value
of ε (dependent on the system parameters) that val-
idates our assumption of a weakly nonlinear system.
One of the ways to validate our analytical solutions
is the comparison of the analytical solutions, obtained
using MMS, with the numerical solution of the system
given byEq. (9). However, it can be noted that the origi-
nal system defined by Eq. (9) is an infinite-dimensional
system due to appearance of spatial derivatives and
hence, limits the application of numerical solvers to
the system. To overcome this challenge, the infinite
dimensional partial-differential system is converted to a
finite-dimensional systemof ordinarydifferential equa-
tion (odes) using Galerkin projection. This is presented
in the subsequent section.

4.1 Validation of analytical results From MMS

To numerically analyze the nonlinear dynamical prob-
lem defined by Eq. (9) and eventually use these simu-
lations to validate analytical results, we first cast these
equations (Eq. (9)) in state-space (first-order) form. By

utilizing the orthonormality properties of linear mode
shapes, Eq. (9) are projected onto the system of eigen-
functions by letting

wi (ξ, τ ) = Yi (ξ)y(τ ),

and Qi (ξ, τ ) = Q̂i (ξ)q(τ ) , (35)

with Yi (ξ) and Qi (ξ) being functions of spatial coor-
dinate ξ and satisfying linear boundary conditions.
As mentioned earlier, Qi (ξ, τ ) and wi (ξ, τ ) share the
same mode shapes, which further implies Q̂i (ξ) =
Yi (ξ). Since in our linear analysis, an exact lin-
ear mode shape with linear boundary conditions, i.e.,
γp = cdp = 0, is obtained, the Galerkin projection
of Eq. (9) cannot be performed using the mode shape
defined by Eq. (21) due to the appearance of nonlin-
ear and damping terms, i.e., γp and cdp in boundary
conditions. To resolve this, we include γp and cdp in
the governing equations of motion using Dirac delta
function and rewrite Eq. (9) to get

ẅi + wiv
i − 2s2w′′

i

= λ

2

n∑

r=0

[∫ ξr+1

ξr

(
w′
r+1

)2
dξ

]
w′′
i

− 2μẇi + fL

(
Qi − 2ᾱ

ω̄s
ẇi

)

− δ(ξ − ξi )
(
γi (vi − wi )

3

+ cdi (v̇i − ẇi )) (i = 1, 2, .., n) , (36a)
ẅn+1 + wiv

n+1 − 2s2w′′
n+1

= λ

2

n∑

r=0

[∫ ξr+1

ξr

(
w′
r+1

)2
dξ

]
w′′
n+1

− 2μẇn+1 + fL

(
Qn+1 − 2ᾱ

ω̄s
ẇn+1

)
, (36b)

Q̈i − ω̄sG
(
C2
L0 − 4Q2

i

)
Q̇i + ω̄2

s Qi

= ω̄s F̄ẇi (i = 1, 2, .., n + 1) , (36c)
{
α2p v̈p = kp(wp − vp) + γp(wp − vP )3

+ cdp(ẇp − v̇p)
}∣∣∣

ξ=ξp
, (36d)

w1(0, τ ) = w′′
1 (0, τ )

= wn+1(1, τ ) = w′′
n+1(1, τ ) = 0 , (36e)

{
wp = wp+1

} ∣∣∣
ξ=ξp

,
{
w′

p = w′
p+1

} ∣∣∣
ξ=ξp

,
{
w′′

p

= w′′
p+1

} ∣∣∣
ξ=ξp

, (36f)
{
w′′′

p − w′′′
p+1 = α1pẅp + kp(wp − vP )

}∣∣∣
ξ=ξp

, (36g)

Since for the modified governing equations of motion
(Eq. (36)), the mode shape defined by Eq. (21) satis-
fies all the boundary conditions (Eqs. (36e)-(36g)), the
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Galerkin projection of Eq. (36) can be performed using
the mode shape defined by Eq. (21) to get

b1 ÿ(τ ) +
(
2b1μ + 2b1 fLα

ω̄s

)
ẏ(τ ) − 2b3s

2y(τ )

− λ

2
b3b2y(τ )3 + b4y(τ ) − b1 fL q(τ )

+ 1

2

n∑

p=1

[
γpYp

(
ξp

) (
y(τ )Yp

(
ξp

)

−vp(τ )
)3 + cdpYp

(
ξp

) (
ẏ(τ )Yp

(
ξp

)

−v̇p(τ )
)] = 0 , (37a)

b1q̈(τ ) − ωs G
(
b1CL0

2 − 4q2(τ )b12
)
q̇1

+ b1 ωs
2q(τ ) − b1 ẏ(τ )ωs F̄ = 0 , (37b)

α2pv̈p = kp(Yp
(
ξp

)
y(τ ) − vp(τ ))

+ γp(Yp
(
ξp

)
y(τ ) − vp(τ ))3

+ cdp(Yp
(
ξp

)
ẏ(τ ) − v̇p(τ )) (p = 1, 2, .., n) .

(37c)

with b1, b2, b3, b12 defined in Eq. (31). Equation (37)
defines the dynamics of the reduced order system. Fur-
ther, for the sake of simplicity, these equations can be
written as first-order ODES and given by

ż1 = z2 , (38a)

ż2 = − 1

b1

((
2b1μ + 2b1 fLα

ω̄s

)
z2

− 2b3s
2z1 − λ

2
b3b2z1

3 + b4z1 − b1 fL z3

+ 1

2

n∑

p=1

[
γpYp

(
ξp

) (
z1Yp

(
ξp

)

− z(2p+3)(τ )
)3 + cdpYp

(
ξp

) (
z2Yp

(
ξp

)

− z(2p+4)
)])

, (38b)
ż3 = z4 , (38c)

ż4 = − 1

b1

(−ωs G
(
b1CL0

2 − 4q2(τ )b12
)
q̇1

+ b1 ωs
2q(τ ) − b1 ẏ(τ )ωs F̄

)
, (38d)

ż2p+3 = z2p+4 , (p = 1, 2, .., n) (38e)

ż2p+4 = 1

α2p

(
kp(Yp

(
ξp

)
z1 − z2p+3) + γp(Yp

(
ξp

)
z1

− z2p+3)
3 + cdp(Yp

(
ξp

)
z2 − z2p+4)

)
(p = 1, 2, .., n).

(38f)

For the numerical simulations, MATLAB routine
‘ode45’ is used with strict values of relative and abso-
lute tolerance (1e−10). Also, the initial conditions for

the numerical simulation are chosen corresponding to
the steady-states. The comparisons between the numer-
ical simulation of the system given by Eq. (38) and ana-
lytical results from MMS for the lock-in phenomenon
near the first mode, i.e., ωy = ω1 and two vibration
absorbers are shown in Figs. 2, 3, 4 for different val-
ues of ε and σ = 0.1. From Figs. 3 and 4, it can be
observed that there is no significant difference between
ε = 0.01 and ε = 0.001, and an excellent agreement
holds between the numerical simulations and analyti-
cal for both values of ε. Therefore, without any loss of
generality, we have chosen the value of ε = 0.01 in the
remaining analysis.

Before proceeding further, we compare the time-
response of the system with and without nonlinearity
in vibration absorbers for different values of detuning
parameter. The results are shown inFig. 5.Note that this
step also elucidates the performance of the nonlinear
absorber over the linear absorber.

From Fig. 5, we can observe that around the pri-
mary resonance, i.e., ωy = ωs the maximum ampli-
tude of the system with nonlinear absorber (Solid Blue
curve) is smaller than that of the system with linear
absorber (Dashed Red curve). This observation further
motivates us to perform a parametric analysis on the
system with nonlinear absorber to identify key design
parameters which can enhance the performance of a
vibration absorber which is presented next.

4.2 Effect of parameters on system dynamics

In this section, we present the effect of different system
parameters on the dynamics of the system to identify
the key design parameters. However, before proceed-
ing further, the comparison of the system dynamics
with lift force modeled as a wake oscillator against the
system with lift force modeled as a sinusoidal force
[21] is presented. This step also acts as a motivation
to perform the parametric analysis of the system. Fig-
ure 6 shows the variation of the steady-state response
of the wake variable qy with the detuning parameter
σ . From Fig. 6, it can be observed that unlike a tradi-
tional sinusoidal model for the lift force, where excita-
tion amplitude does not depend on the frequency and
time, the wake variable qy displays interesting dynam-
ics near the 0 value of the detuning parameter. Note that
σ = 0 signifies the complete resonance phenomenon
between the primary system, i.e., cable with vibration
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Fig. 2 Comparison of time response of the system obtained
from the method of multiple scales (solid line) and numeri-
cal simulation (dashed line) for (i) the response of cable, and
(ii) the response of wind-excitation with ε = 0.1. The other
system parameters are ξ1 = 0.1, ξ2 = 0.9, α11 = α12 =

.01, α21 = α22 = .2, k11 = k12 = 2π4, s = 2, fL =
0.2, α = 0.01, cd1 = cd2 = 0, γ1 = γ2 = 0, CL0 =
0.28, F = 1.2534e−2, G = 0.3763, λ = 0.9988, μ̄ = 0.002,
and σ = −0.1. (Color figure online)
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Fig. 3 Comparison of time response of the system obtained
from the method of multiple scales (solid line) and numeri-
cal simulation (dashed line) for (i) the response of cable, and
(ii) the response of wind-excitation with ε = 0.01. The other
system parameters are ξ1 = 0.1, ξ2 = 0.9, α11 = α12 =

.01, α21 = α22 = .2, k11 = k12 = 2π4, s = 2, fL =
0.2, α = 0.01, cd1 = cd2 = 0, γ1 = γ2 = 0, CL0 =
0.28, F = 1.2534e−2, G = 0.3763, λ = 0.9988, μ̄ = 0.002,
and σ = −0.1. (Color figure online)
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Fig. 4 Comparison of time response of the system obtained
from the method of multiple scales (solid line) and numerical
simulation (dashed line) for (i) the response of cable, and (ii)
the response of wind-excitation with ε = 0.001. The other
system parameters are ξ1 = 0.1, ξ2 = 0.9, α11 = α12 =

.01, α21 = α22 = .2, k11 = k12 = 2π4, s = 2, fL =
0.2, α = 0.01, cd1 = cd2 = 0, γ1 = γ2 = 0, CL0 =
0.28, F = 1.2534e−2, G = 0.3763, λ = 0.9988, μ̄ = 0.002,
and σ = −0.1. (Color figure online)

absorber and vortex shedding. From Fig. 6, it can be
observed that as the value ofσ approaches 0, the steady-
state response of the wake variable also increases and
becomes maximum at the first critical value of σ . How-
ever, a further increase in the value of σ decreases the
value of the steady-state response, and at the second
critical value of σ , there is a sudden drop in the value.
Also, as the value of σ increases further, the steady-
state response increases and attains a constant value.

To further demonstrate the effect of the wake vari-
able on the system dynamics, we compare the fre-
quency response of the system with lift force mod-
eled as a wake oscillator and sinusoidal lift-force. To
achieve this, it is necessary to establish the similar-
ities between both models. Hence, we substitute the
value of stall term, i.e., α, as 0 in the governing equa-
tions so that the only sources of damping in the sys-
tem are realized through structural damping and damp-
ing in vibration absorber. Also, the excitation ampli-
tude used in [21] is amplified by the average of the
steady-state response of wake variable qy over the fre-
quency range. With these values of stall parameter and
excitation amplitude, the frequency-response curve is
analyzed and shown in Fig. 7(i). In Fig. 7, the solid

curve represents stable branch of solutions, whereas
dashed line represents unstable branch of solutions.
From Fig. 7(i), it can be observed that for the given
value of primary system parameters, i.e., for cable-
absorber system, the sinusoidal lift-forcemodel overes-
timates the maximum amplitude as compared to wake
oscillator model. To further demonstrate the effect of
the wake variable on the system dynamics, we com-
pare the frequency response curves corresponding to a
sinusoidal model amplified by maximum value (Max.
Sinusoidal model) and minimum value (Min. Sinu-
soidal model) of the wake variable with the frequency
response curve corresponding to the wake oscillator
model as shown in Fig. 7(ii). The results show a sig-
nificant difference between the maximum amplitude of
steady-state response due to the variation in qy . Further,
it can be observed that the maximum value of steady
state response corresponding toMin. Sinusoidal model
is approximately equivalent to the one corresponding
to the wake oscillator model; however, it does not cap-
ture the effect of nonlinearity in the system. These
observation can be explained through the significant
variation of the steady-state response of wake variable
qy near σ = 0. The sudden decrease in the steady-
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Fig. 5 Comparison of time response of the systemwith andwith-
out nonlinearity in vibration absorber for (i) ε2σ = −0.1, (ii)
ε2σ = 0, and ε2σ = 0.1. The other system parameters are ξ1 =
0.1, ξ2 = 0.9, α11 = α12 = .01, α21 = α22 = .2, k11 = k12 =

2π4, s = 2, fL = 20, α = 0.01, cd1 = cd2 = 0, γ1 = γ2 =
0, CL0 = 0.28, F = 1.2534e−2, G = 0.3763, λ = 0.9988,
and μ̄ = 0.002. (Color figure online)
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Fig. 6 Frequency response of the wake variable for ε = 0.01.
The other system parameters are ξ1 = 0.1, ξ2 = 0.9, α11 =
α12 = .01, α21 = α22 = 0.2; k11 = k12 = π4/2.5, s =
2, f ∗

L = 1000, α = 0, c∗
d1 = c∗

d2 = 30, γ1 = k11/2, γ1 =
k11/2, C∗

L0 = 28, F∗ = 1.2534e2, G = 0.3763, λ = 0.9988,
and μ̄∗ = 0.2. (Color figure online)

state response of qy around σ0 causes decrease in the
effective amplitude of excitation, which further causes
decrease in the steady-state response of the primary
system, i.e., ay .

Having established the difference between the cur-
rent model and that of [21], next the effect of different

system and fluid parameters on the system’s dynamics
through frequency response curves is presented. For
the sake of simplicity of analysis, we consider the case
of cable/conductor with two vibration absorbers placed
at both ends of the cable. Also due to the symmetrical
boundary conditions for the cable, variation in either
absorber’s parameters will have the same effect on sys-
tem dynamics. Therefore, in the current analysis the
parameters corresponding to the vibration absorbers are
varied simultaneously. We first examine the effect of
nonlinear stiffness of the vibration absorber on the sys-
tem dynamics. This step also acts to establish the effec-
tiveness of the nonlinear vibration absorber over the
linear vibration absorber. Figure 8 depicts the variation
of frequency response curves for the different values
of γ1p. The frequency response curve corresponding
to γ11 = γ12 = 0 represents the case of linear vibra-
tion absorber, whereas the frequency response curves
corresponding to γ11 �= 0, γ12 �= 0 represent the case
of nonlinear vibration absorber. From Fig. 8, it can be
observed that increase in the nonlinear stiffness slightly
decreases the maximum value of steady-state response
of the cable. Additionally, when increasing the nonlin-
ear stiffness, the effective bandwidth of the nonlinear
absorber increases, which further implies an increase
in the operating range of the vibration absorber. For the
sake of completeness, we also compare the dynamics
of a system with nonlinear vibration absorber (NVA)
and nonlinear energy sink (NES) which is shown in
Fig. 9. For the case of a nonlinear energy sink, the
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Fig. 7 (i) Comparison of the frequency response of the cable
with wake oscillator and sinusoidal force corresponding average
value of qy , and (ii) frequency response curves for sinusoidal
force with maximum and minimum value of qy for ε = 0.01.
The other system parameters are ξ1 = 0.1, ξ2 = 0.9, α11 =

α12 = .01, α21 = α22 = 0.2, k11 = k12 = π4/2.5, s =
2, f ∗

L = 1000, α = 0, c∗
d1 = c∗

d2 = 30, γ1 = k11/2, γ1 =
k11/2, C∗

L0 = 28, F∗ = 1.2534e2, G = 0.3763, λ = 0.9988,
and μ̄∗ = 0.2. (Color figure online)

nonlinear vibration absorber does not have any lin-
ear stiffness and hence, does not have any natural fre-
quency. This fact further implies a larger bandwidth for
the nonlinear energy sink at the cost of higher ampli-
tude of steady-state response of the cable as shown
in Fig. 9. Also, from Fig. 9 we observe a very sharp
change in the frequency-response curve (marked by
circle) corresponding to NES. This sharp change in the
frequency response curve is attributed to a small value
of stall parameter in the system. We emphasize that
this link between value of stall parameter and sharp
change in frequency-response curve depends on the
parameter values of the primary system. Therefore, this
sharp change does not appear in the frequency response
curve corresponding to NVA for the same value of stall
parameter, i.e., α = 0.01.

Figure 10 shows the variation of frequency response
curves for the different values of suspended mass in
vibration absorbers with and without damping. From
Fig. 10(i), it can be observed that as the value of sus-
pended mass increases, the maximum amplitude of the
cable’s steady state response decreases. Also, the effect
of nonlinearity becomes less evident with higher values

of suspended mass and eventually decreases the effec-
tive bandwidth of nonlinear vibration absorber. How-
ever, from Fig. 10(ii), it can be observed that without
any damping in the absorber, the maximum amplitude
of steady state response increases with increasing sus-
pended mass. We emphasize that both of these obser-
vations are consistent with the observations drawn in
[21]. Further, the effect of the absorber’s in-span mass
on system dynamics is shown in Fig. 11. Contrary to
the observations drawn for the suspended mass, the
maximum amplitude of the steady-state response of
the cable increases slowly with increase in α1p and the
bandwidth remains ineffective with change in in-span
mass. This observation can be attributed to the fact that
the in-span mass oscillates with the same frequency
and amplitude as the cable at the absorber location.
Hence, it does not contribute significantly in the vibra-
tion absorption. Therefore, from Figs. 10 and 11 it can
be concluded that for the given parameters of the pri-
mary system and wake oscillator, a nonlinear vibration
absorber performs betterwith increase in the suspended
mass at the cost of a decrease in bandwidth.
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Fig. 8 Comparison of the frequency response curves for linear
vibration absorber (γ1p = 0) with nonlinear vibration absorber
(γ1p �= 0) ε = 0.01. The other system parameters are ξ1 =
0.1, ξ2 = 0.9, α11 = α12 = .01, α21 = α22 = 0.2, k11 =
k12 = π4/2.5, s = 2, f ∗

L = 2000, α = 0.01, c∗
d1 = c∗

d2 =
30, C∗

L0 = 28, F∗ = 1.2534e2, G = 0.3763, λ = 0.9988, and
μ̄∗ = 0.2. (Color figure online)
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Fig. 9 Comparison of frequency response curves corresponding
to nonlinear vibration absorber and nonlinear energy sink shown
by Magenta and Red colors, respectively, with ε = 0.01. The
other system parameters are ξ1 = 0.1, ξ2 = 0.9, α11 = α12 =
.01, α21 = α22 = 0.2; k11 = k12 = π4/2.5, s = 2, f ∗

L =
2000, α = 0.01, γ1 = k11, γ1 = k11, c∗

d1 = c∗
d2 = 30, C∗

L0 =
28, F∗ = 1.2534e2, G = 0.3763, λ = 0.9988, and μ̄∗ = 0.2.
(Color figure online)

Figures 12 and 13 show the variation of frequency
response curves with damping of the cable and linear
stiffness of the nonlinear absorbers, respectively. From
Fig. 12, it can be observed that for the given values
of cable and wake oscillator parameters, high values
of damping reduce the maximum value of steady-state
response of the cable, but decrease the effective non-
linearity in the system and eventually reduce the band-
width of the nonlinear absorber. Also, after a certain
value of damping, the systembegins behaving like a lin-
ear system for the given value of excitation amplitude.
Contrary to the effect of damping, the absorber’s linear
stiffness has an opposite effect on system’s dynamics.
From Fig. 13, it can be observed that for given sys-
tem parameters, increase in kp1 not only increases the
maximum amplitude, but also increases the effective
nonlinearity in the system, hence increasing the band-
width for the nonlinear vibration absorber.

Having established the effect of absorber properties
on the systemdynamics, the effect of the absorber loca-
tion on the frequency response curves is presented next.
Figure 14 shows the variation of frequency response
curves with absorber location. From Fig. 14, colorred
it can be observed that as the absorbersmove toward the
midpoint of the cable from both sides, the maximum
value of steady-state response of the cable decreases, as
does the effect of nonlinearity in the system. However,
close to the midpoint of the cable, the system dynam-
ics get saturated as both absorbers together act as one
equivalent absorber placed at the center of cable.

Next, the effect of cable and wake oscillator param-
eters on the dynamics of the system is presented. Fig-
ure 15 depicts the effect of variation in s, which quanti-
fies the tension in the cable, on the frequency response
of the cable. From Fig. 15, it can be observed that
higher values of s not only reduce the maximum ampli-
tude of steady-state response of the cable, but also the
effective nonlinearity in the system and eventually the
effective bandwidth of the nonlinear absorber. After a
critical value of s, the system tends to becomemore lin-
ear and nonlinearity in the system is not evident at all.
This observation can be explained through the fact that
a low value of s signifies slack cables, which are more
susceptible to high-amplitude low-frequency vibra-
tions than highly stretched cables. However, highly
stretched cables are subjected to high-frequency low-
amplitude vibrations, which lead to fatigue failure of
the cable. Hence, there is a restriction on the value
of axial tension T and eventually on s. Figures 16
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Fig. 10 Frequency response curves for different values of sus-
pended mass with ε = 0.01 (i) with c∗

dp �= 0, and (ii) with c∗
dp =

0. The other system parameters are ξ1 = 0.1, ξ2 = 0.9, α11 =
α12 = .01, k11 = k12 = π4, s = 2, f ∗

L = 100, α = 0.1, c∗
d1 =

c∗
d2 = 30, γ1 = k11/2, γ1 = k11/2, C∗

L0 = 28, F∗ =
1.2534e3, G = 0.3763, λ = 0.9988, and μ̄∗ = 0.2. (Color
figure online)
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Fig. 11 Frequency response curves for different values of in-
span mass with ε = 0.01. The other system parameters are
ξ1 = 0.1, ξ2 = 0.9, α21 = α22 = .1, k11 = k12 = π4, s =
2, f ∗

L = 100, α = 0.1, c∗
d1 = c∗

d2 = 30, γ1 = k11/2, γ1 =
k11/2, C∗

L0 = 28, F∗ = 1.2534e2, G = 0.3763, λ = 0.9988,
and μ̄∗ = 0.2. (Color figure online)

Fig. 12 Frequency response curves for different values of damp-
ing in absorber with ε = 0.01. The other system parameters are
ξ1 = 0.1, ξ2 = 0.9, α11 = α12 = .01, α21 = α22 = 0.2; k11 =
k12 = π4, s = 2, f ∗

L = 100, α = 0.1, γ1 = k11/2, γ1 =
k11/2, C∗

L0 = 28, F∗ = 1.2534e2, G = 0.3763, λ = 0.9988,
and μ̄∗ = 0.2. (Color figure online)
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Fig. 13 Frequency response for different values of linear stiff-
ness in absorber with ε = 0.01. The other system parameters are
ξ1 = 0.1, ξ2 = 0.9, α11 = α12 = .01, α21 = α22 = 0.2, s =
2, f ∗

L = 100, α = 0.1, c∗
d1 = c∗

d2 = 30, γ1 = π4/2, γ1 =
π4/2, C∗

L0 = 28, F∗ = 1.2534e2, G = 0.3763, λ = 0.9988,
and μ̄∗ = 0.2. (Color figure online)

and 17 depict the effect of stall parameter (α) and
damping coefficient inwake oscillator on the frequency
response of the system, respectively. From Fig. 16, it
can be observed that as the value of the stall parameter
increases, the maximum amplitude of the steady-state
response decreases along with the effective bandwidth
of the nonlinear absorber. This observation for α can
be attributed to the fact that increase in the value of
α increases the effective damping of the system and
therefore decreases the maximum amplitude of steady
state response and nonlinearity. However, from Fig. 17
it can be observed that increasing the value of damping
in wake oscillator decreases the maximum amplitude
without any significant change in the effective band-
width for the nonlinear absorber.

5 Conclusion

In this work, the nonlinear dynamics of an over-
head transmission line system consisting of a sin-
gle cable/conductor with multiple nonlinear vibration
absorbers in the form of Stockbridge dampers was
examined. The lift force was modeled as a wake oscil-
lator in the form of a Van der Pol oscillator instead

Fig. 14 Frequency response for different absorber locationswith
ε = 0.01. The other system parameters are α11 = α12 =
.01, α21 = α22 = 0.2, s = 2, f ∗

L = 100, α = 0.1, c∗
d1 =

c∗
d2 = 30, k11 = k12 = π4, γ1 = π4/2, γ1 = π4/2, C∗

L0 =
28, F∗ = 1.2534e2, G = 0.3763, λ = 0.9988, and μ̄∗ = 0.2.
(Color figure online)
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Fig. 15 Frequency response for different values of tension with
ε = 0.01. The other system parameters are ξ1 = 0.1, ξ2 =
0.9, α11 = α12 = .01, α21 = α22 = 0.2, f ∗

L = 100, α =
0.1, c∗

d1 = c∗
d2 = 30, k11 = k12 = π4, γ1 = π4/2, γ1 =

π4/2, C∗
L0 = 28, F∗ = 1.2534e2, G = 0.3763, λ = 0.9988,

and μ̄∗ = 0.2. (Color figure online)
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Fig. 16 Frequency response for different values of stall param-
eter with ε = 0.01. The other system parameters are ξ1 =
0.1, ξ2 = 0.9, α11 = α12 = .01, α21 = α22 = 0.2, f ∗

L =
100, s = 2, c∗

d1 = c∗
d2 = 30, k11 = k12 = π4, γ1 =

π4/2, γ1 = π4/2, C∗
L0 = 28, F∗ = 1.2534e2, G =

0.3763, λ = 0.9988, and μ̄∗ = 0.2. (Color figure online)
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Fig. 17 Frequency response for different values of wake oscil-
lator damping coefficient with ε = 0.01. The other system
parameters are ξ1 = 0.1, ξ2 = 0.9, α11 = α12 = .01, α21 =
α22 = 0.2, f ∗

L = 100, s = 2, c∗
d1 = c∗

d2 = 30, k11 = k12 =
π4, γ1 = π4/2, γ1 = π4/2, C∗

L0 = 28, F∗ = 1.2534e4, α =
0.1, λ = 0.9988, and μ̄∗ = 0.2. (Color figure online)

of a traditional sinusoidal model. This step allowed
us to consider nonlinearity in the lift force and was
more realistic than a sinusoidal model. Furthermore,
the cable/conductor was modeled as a simply sup-
ported beam, while the Stockbridge dampers were
modeled as lumped mass–spring–damper–mass sys-
tems. The nonlinearity in the system was realized not
only through the mid-plane stretching of the cable, but
also through the equivalent cubic nonlinearity of the
Stockbridge dampers. Linear and nonlinear analytical
study of the coupled system of nonlinear partial differ-
ential equations, i.e., the equations ofmotion governing
the response of the cable along with the equation gov-
erning the lift coefficient, were carried out using the
method of multiple scales. Accordingly, the equations
governing the steady-state response of the cable for the
case of lock-in phenomenon were obtained and solved
numerically. For numerical validation of the obtained
analytical solutions, a reduced–order systemwas devel-
oped using Galerkin projection of the governing partial
differential equations. The solution was then validated
against direct numerical simulations of the reduced-
order system and the results showed very good agree-
ment. The response of the cable with wake oscillator
was also compared to the response of the cable with
sinusoidal lift force.We observed interesting dynamics
of the wake variable around the zero value of the detun-
ing parameter, which further contributes to the correct
evaluation of system dynamics near resonance.We also
observed that modeling lift force as sinusoidal overes-
timates the maximum value of steady-state response.
Finally, a parametric study was carried out to identify
key system parameters. It was observed that increasing
the suspended mass and damping of the Stockbridge
damper decreases the maximum value of steady-state
response of the cable at the cost of reduction in the
effective bandwidth of the nonlinear absorber. Also, it
was observed that the in-spanmass of the absorber does
not influence the dynamics of the system significantly.
A comparison between linear and nonlinear vibration
absorbers revealed that the effective bandwidth of a
nonlinear vibration absorber increases with increasing
nonlinear stiffness without significantly affecting the
maximum value of steady-state response of the cable.
We further observed that locating absorbers near the
ends of the cable results in increased effective band-
width, while locating them closer to the middle results
in smaller steady-state amplitude.We also analyzed the
effect of axial tension and stall parameter of the wake
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oscillator on the systemdynamics.The results indicated
that nonlinearity in the system vanishes with increase
in the values of these parameters.
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Appendix A: Expressions used in Eq. (34)

For the sakeof simplicity, slowflowequations (Eq (33)),
governing the amplitude and phase, can be written in a
more compact form as

D2ay = A11 + B11 sin(�) , (39a)

D2qy = A12 + B12 cos(�) , (39b)

D2� = σ + B14 sin(�) − A13 − B13 cos(�) , (39c)

where Ai j (for i = 1, 2, 3 and j = 1, 2, 3) and Bi j
(for i = 1, 2, 3 and j = 1, 2, 3, 4) are the function
of system parameters, excitation frequency, and ampli-
tudes ay and qy . These are given by

A11 =
∑n

p=1

[
aycdp(�p − 1)Yp(ξp)

2 + aykp�4,p(1 − �p)Yp(ξp)
]

∑n
p=1

[
kpYp(ξp)�3,p + 2Yp(ξp)2α1p

]
+ 2b1

− 2ωyay f ∗
L ᾱb1 + 2ωyay μ̄b1ωs

∑n
p=1

[
ωsωykpYp(ξp)�3,p + 2ωsωyYp(ξp)2α1p

]
+ 2ωyωsb1

(40a)

B11 = f ∗
L qyb1ωs

∑n
p=1

[
ωsωykpYp(ξp)�3,p + 2ωsωyYp(ξp)2α1p

]
+ 2ωyωsb1

(40b)
A12

= ωsGC∗
L0

2qyb1 − qy
3Gωsb12, B12 = 1

2b1
ay F

∗ωyb1 , (40c)

A13 =
∑n

p=1

(
6ay3kpYp(ξp)�2,p − 6ay3γpYp(ξp)

4�1,p
)

∑n
p=1 ayωy

[
16b1 + 8kpYp(ξp)�3,p + 16Yp(ξp)2α1p

]

− 3ay3λb2b3
∑n

p=1 ayωy

[
16b1 + 8kpYp(ξp)�3,p + 16Yp(ξp)2α1p

] (40d)

B13 = −8 f ∗
L qyb1

∑n
p=1 ayωy

[
16b1 + 8kpYp(ξp)�3,p + 16Yp(ξp)2α1p

] ,

B14 = − 1

2qy
ay F

∗ωy . (40e)

As mentioned in the main text, the steady state ampli-
tudes and phase can be obtained by setting D2ay =
D2qy = D2� = 0, which further leads to

A∗
11 + B∗

11 sin(�
∗) = 0 , (41a)

A∗
12 + B∗

12 cos(�
∗) = 0 , (41b)

σ + B∗
14 sin(�

∗) − A∗
13 − B∗

13 cos(�
∗) = 0 . (41c)

In the above equation, superscript ∗ refers to steady
state quantities. Equations (41a) and (41b) can be
solved for sin(�∗) and cos(�∗) to get

sin(�∗) = − A∗
11

B∗
11]

, cos(�∗) = − A∗
12

B∗
12

. (42)

In the next step, by using trigonometric identity, and
substituting Eq. (42) in Eq. (41c), we get two algebraic
equations in the form of
(

A∗
11

B∗
11]

)2

+
(
A∗
12

B∗
12

)2

− 1 = 0 , (43a)

σ − B∗
14

A∗
11

B∗
11]

− A∗
13 + B∗

13
A∗
12

B∗
12

= 0 , (43b)

Note that in the above equations except a∗
y and q∗

y all
the system and excitation parameters are known, hence,
these simultaneous algebraic equations can be used to
govern the steady state amplitudes a∗

y and q∗
y and can

be written in a compact form as

G1(a
∗
y , q

∗
y ) =

(
A∗
11

B∗
11]

)2

+
(
A∗
12

B∗
12

)2

− 1 = 0

G2(a
∗
y , q

∗
y ) = σ − B∗

14
A∗
11

B∗
11]

− A∗
13 + B∗

13
A∗
12

B∗
12

= 0.

(44)
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